Tight sets on the Hermitian variety $H(2r + 1, q^2)$

(Talk)

Anamari Nakić
Faculty of Electrical Engineering and Computing
University of Zagreb
anamari.nakic@fer.hr

(joint work with Leo Storme (Ghent University))

A set \mathcal{T} of points of a finite polar space \mathcal{P} of rank $r \geq 2$ over a finite field of order q is i-tight if for any $P \in \mathcal{P}$

$$|P^\perp \cap \mathcal{T}| = \begin{cases} i2^{r-1} - 1 + qr - 1, & P \in \mathcal{T} \\ i2^{r-1} - 1 q^{-1} + qr - 1, & P \notin \mathcal{T} \end{cases}$$

It has been shown in [1] that an i-tight set on the Hermitian variety $H(2r + 1, q^2)$, $q^2 > 16$, is a union of pairwise disjoint Baer subgeometries $PG(2r + 1, q)$ and generators $PG(r, q^2)$, when $i < q^{10/8}/\sqrt{2} + 1$. Combining the generalized version of known proving techniques [2], with recent results on blocking sets and minihypers, we have been able to give an alternative proof of this result and consequently improve the upper bound on i. We shed a new light on an "old" technique and show how it can be used to obtain new results.

References

MSC2010: 05B25, 51E12.

Keywords: tight set, Hermitian variety.

Section: Combinatorics.