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1. Introduction 

Diophantus of Alexandria [1] first studied the problem of finding sets with the 
property that the product of any two of its distinct elements increased by one is a 
perfect square. Such a set consisting of m elements is therefore called a Diophan
tine m-tuple. The first Diophantine quadruple of rational numbers { 1

1
6 , i~, 1

4
7

, \
0
6
5

} 

was found by Diophantus himself, while the first Diophantine quadruple of inte
gers {1, 3, 8, 120} was found by Fermat. In the case of rational numbers, the first 
Diophantine quintuple was found by Euler and a few Diophantine sextuples were 
recently found by Gibbs [10] (see also [11,3]), but no upper bound for the size of 
such sets is known. Recently, the first author [2] showed that there does not exist a 
Diophantine sextuple and there are only finitely many Diophantine quintuples over 
the integers. 

Many generalizations of this problem were considered, for example by adding a 
fixed integer n instead of 1, looking at kth powers instead of squares or considering 
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the problem over other domains than Z or Q. So we define: 

Definition 1. Let m ::>- 2, k ::>- 2 and R be a commutative ring with 1. A kth 
power Diophantine m-tuple in R is a set {a1 , ... ,am} consisting of m different 
nonzero elements from R such that aia.i + 1 is a kth power of an element of R 
for 1 :S i < j :S m. l'vioreover, a set { a 1 , ... , am} of m different nonzero elements 
from R is called a pure power Diophantine m-tuple if aia.i + 1 is a kth power of an 
element of R for some k ::>- 2 and all 1 :S i < j :S m. 

In case of R a polynomial ring, it is nsnally assmned that not all polynomials 
a 1 , ... , arn are constant. The first polynomial variant or the above problem was 
studied by Jones [13,14] and it was for the case R ;};[X] and !.: 2. For this case, 
Dujella and Fuchs [5] proved that there does not exist a S<'<:ond power Diophan
tine 5-tuple. Moreover, they proved that all sccmHI pow<~r Diophantine quadruples 
{a, b, c, d} in Z[X] are regular i.e. they satisfy (a j li r: rl) 2 = 4(ab + 1)(cd + 1), 
which is not true in CC[X] as we will show in this pa])(~r. For other variants of the 
case R = Z[X] and k = 2, see [4,7,8]. 

Dujella and Luca considered the case k > :l and I? = IK[X], where lK is 
an algebraically closed field of characteristic 0. 'l'lwy proved [9] that m :::; 5 for 
k = 3, m :S 4 for k = 4, m :S 3 for k ::>- G and 'Ill :S 2 for k ::>- 8 and k is even. 
Using many results from [9], Dujella, Fuchs and Lnca [6] proved that there does 
not exist a second power Diophantine 11-Lnple in JK[X], i.e. m :S 10 for k = 2. 
They also proved [6, Theorem 2] that there does not exist a pure power Diophan
tine quintuple where all perfect powers which appear are ::>- 7. As a combination of 
the previous results for fixed exponent awl Ramsey theory [12], the same authors 
proved [6, Theorem 3] that m :S 2 · 10° for a pure power Diophantine m-tuple in 
IK[X]. Thus, they established an llllCOJHiitional analogue of the result of Luca [15] 
for the positive integers, obtained under the assumption of the abc-conjecture. Let 
us note that in the case R = IK[X] the assumption that not all the polynomials in 
a kth power Diophantine rn-tuple { o. 1, ••• , am} are constant is very natural, since 
in an algebraically closed field JK, any 'In-tuple of constant polynomials is a kth 
power Diophantine m-tuple for any k ::>- 2. vVe will also assume this for the rest 
of this paper. It follows [9, Lemma 1] that at most one of the polynomials ai for 
i = 1, ... , m is constant. The same conclusion is true, with little modification of the 
proof, for pure power Diophantine rn-tuple in IK[X]. 

The first goal of this paper is to improve the upper bound [6, Theorem 1] for 
the size of a second power Diophantine m-tuple in IK[X]. We have the following 
theorem: 

Theorem 1. There does not exist a second power Diophantine 8-tuple in IK[X], 
i.e. 

m :S 7 for k = 2. 
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'vVe will prove Theorem 1 under the assumption that IK. is an algebraically 
closed field of characteristic 0. However, this will immediately imply that the state
ment of Theorem 1 is true for any field IK. of characteristic 0. For the proof of 
Theorem 1, we combine a gap principle with an upper bound for the degrees of 
the elements of a second power Diophantine quadruple in IK.[X]. The mentioned 
upper bound [6, Proposition 1] is obtained by reducing the problem to a system of 
Pellian equations. The solutions to these Pellian equations lie in finitely many binary 
recurrent sequences so the problem is reduced to finding the intersections of these 
sequences. Here, we also follow that approach and we use many results from [9]. The 
gap principle we obtain is an improvement of the one [6, Lemma 2] used in the proof 
of [6, Theorem 1]. It follows from a careful analysis of the elements of the binary 
recurrence sequences with small indices. An interesting result of that analysis is 
that we discovered the existence of irregular second power Diophantine quadruples 
in IK.[X]. For any choice of the root 0 of X 2 + 3 in IK., the set 

_ {0 _20( 2_) -3+0 2 20 3+0 2 20} 
DP - 2 ' 3 p 1 ' 3 p + 3 ' 3 p + 3 ' 

with p E IK.[X] a nonconstant polynomial, is an irregular polynomial Diophantine 
quadruple (see Proposition 1). 

As a consequence of Theorem 1, we get an improvement of an upper bound [6, 
Theorem 3] for the size of a set with the property that ~he product of any two 
elements plus 1 is a pure power. We prove: 

Theorem 2. If { a 1 , ... , am} is a pure power Diophantine m-tuple in IK.[X], then 

m < 2 · 107 . 

The proof of this theorem runs along the same line as the proof of [6, Theorem 3]. 
As an upper bound, we get the Ramsey number R(S, 6, 4, 5; 2). The parameters in 
this Ramsey number come from the cases k = 2, 3, 5 and from [6, Theorem 2]. 

In Sec. 4, we prove Theorems 1 and 2. This part is an improvement of the 
corresponding parts of [6], due to new gap principles developed in Sec. 3. These gap 
principles follow from the analysis of the elements of binary recurrence sequences. 
We start this analysis in Sec. 2 by studying the intersections of the above-mentioned 
sequences. Here, we follow the strategy used in [2] in the integer case. 

2. Relations Between m and n 

Before we start our analysis we recall the method of how the problem of extending 
a second power Diophantine triple {a, b, c} in IK.[X] to a second power Diophantine 
quadruple {a, b, c, d} is reduced to the resolution of a system of Pellian equations. 
For brevity, instead of second power Diophantine m-tuple in IK.[X] we shall refer 
to a polynomial Diophantine m-tuple. In what follows, let a, b, c, d be polynomials 
in IK.[X]. Denote by a,(J,~(,O the degrees of a,b,c,d, respectively, and assume that 
a :::; (3 :::; 1 :::; o. 



1452 A. Dujella 8 A. Jurasic 

Let 

ab + 1 = r 2
, ac + 1 = s2

, be + 1 = t2 

and ad + 1 = x 2
, bd + 1 = y 2

, cd + 1 = z 2
. Eliminating d, we get 

(1) 

(2) 

(3) 

By [9, Lemma 4], there exist a nonnegative integer m and a solution (Z0 , X 0 ) of (2) 
such that deg(Zo) <::: :)J~a, deg(Xo) <::: a1' and 

zya + x)C = (Zova + Xovc)(s + vac)'n. 

Also, there exist a non-negative integer nand a solution (Z1, YI) of (3) such that 
deg(ZI) <::: 31~!3, deg(YI) <::: 131' and 

zVb + YVc = (Z1 Vb + Y1 vc)(t + Jbc;j". 

Hence, z = Vm = Wn, where the sequences (Vm)rn>o and (vVn)n>o are defined by - -

TVo = Z1, vV1 = tZ1 + cY1, Wn+2 = 2tWn+l- vV,. 

By [9, Lemma 5], it follows that 

a+l 
deg(Vrn) = (m- 1)-

2
- + deg(V1) 

for m :?: 1 and 

1 a+51 
2 <::: deg(V1) <::: -

4
-. 

Similarly, 

f3+1 deg(Wn) = (n- 1)-
2

- + deg(W1) 

for n :?: 1 and 

1 f3 +51 
2 <::: deg(WI) <::: -

4
-. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

In the rest of the paper, we will use several lemmas from [9,6] which illustrate 
the properties of the sequences (Vm)m>o and (vVn)n>O· In this section, we prove an 

- -

unconditional relationship between m and n, when Vm = vV71 • 

Lemma 1. If Vm = vVn, then n- 1 <::: m <::: 2n + 1. 

Proof. From (6)-(9), we obtain 

a + 1 1 a + 1 a + 51 
(m- 1)-

2
- + 2 <::: deg(Vm) <::: (m- 1)-

2
- + -

4
- (10) 
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for all m ~ 1 and 

,6 + I I ,6 + 1 ,6 + 51 (n- 1)-
2

- + 2 :::; deg(Wn) :::; (n- 1)-
2

- + -
4
- (11) 

for all n ~ 1. Since deg(Vm) = deg(Wn), it follows from (10) and (11) that 

( m - 1) a + ~( + 2 < ( n - 1) ,6 + I + ,6 + 51. 
2 2- 2 4 

Since a~ 0 and ,6:::; 1, this implies that (m- 1H :::; n1 and finally 

m:::; 2n + 1. 

Likewise, from (10) and (11) we obtain 

( n - 1) ,6 + I + 2 < ( m - 1) a + I + a + 51. 
2 2 - 2 4 

Since a:::; ,6 < 3,8, this implies that (n- 1),e~, < (m- 1),e~, + ~(,6 + ~r), and 
we get 

m~n-1. D 

3. Gap Principles 

In this section, we prove a gap principle which is an improvement of the one 
established in [2, Lemma 2] and which is used in the prQof of Theorem 1. First 
we develop a gap principle which comes from studying the equality Vrn = Wn for 
small values of m and n. For this, we need two lemmas and the definition of a 
regular polynomial Diophantine quadruple. 

Lemma 2. Let {a, b, c} be a polynomial Diophantine triple. Denote by d+ the poly
nomial with larger degree and by d_ the polynomial with smaller degree among the 
polynomials 

a+ b + c + 2abc ± 2rst, 

where r, s and t are polynomials for which (1) holds. Then deg(cL) <f. 

Proof. Using (1), we conclude that deg(d+) =a+ ,6 +f. From 

d+ · d_ = a2 + b2 + c2 
- 2ab - 2ac - 2bc - 4, 

it follows that deg( d_) < f. D 

Definition 2. A polynomial Diophantine quadruple {a, b, c, d} is called regular if 

(a+ b- c- d) 2 = 4(ab + 1)(cd + 1), 

or, equivalently, if either d = d+ or d = d_. 

It holds 

(12) 
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where u =at± rs, v = bs ± rt, w = cr ±st. IVIoreover, we have that 

c =a+ b + d± + 2(abd± ± ruv). (13) 

Ford_ = 0, by (13), we have c =a+ b ± 2r. The existence of d± implies that Vm = 

Wn has nontrivial solutions. Since d_ has degree < 1 and dcg(V,n), deg(TVn) 2: 1 
for m, n 2: 2 it must arise from Vrn = vVn with m, n E { 0, 1}. 

The following lemma is a more precise version of [6, Lemma 4], where only a 
suitable version for their application was proved. 

Lemma 3. (1) IfV2m = W2n, then Zo = Z1. 

(2) If V2m+l = H12n, then either (Zo, Z1) = (±1, ±s) or (Zo, Z1) = (±s, ±1) or 
zl = sZo + cXo or zl = sZo- cXo. 

(3) If V2m = W2n+l, then either (Zo, Z1) = (±t, ±1) or Zo = tZ1 + cY1 or Zo = 

tZ1- cY1. 
(4) If V2m+l = W2n+l, then either (Zo, Z1) = (±1, ±cr ± st) or (Zo, Zl) = (±cr ± 

st, ±1) or sZo + cXo = tZ1 ± cY1 or sZo- cXo = tZ1 ± cY1. 

Proof. (1) From [6, Lemma 3], we have Z0 = Z1 (mod c). Since deg(Zo) < 1 and 

deg(Zl) < 1, we conclude that Z 0 = Z1. 

(2) From [6, Lemma 3], we have Z1 = sZo (mod c). Assume that Z0 = ±1. Hence, 

zl = ±s (mod c). (14) 

If a< 1, then Z1 = ±s. If a= fJ = 1, then from [6, Lemma 1] it follows that 
c =a+ b ± 2r and we have ±s = ±t (mod c). Multiplying this congruence by 
s, we obtain ±1 = ±st (mod c). Now, multiplying (14) by t we get 

tZ1 ± cY1 = ±1 (mod c). (15) 

If Z1 = ±1 then, by (3), Y1 = ±1 and from (5) it follows that deg(Wl) :::; 1· 
Similarly, deg(Vi) :::; I· From (6)-(9), it follows that 2m+ 1 = 2n, which is not 
possible. We conclude that Z1 =/= ±1. Now, from [9, Lemma 5], deg(Zl) 2: ~ 

and deg(Yl) 2: ~. Hence, Y1 is not constant. Since 

(16) 

we conclude that one of the polynomials cY1 ± tZ1 has degree less than I· For 
that polynomial, (15) becomes an equation. Notice that deg(Zl) :::; 3"~;;(3 = ~' 
so deg(Z1) = ~· From [9, Lemma 4], it follows that deg(W0 ) = deg(Zl) :::; 
deg(tZ1 ± cYl), so we have a contradiction. 

Assume now that Z0 =/= ±1. By [9, Lemma 5], we have deg(Zo) 2: ~ and 
X 2 1 deg(Xo) 2: 'i· Let a= 0 and X 0 be constant. Denote e := ~· Then {a, e, c} 

is a Diophantine triple and [9, Lemma 1] implies that a= e. Now, XJ = a2 + 1, 
and by (2) we obtain Zo = ±s. Hence, Z1 = ±1 (mod c) and we have Z1 = ±1. 
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Assume now that X 0 is not constant. Since 

(cXo + sZo)(cXo- sZo) = c2
- ac- Z6, (17) 

we conclude that one of the polynomials cX0 ± sZ0 has degree less that 1 and 
they are both congruent to Z 1 modulo c. Hence, one of these polynomials is 
equal to z]. 

(3) This case is completely analogous to case (2), except that (3 cannot be equal 
to 0. 

(4) From [6, Lemma 3], we have sZ0 = tZ1 (mod c). If X 0 and Y1 are not constant, 
then one of the polynomials cX0 ± sZ0 and one of the polynomials cY1 ± tZ1 

have degrees less than J. These two polynomials are congruent modulo c, thus, 
they have to be equal. 

If Zo = ±1, then ±s = tZ1 (mod c). Multiplying this congruence by t we 
obtain ±st ± cr = Z1 (mod c). Since 

( ± st - cr) ( ± st + cr) = ac + be + 1 - c2 
, 

one of the polynomials ±st ± cr has degree less then 1 and the other has degree 
equal to 1 + a;/3. Hence, ±st ± cr = Z1 and deg(Z1) :S: 1- a;/3. Also, notice 
that we have cd_ + 1 = Zf. If deg(Zl) < 1- a;/3, it must be that (3 = 1 so now 
deg(Zl) <~-~-If a= (3 = 1 we obtain a contradiction deg(Zl) < 0. If a< (3, 
it follows that deg(Zl) < ~and we get d_ = 0, Z1 = ±1. If deg(Zl) = 1- a;/3, 
from deg( Zl) :S: 3~',~ 13 it follows that 1 :S: (3 + 2a. If (3 = 1 and a > 0, then 
deg(Zl) < ~ so d_ = 0 and Z1 = ±1. If (3 = 1 and a= 0, then dcg(Z1) = l 
Now we have deg(d_) = 0 sod_ =a and Z1 = ±s. 

Assume now that Z0 f. ±1 and X 0 is constant. As above, Z0 = ±s and 
we have ±1 = tZ1 (mod c). Multiplying this congruence by t, it follows that 
±t = Z1 (mod c). If (3 < 1, then Z1 = ±t andY?= b2 + 1, a contradiction. Let 
(3 =I· Notice that ±1 = tZ1 ±cY1 (mod c). If deg(Zl);::: ~'then by [9, Lemma 
5], deg(YI) ;::: ~ and Y1 is not constant. As above, we obtain a contradiction. 
Consider now the general case a :S: (3 :S: 1 and Z1 = ±1. lVIultiplying the 
congruence sZ0 = tZ1 (mod c) by s, we obtain Z0 = ±st (mod c) so, as above, 
Zo = ±st ± cr and deg(Zo) :S: 1- a;/3. Here, we have Z0 = ±s. When (3 = 1 
we can also have Z0 = ±1. D 

In the proof of Lemma 3, we obtained the following result which will be used 
several times in the proof of Proposition 1. 

Lemma 4. If a= 0 and X 0 f. ±1 is constant, then XJ = a2 + 1 and Z0 = ±s. 

Now we are ready to examine the equation v;n = Wn for small indices m and n. 

Proposition 1. Let S = {a, b, c} be a polynomial Diophantine triple. Assume that 
V 2 1 V,n = Wn and defined= ,~- . If {0, 1,2} n {m,n} f. 0, then either deg(d) < 1 

or d = d+ or d = 
3+f=3p2 + 2~, in the special caseS= { 7, - 2~(p2 -1), 

-
3+3.;=3 p 2 + 2~} with p E IK.[X] a nonconstant polynomial. 
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Proof. From Lemma 1 and the condition {0, 1, 2} n { m, n} =I- 0, it follows that 

(m,n) E {(0,0), (0, 1), (1,0), (1, 1),(1,2),(2, 1), (3, 1), (2,2), 

(2,3), (3,2), (4,2), (5,2)}. 

(1) IfO E {m,n}, then from (4) or (5) we have z = Z0 or z = Z1 . Since deg(Z0 ) < 1 

and deg(Zl) </,from cd + 1 = z2 we obtain 

deg(d) <f. 

(2) If (m,n) = (1, 1), then z = V1 = W1 . From (4) and (5), we have 

z = sZo + cXo = tZ1 + cY1. (18) 

Assume first that X 0 and Y1 are not constants. By Lemma 3, we have the equation 

sZo ± cXo = tZ1 ± cY1 . 

We consider the four possibilities. If 

sZo + cXo = tZ1 + cY1, 

then from (18) we obtain deg(z) <f. As in the case 0 E {m,n}, we conclude that 
deg( d) < f. If 

sZo + cXo = tZ1- cY1, 

then combining this with (18) we obtain 2cY1 = 0, a contradiction. If 

sZo- cXo = tZ1 + cY1, 

then combining this with (18) we obtain 2cX0 = 0, again a contradiction. The last 
possibility is 

sZo- cXo = tZ1- cY1. 

This equation together with (18) yields sZ0 = tZ1 and X 0 = Y1 . Inserting this into 
(2) and (3), we obtain 

(b- a)s2 = (bZf- aZ§)s2 = Zf(abc + b- abc- a) = Zf(b- a). 

Therefore, Z1 = ±s, Zo = ±t and Xo = Y1 = ±r. Hence, z = V1 = ±st ± cr, and 

d = z 2 
- 1 = abc2 + ac + be + 1 ± 2stcr + abc2 + c2 

- 1 
c c 

=a+ b + c + 2abc ± 2rst. 

From Lemma 2, we conclude that either d = d+ or deg(cl) <f. 

Assume that (Zo, Z 1) = (±1, ±cr ± st). From (2), we have X 0 = ±1 and from 
(18) it follows that 
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so deg(z) :::; ry. If deg(z) < 1, then deg(d) < ry. Let deg(z) = deg(tZ1 + cYl) = ry. 

Then Y1 must be a constant. Let us note that cd_ + 1 = Zt and, from (3), we have 
bd_ + 1 = Yt Now we conclude that d_ = 0, Y1 = ±1 and Z1 = ±1. From [6, 
Lemma 1], it follows that c = a+ b ± 2r, so we have c = ±s ± t. Also, by (18), 
±s ± c = ±t ±c. If ±s ± t = 0, then from (1) we obtain a= b, a contradiction. If 
±s ± t = ±2c, then combining this relation with c = ±s ± t we obtain c = 0 or cis, 
again a contradiction. 

Assume now that (Z0 , Zl) = (±cr ± st, ±1). From (3), we have Y1 = ±1 and 
from (18) it follows that 

z = sZo + cX0 = ±t ± c, 

so deg( z) :::; I· If deg( z) < 1 then deg( d) < 1, so we only deal with deg( z) 
deg(sZo + cXa) = ry. Here, X 0 is a constant. Observe that cd_ + 1 = Z6 and by (2) 
ad_ + 1 = X6. If a is not a constant, we have a contradiction as above. If a is a 
constant, then from Lemma 4 it follows that X6 = a 2 + 1 and Z 0 = ±s. Moreover, 
(3 = 1 and a= 0. From s(±cr ± st) + cX0 = ±t ± c, we obtain 

c(±at ± rs) ± t + cX0 = ±t ± c, 

where ad_+ 1 = (±at± rs) 2 . Hence, we have 2cX0 = ±c so X 0 = ±~ and a= 

± ? . By squaring the equation 

±s = ±cr ± st 

and using (1) we obtain c(b- c ± 2rs) = 0, soc= b ± 2rs. Squaring the last equa
tion, we get 

b2 +be+ c2 = ±2;=3(b +c) + 4 

and 

( 1+A) ( (1+J=3)
2

) c + 
2 

b c-
2 

b = ±2J=3(b +c) + 4. (19) 

Observe that one of the factors on the left-hand side of (19) has to be constant. 
Assume first that e := c + 1+~ b is a constant. From (19), we get 

e2
- ;=3be = ±2J=3e + 4 ± b( J=3 + 3), 

where on the both sides we have polynomials of the form 91b+ 92 , with constants 91 
and 92 . By comparing the coefficients, we obtain e = ±( -1 + N), where the signs 

± are the same as the signs of a. Hence, e = ±2 ( 1+~) 
2

. Denote u 2 := 1+~ and 

notice that u4
- u 2 + 1 = 0. Now, we have c = -u2 b ± 2u4 and, by (1), t = bu4 ± 1. 

Applying [6, Lemma 1] to the polynomial Diophantine triple {b, c, d}, we obtain 
d = b + c ± 2t. Let d = b + c + 2t, hence d = bu4 ± 2u2

. From this, it follows that 
ad+ 1 = r 2u 4

. Moreover, bd + 1 = (bu2 ± 1) 2 and cd + 1 = -u6 (b =t= u(2u2 - 1)) 2 . 
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Now we conclude that for every nonconstant polynomial p E JK[X] there exists the 
polynomial Diophantine quadruple 

-{H_2H(2-)-3+H2 2H3+H 2 2H} 
DP - 2 ' 3 p 1 ' 3 p + 3 ' 3 p + 3 . 

When d = b + c- 2t, in analogous way we obtain ad+ 1 = -3u4r 2 + u2(3 +H)-
2-2H, a contradiction. Assume now that e := c- e+r) 2 b is a constant. From 
(19), it follows that 

e2 + Hbe = ±2He + 4 ± ( -3 + H) b. 

From the above relation, we obtain e = ±(1 +H). Hence, e = ±2u2. We get 
c = bu4 ± 2u2 and t = bu2 ± 1. If d = b + c + 2t, then ad+ 1 = 3u2r 2 + u2( -3 + 
H) + 1 + H, a contradiction. But, for d = b + c- 2t = -bu2 ± 2u4 , we 
obtain a polynomial Diophantine quadruple Dp again. Notice that Dp is not a 
regular Diophantine quadruple because we have deg( d+) = 21, deg( d_) = 0 and 
deg(d) = 1-

(3) Assume that (m, n) = (2, 1). Then z = V2 = W1. By (4) and (5) we have 

z = Zo + 2c(aZo + sXo) = tZ1 + cY1. (20) 

By Lemma 3, if Z1 = ±1, then Zo = ±t. Now, by (2), X 0 = ±r and, by (3), 
Y1 = ±1. Hence, z = ±t ± c and deg(z):::; 1- From (4) and [9, Lemma 5], it follows 
that deg(V2) :::0: 1 + o:~,6 > 1, so we obtain a contradiction. 

If Z1 -1- ±1, then by Lemma 3, one of the polynomials tZ1 ± cY1 has degree less 
than 1 and is equal to Zo. If 

Zo = tZ1 + cY1, 

then from (20) it follows that deg(d) < 1- If 

Zo = tZ1- cY1, 

then from (20) we obtain that aZ0 + sX0 = Y1. Combining the last two equations, 
we get Z 0 = tz,~;cXo and Y1 = sXo~2atz,. Inserting this into (2) and (3), we obtain 

Zi(b- a)= i(b- a). 

We get that Z1 =±sand, by (3), Y1 = ±r. Hence, z = W1 = ±st±cr. Analogously 
to the case (m, n) = (1, 1), we conclude that 

d =a+ b + c + 2abc ± 2rst. 

From Lemma 2, it follows that either d = d+ or deg(d) <I· 

(4) Let (m, n) = (1, 2). Then z = V1 = W2. From (4) and (5) we have 

z = sZo + cXo = Z1 + 2c(bZl + tYI). 

Analogously to the case (m, n) = (2, 1), if Zo = ±1, then X 0 = ±1 and we obtain 
a contradiction. 
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If Z 0 =f. ±1 and X 0 is a constant, then by Lemma 3, Z 0 =±sand we have 

z = ±ac ± 1 + cXo. 

Hence, deg(z) S: r· As in the case (m, n) = (2, 1), we obtain the contradiction 
deg(z) >f. 

If Zo =f. ±1 and X 0 is not a constant, analogously to the case (m, n) = (2, 1), we 
obtain that either d = d+ or deg(d) <f. 

(5) Assume now that (m, n) = (2, 2). Then z = V2 = W2 . From (4) and (5) we have 

z = Zo + 2c(aZo + sXo) = Z1 + 2c(bZ1 + tYl). 

From Lemma 3, it follows that Z0 = Z 1 . Inserting this into ( 21), we get 

sXo- tY1 = (b- a)Zo. 

Combining (2) and (3), we obtain 

(b- a)Z6 = b- a+ cY1
2

- cX6. 

Now, from (22) and (23), we have 

(b- a) 2 + (b- a)(cY1
2

- cX6) = (sXo- tY1) 2 

= acX6 + X6 - 2stXoYl + bcY1
2 + Y1

2 

= t 2 X6- 2stXoYl + s2Y? + (b- a)(cY1
2

- cX6). 

Therefore, we conclude that 

tX0 - sY1 = ±(b- a). 

Furthermore, from (2) and (3), we obtain 

s2 (bX6 +a- b) = as2Y1
2

, 

and from (24), it follows that 

as2 Y1
2 = a(tXo =F (b- a)) 2

. 

Hence, from (25) and (26), we have 

(ac + 1)(bX6 +a- b) = a(bcX6 + X6 =F 2tX0 (b- a)+ (b- a) 2
), 

from which we conclude that 

(b- a)(X6 ± 2atX0 + a2 t 2
) = (b- a)(ab + 1)(ac + 1) 

(b- a)(Xo ± at) 2 = (b- a)r2 s2
. 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

Therefore, Xo = ±rs =Fat and, by (2), Zo = ±st =F CT. Now, we obtain v2 
±st =F cr + 2c( ±ast =F acr ± r s2 =F ats) = ±st ± cr and 

d =a+ b + c + 2abc ± 2rst. 

From Lemma 2, we conclude that either d = d+ or deg(d) <f. 
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(6) Let (m, n) = (3, 1). Then z = V1 = vV1. From (4) and (5), we have 

z = sZo + c(4asZo + 3Xo) + 4ac2 Xo = tZ1 + cY1. (27) 

Now from (6)-(9), it follows that 'Y ~ fJ- 4a ~ (J, so fJ = 1 and a = 0. Assume 
first that X 0 and Y1 are not constants. By Lemma 3, we have four possibilities to 
consider. Let us start with 

sZo + cXo = tZ1 + cY1, (28) 

where both sides have degrees less than f. Now, from (27), we conclude that 
deg(Wl) <f. Hence, deg(V3 ) < 'Y which is in contradiction with (10). If 

sZo- cXo = tZ1 + cY1, 

we obtain the same contradiction as for (28). If we have 

sZo + cXo = tZ1- cY1, (29) 

where both sides have degrees less than 1, then from (27) we obtain that 

-2Y1 + 2Xo = -4a(sZo + cXo). 

Hence, deg(sZ0 +cX0 ) ~~·But, now from (17) it follows that deg(sZ0 -cX0 ) 2:: h, 
again a contradiction. The last possibility 

sZo - cXo = tZ1 - cY1 

yields a contradiction analogously as for (29). 
Let (Z0 , ZI) = (±1, ±cr ± st). From Lemma 3, it follows that either Z1 = ±1 

or zl = ±s. If zl = ±1, we get from (3) that yl = ±1 so by (27) we have 
z = ±t ± c and deg(z) ~ f. If deg(z) < 1, then deg(d) < f. Consider the case 
deg(z) =f. By (2), X 0 = ±1 and from (27) it follows that deg(z) = deg(V3 ) = 2"(, 
a contradiction. If Z1 = ±s, then by (3), Y1 = ±r. Now z = vV1 = ±st ± cr, 
where deg(±st ± cr) = 1 + "'!.6 or deg(±st ± cr) ~ 1- a;.a. From the equation 
deg(V3 ) = deg(Wl), we get a contradiction for both possibilities. 

Assume now that (Z0 , ZI) = (±cr ± st, ±1). By (3), Y1 = ±1 and from (27) we 
see that z = ±t ±c. Hence, deg(z) ~ r· We obtain that deg(V3 ) ~ 1, which is a 
contradiction by (10). 

(7) Let (m, n) = (2, 3). Then z = V2 = W3 . From (4) and (5) we have 

z = Z0 + 2c(aZ0 + sX0 ) = tZ1 + c(4btZ1 + 3Yl) + 4bc2Y1. (30) 

From Lemma 3, it follows that if Z1 = ±1, then Zo = ±t. By (2), Xo = ±r, and 
by (3), Y1 = ±1. Comparing the degrees, from Z0 = ±t we obtain that 2fJ +a~ 1, 
from which it follows 

fJ<f. 



---------------------"-~"""""""" 

On the Size of Polynomial Diophantine Tuples 1461 

Now, from (30) we have 

V2 = ±t + 2c(±at ± ST), 

w3 = ±t + c(±4bt ± 3) ± 4bc2. 

We conclude that deg(W:;) = deg(4bc2) = f3 + 21, so deg(V2) = f3 + 2r. Therefore, 
deg(±at ± sT) = f3 +f. Now we have f3 + 1:::; max(deg(±at), deg(±7's)) = o: + ,e!' 
so 1:::; 2o: ~ /3. But, from 2/3 + o::::; /, we get f3 < o:, a contradiction. 

If Z1 =/= ±1, from Lemma 3, it follows that 

where the degree of the right-hand side is <I· First we assume that 

Inserting this into (30), we obtain 

aZ0 + sXo = 2b(tZ1 + cYl) + 2Y1. (31) 

Since one of the polynomials tZ 1 ± cY1 has the degree equal to r + deg(Yl) and 
the degree of Z0 is less than /, this must be the polynomial tZ1 + cY1. Now from 
(31) we conclude that deg(aZ0 + sX0 ) = /3 + r + deg(Yl). But, deg(aZo + sX0 ) :::; 

max( deg(aZ0 ), deg(sX 0 )) :::; 
3a!3

', so we have 1 :::; ~3/3, a. contradiction. Let 

Zo = tZ1 + cY1. (32) 

If we put (32) into (30), we obtain 

aZo + sXo = Y1 + 2bZo. (33) 

From (32), it follows that Zo = W1. By [9, Lemma 5], we conclude that Z0 =/= ±1 
and deg(Zo)?: ~,deg(X0 )?: ~·If o: = 0 and X 0 is a constant, from Lemma 4 we 
have X6 = a2+1 and Z0 = ±s. Hence, deg(tZ1 +cY1) = l From (6)-(9), it follows 
that 4/3 :::; r + 3o: so f3 < f. From (16), it now follows that r ~ deg(Yl) = ~' so 
~ = deg(Yl) :::; ,e!'. This yields the contradiction r :::; /3. Hence, Xo cannot be a 
constant. Since 

(aZo + sXo)(aZo ~ sXo) = a 2 ~ ac ~ Xc~' (34) 

from (1) and (2) it follows that one of the polynomials aZ0 ± sX0 has degree equal 
to 00~1 + deg(X0 ), and the other has degree less than that. By [9, Lemma 5], we 
have that deg(V2) = f3 + r + deg(Z0 ). Now, from (30) we conclude that 

deg(aZo + sXo) = /3 + deg(Zo). (35) 

Hence, the polynomial aZ0 + sX0 must have the degree equal to a!' + deg(X0 ). 

Now, from (35) and (2), we conclude that o: = /3. If we transform (33) into 

sXa ~ aZo = Y1 + 2(b ~ a)Zo, (36) 
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we conclude that 
o:+l 

deg(Y1 + 2Z0 (b- a)) :S: -
2
-- deg(Xo). (37) 

If deg(b- a) > 0, then from (37) we obtain that deg(X0 ) < ~' a contradiction. If 
deg(b-a) = 0, then from (37) we conclude that deg(Zo) =~·Hence, deg(Xo) = ~· 
We now transform (36) to the equation 

sXo- Y1 - bZo = (b- a)Zo, (38) 

where the degree of the right-hand side is l By (32) and (1), we have sX0 - Y1 -

bZo = sXo - t(bZ1 + tYl), so 

I deg(sX0 - t(bZ1 + tYl)) = 2. (39) 

Let 0 < o: = (3 < 1- From (1) and (3), we conclude that one of the polynomials 
bZ 1 ± tY1 has the degree equal to (3 + deg( Z1 ). Since 

(bZ1 + tYl)(bZ1 - tY1 ) = b2 - be- Y1
2

, (40) 

the degree of the other polynomial is equal to 1- deg(Zl). But, for neither one of 
these possibilities Eq. (39) holds. Now, let 0 < o: = (3 = 1- We have deg(Xo) = 
deg(Zo) = ~ and deg(Zl) = deg(Yl) = ~· l\Ioreover, by [6, Lemma 2], it follows 
that c =a+ b ± 2T. Now, let b-abe a constant k. From (1), we have a2 + ka + 1 = 
T 2 . If we denote the leading coefficients of the polynomials a and T by a 1 and T1 , 

it follows that a 1 = ±T1 . Moreover, we can transform the previous equation into 
(a± 1 )2 =t= 2a + ka = T2, from which we conclude that 

a(k =t= 2) = (T- a =t= 1)(T +a± 1). 

Hence, it follows that either ai(T- a =t= 1) or ai(T +a± 1). If ai(T- a =t= 1), then 
ai(T =t= 1), so (a+ k)I(T ± 1). We have T =t= 1 = m1a, T ± 1 = m2(a + k), where 
m 1 ,m2 E lK\{0}. Considering the leading coefficients in these two equations, we 
obtain m 1 = m2 = ±1 and k = ±2. The possibility ai(T +a± 1) leads to analogous 
conclusion. Now we have T =±a± 1, c = 4a ± 4, s = ±2a ± 1 and t = ±2a ± 3. If 
we insert this into (38), and use (39), it follows that 

I deg((±2a ± 3)(X0 - (bZ1 + tYl)) =t= 2Xo) = 2· 

If this holds, then X 0 = bZ1 + tY1 . But, then it follows that =t=2X0 = (b- a)Z0 . 

Hence, Xo = ±Zo and, by (2), Xo = Z 0 = ±1. Therefore, 1 = 0, which is a 
contradiction. 

(8) Assume now that (m,n) = (3,2). Then z = V3 = W2 . From (4) and (5) we 
obtain 

z = sZo + c(4asZo + 3Xo) + 4ac2 Xo = Z1 + 2c(bZl + tYl). (41) 

Suppose that Z0 = ±1. From Lemma 3, we have that Z1 = ±s. Then, by (2), 
X 0 = ±1 and, by (3), Y1 = ±T. Let us notice that "!' = deg(Zl) :S: 3

' 1:13, so 

I 2: (3 + 2o:. 
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Hence, 1 >a and a= 0 if (3 =f. Now from (41) it follows that 

v3 = ±s + c(±4as ± 3) ± 4ac2
, 

w2 = ±s + 2c(±bs ± tr). 

( 42) 

( 43) 

We conclude that deg(W2 ) = 1+deg(±bs±tr) and deg(V3 ) = deg(±4ac2 ) = 21+a. 
It follows that deg(V3 ) = deg(W2 ), so it must be the case that 

deg(±bs ± tr) =a+ I· (44) 

Since 

(±bs + tr)(±bs- tr) = b2
- ab-be- 1, ( 45) 

using (1), we conclude that one of the polynomials ±bs ± tr has degree equal to 
(3 o+! d l l ' h l · '(-O: H ' (44) ' 1 (3 a+! -+ - 2- an t 1e ot 1er one as c egr ee ~ - 2-. ence, m , we must 1ave + -

2
- -

a+ 1, from which it follows that 

(3 =ct+{ 
2 ' 

(46) 

and we conclude that we cannot have (3 = 1, a = 0. So, we get that (3 < f. Since 
v3 = w2' from ( 42) and ( 43) we 0 btain that 

2(±bs ± tr) = ±4as ± 4s2 =t= 1. (47) 

Notice that, by ( 4 7), we also have 

2(±tr =t= bs) = =Fl (mods), (48) 

where both sides of the congruence relation have degree less than deg( s). Therefore, 
in (48), we can replace = with =. Moreover, we conclude that a = 1, which is a 
contradiction. vVe are left to check the possibility a = 0. Now, by (46), we have 
that 1 = 2(3, and by (44), 

deg(±bs ± tr) = 2(3. 

Also, we have deg(±bs =t= tr) = (3, so deg(2(±tr =t= bs) ± 1) = (3. From (1) and (45), 
we conclude that the polynomials ±s and 2a( ±tr =t= bs) ± a have the same leading 
coefficient, so, by (48), it follows that 

2a( ±tr =t= bs) = ±s =t= a. 

From ( 4 7) and ( 49), we obtain that 

1 
±s = ±b =t= a±-. 

4a 
Now, from (49), using (1) and (50), we obtain that 

1 
=t=b=t=- = 0 (mod r), 

4a 

(49) 

(50) 

so we conclude that r2 divides b2 + 2ba + 1la2 = ( ab + 1) ( ~ - 2!2) + 16
9
a2. Hence, 

r2 divides the constant 1ia2 and we have (3 = 0, a contradiction. 
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Suppose that Zo ic ±1. From [9, Lemma 5], it follows that deg(Zo) 2: ~ and 
deg(X0 ) 2: ~- Let us first consider the possibility that a= 0 and X 0 is a constant. 
By Lemma 4, we have that XJ = a2 + 1, Zo = ±8 and Z1 = ±1 (Zo and Z1 have 
the same signs). By (3), Y1 = ±1, so from (41) we obtain that 

V;, = ±82 + c(±4a82 + 3X0 ) + 4ac2X 0 , (51) 

w2 = ±1 + 2c(±b ± t). (52) 

We conclude that deg(V:J) = deg(±4ac82 + 4ac2 X 0 ) :s; 21- Suppose that this degree 
is less than 21. If we denote the leading coefficient of the polynomial c with c1 , we 
have ±4a2ci + 4aci X 0 = 0 and X 0 = ±a, a contradiction. Hence, deg(V1 ) = 21 and 
now from (52) it follows that deg(±b ± t) =I· Therefore, /3 = /-

Let us consider the polynomial Diophantine triple {a, b, c}. If d_ ic 0, then from 
[6, Lemma 1], it follows that deg(d_) = 0. Considering (1) and (12), we conclude 
that in the case d_ i' 0, the only possibility is d_ = a. Suppose first that d_ = 0 
and denote by b1 , c1 , t 1 the leading coefficients of the polynomials b, c, t, respectively. 
We notice that b1 = c1 and t 1 = ±b1 . Moreover, from (51) and (52), we obtain that 

±1 = ±a2 + aXo, (53) 

where the signs ± are the same in both sides of the equality. If both signs are 
positive, it follows that Xo = 2a and a2 = ~·Now, from the equation V3 = T¥2 , using 
(51) and (52) we get that 15a = =j=6r, which is a contradiction because the degree of 
the left-hand side is equal to 0, and the degree of the right-hand side is equal to ~· 
If both signs in (53) are negative, we obtain X 0 = -2a, a2 = 1· As above, we obtain 
a contradiction. If d_ = a, from (12) we have that u = ±X0 , v = ±r and by (13) 
it follows that c = b + 2r2 (a ± X 0 ). Using (1), we obtain that 8 2 = r2 (a ± X 0 ) 2 , so 
c = b ± 2r8. From the above relation, using (1) again, it follows that 82 = r 2 ± 2ar8. 
Denoting e : = ';, we obtain a quadratic equation 

e2 =J= 2ae ~ 1 = 0 (54) 

whose solutions are constants e1 ,2 = ±a±X0 . Using (1), we obtain that c = e2b±2e 
and t = ±(eb ± 1). Now, from V, = W2, by (51) and (52) it follows that 

±2b ± 2t = ±5a + 3X0 + 4ac(X0 ±a). (55) 

Inserting the above expressions for c and t into (55), in both sides of the equation 
we get polynomials of the form 91b + 92 , where 91 and 92 are constants. Comparing 
the coefficients, we obtain two polynomial equations in unknowns a, X 0 and e. We 
take (54) for the third and XJ = a2 + j for the fourth equation in a system of four 
equations with unknowns a, X 0 , e and j. By changing the signs ±, we obtain 32 
different systems of equations. But neither of them gives the solution j = 1, so we 
conclude that cL cannot be equal to a. 

Now we are left with the possibility when Z0 i' ±1 and X 0 is not a constant. 
By Lemma 3, Z1 = 8Zo ± cXo. Assume first that 

Z1 = 8Zo- cXo. 
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Inserting this into ( 41), we get 

bZ1 + tY1 = 2Xo + 2a(sZo + cXo). (56) 

By (1) and (2), one of the polynomials sZ0 ± cX0 has the degree equal to 1 + 
deg(X0 ). Since deg(ZI) < 1, we have deg(sZ0 + cX0 ) = 1 + deg(X0 ). From (56), 
it follows that deg(bZ1 + tYI) = a+ 1 + deg(X0 ). Moreover, deg(bZ1 + tYI) < 
max(deg(bZ1), deg(tYI)) = 313!3', so we have 

3(3 + 31 
a+ 1 + deg(Xo) ~ 

4 
. (57) 

From the case (m, n) = (2, 3) we know that one of the polynomials bZ1 ± tY1 has 
degree equal to f3+deg(ZI) and the other one has degree less or equal to 1-deg(ZI). 
Suppose first that 

a+ 1 + deg(Xo) ~ 1- deg(ZI). (58) 

By [9, Lemma 5], deg(Xo) 2:: ¥,so from (58) we get that deg(ZI) ~ -~a, which is 
a contradiction unless a = 0 and deg(ZI) = 0. But then hom (17), it follows that 
deg(Xo) = 1, a contradiction. Therefore, 

a+ 1 + deg(Xo) = (3 + deg(Z1). 

If a< 1, by (17), we have that deg(ZI) = 1- deg(X0 ), so we get that deg(Xo) = 
13;a. Now (57) gives us that 1 ~ (3 - 2a, which is true only if a = 0 and (3 = J. 

But then ~ = deg(Xo) ~ a!'· Thus, 21 ~ 1, which is a contradiction. If a = 1, 

from (57) we have 21 ~ ~~' a contradiction. It remains to consider the possibility 

Z1 = sZo + cXo. 

From (41), we obtain 

(59) 

Notice that Z1 = V1, so from [9, Lemma 5] it follows that deg(V3) = a+1+deg(ZI). 
Therefore, deg(Wz) = 1+deg(bZ1 +tY1) = a+1+deg(ZI) and deg(bZ1 +tY1) = 
a+ deg(ZI). Recall that the degree of the polynomial bZ1 + tY1 is either equal 
to (3 + deg(ZI), or is less than or equal to 1- deg(ZI). If a < (3, then we have 
a+ deg(Z1) ~ 1- deg(ZI), so deg(ZI) ~ 1 ;a. From (17), using the fact that 
deg(sZo- cXo) = 1 + deg(Xo) ~ a~51 , we obtain 21 < 71,;a, a contradiction. 
Therefore, a= (3. We now transform (59) into 

(60) 

The degree of the polynomial bZ1 +tY1 is equal to 13~1 +deg(YI). Thus, from (40) 
and ( 60), it follows that 

!3+1 deg(Xo + 2Z1(a- b))~ -
2
-- deg(YI). 

In the same manner as in the case (m, n) = (2, 3) (see (37)), we obtain a 
contradiction. 
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(9) Let (m, n) = (4, 2). Then z = V4 = W2. l\.Ioreover, from (4) and (5), we have 

z = Zo + 4c(2aZo + sXo) + 8ac2 (aZo + sX0 ) 

(61) 

By Lemma 3, Z 0 = Z1, so from (61) it follows that 

2aZo + 2(aZo + sXo) + 4ac(aZo + sXo) = bZ1 + tY1, 

and that 

o: + 1 + deg(aZo + sXo) = deg(bZ1 + tYl). (62) 

Recall from the case (m, n) = (3, 2) that one of the polynomials bZ1 ±tY1 has degree 
equal to ;3+deg(Zl), while the other one has degree less or equal to 1-deg(Z1). From 
(6)-(9), it now follows that 1 > o:. If X 0 is not a constant, from (34) we conclude 
that deg(aZ0 +sX0 ) cannot be equal to 0. Hence, degree of the left-hand side of (62) 
is larger than 1 so the right-hand side has degree equal to ;3 + deg(Zl). Also, from 
(62), it follows that cleg(Zl) > 0 so Z1 cJ ±1. Therefore, by [9, Lemma 5], it follows 
that cleg(Z1) ::;> l If cleg(aZo + sXo) = o: + cleg(Z0 ), from (62) we get 2o: = ;3- 1, 
which is possible only for o: = 0 and ;3 = f. But, then deg(Zl) ::; 3~';!3 = ~· 
Hence, deg(Z1) = ~' and then deg(Xo) = ~ = 0, which is a contradiction. If 
cleg(aZ0 + sX0 ) = 1- deg(Z0 ), from (62), it follows that deg(Zl) = a-~+21'. But 
then we have 1 ::; ;3 - 2o:. Again, this is possible only for o: = 0 and ;3 = 1, so 
as above we get a contradiction. Hence, X 0 is a constant. By Lemma 4, X{; = 
a2 + 1 and Z0 = ±s. Then, Z1 = ±s and from (3) we have that Y1 = ±r. Notice 
that o: = 0, which implies that cleg(Z1) = ~· Now, from (62), it follows that 
deg(aZo + sXo) = ;3- ~· But, deg(aZ0 + sX0 ) = deg(s(±a + X 0 )) = ~so ;3 =f. 

As in the case (m, n) = (3, 2), we conclude that d_ = 0 or d_ =a. If d_ = 0, then 
c = a + b ± 2r. Let b1, r 1, s1, t 1 denote the leading coefficients of the polynomials 
b, r, s, t, respectively, then c1 = b1. Also, r 1 = ±s1 and t 1 = ±b1. If we equate the 
leading coefficients of the polynomials on the both sides of the equation V4 = lV2, 
from (61) we obtain 

2a(Xo ±a) = ±1, (63) 

where the signs ± on both sides of the equation must be the same. If they are both 
positive, then from (63), we get X 0 = 3a and a2 = k· Similarly, for the negative 
signs, from (63) we get X 0 = -3a and a2 = k· Now, for the positive signs in (63), 
from (61) we obtain that 

bs ± tr = lOas + 2cs. (64) 

Eliminating the polynomials whose degree is equal to 3t on both sides of (64), we 
obtain polynomials with degree equal to ;3. vVe get 
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which is a contradiction for all combinations of the signs. For the negative signs in 
(63), from (61) it follows 

-bs ± tr = -lOas- 2cs. 

As above, this implies a contradiction. Therefore, d_ cannot be equal to 0. Assume 
now that d_ = a. From the case (m, n) = (3, 2), we know that c = b ± 2rs and 
±s = r(a ± X 0 ). We also have relation (54) as well as c = e2b ± 2e, t = ±(eb ± 1). 
We insert these equations into (61). First we considers with the positive sign. After 
dividing by r, from (61), we get 

±2eb ± 1 = ±2e(2a + X 0 ) ± 4ae(e2 b ± 2e)(a + X 0 ), (65) 

where both sides of the above equation have the form g1b + g2 , with g1 and g2 

constants. Comparing the coefficients from both sides of (65), we obtain the equa
tions 2e = 4ae3 (a + X 0 ) and ±1 = 2e(2a + X 0 ) ± 8ae2 (a + X 0 ). These equations 
together with (54) and the equation xg = a2 + j form a system of four equations 
in unknowns a, X 0 , e and j. Considering all possible combinations of the signs ±, 
we get eight different systems of equations. But neither of them gives us a solution 
with j = 1, so we conclude that no appropriate a and X 0 exist. For the negative 
sign with s, the conclusion is completely analogous. Hence, d_ cannot be equal to a. 

(10) Assume finally that (m,n) = (5,2) and z = V5 = H1
2 . In this case, by (4) and 

(5), we obtain , 

z = sZ0 + c(12asZ0 + 5X0 ) + 4c2 (5aX0 + 4a2 sZ0 ) + 16a2c3 X 0 

(66) 

From (6)-(9), it follows that 3[ <::: 3,6-8a, so we have a= 0,[ = ,6. If Z0 = ±1, by 
Lemma 3, Z1 = ±s (Zo and Z1 have the same signs). From (2), we obtain X 0 = ±1 
and from (3) Y1 = ±r. Inserting this into (66), we have 

V5 = ±s + c(±12as ± 5) + 4c2 (±5a ± 4a2 s) ± 16a2c3
, 

w2 = ±s + 2c(±bs ± tr). 

(67) 

(68) 

From (67), we notice that deg(V5 ) = deg(±16a2c3 ) = 3[, so from (68) it follows 
that 

deg(±bs ± tr) = 2[. 

But deg(±bs ± tr) <::: max(deg(±bs), deg(±tr)) = 3
2
1 , and we get a contradiction. 

Hence, Z0 =J ±1. Suppose first that X 0 is a constant. By Lemma 4, X{5 = 
a2 + 1, Zo =±sand Z1 = ±1 so from (3) we have Y1 = ±r. Inserting that into (66), 
we obtain 

V5 = ±s2 + c(±12as2 + 5X0 ) + 4c2 (5aX0 ± 4a2s2
) + 16a2c3 X 0 , (69) 

w2 = ±1 + 2c(±b ± t). (70) 
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From (69), we see that deg(V5) = deg(±16a2c2s2 + 16a2c3 X 0 ) :s; 31 and from (70) 
we see that deg(W2) = 1 + deg(±b ± t) :s; 2r. Let us denote by c1 the leading 
coefficient of the polynomial c and suppose that deg(V:~) < 3r. It must be the case 
that ±16a2ciac1 + 16a2crXo = 0, so Xo =±a, but this contradicts the fact that 
x& = a2 + 1. 

Assume now that Z0 cl ±1 and X 0 is not a constant. By Lemma 3, we have 

so it follows that 

Z1 = sZo ± cXa, 

I deg(sZo ±eX a) :s; 2. (71) 

As in the case (m, n) = (1, 1), we can conclude that, if X 0 is not a constant, then 
one of the polynomials sZ0 ± cX0 has the maximal degree 1 + deg(X0 ). By (17), the 
degree of the other polynomial must be equal to 1-deg(X0 ). But 1-deg(X0 ) ::0: 3Z, 
so neither of the polynomials sZ0 ± cX0 satisfy the inequality (71). D 

Now we can prove the following gap principle, which we will use in the proof of 
Theorem 1. 

Lemma 5. Let {a, b, c, d} be a polynomial Diophantine quadruple. Denote by 

a, (3, 1, 6 the degrees of a, b, c, d, Tespectively, and assume that a :s; (3 :s; 1 S 6. 

Then either 6 ::0: 3,6~51 or d = d+ oT {a, b, c, d} = TJP, where p E JK[X] is a noncon
stant polynomial. 

Proof. Let ad + 1 = x2
, bd + 1 = y2 and cd + 1 = z 2 . Then there exist integers 

m, n ::0: 0 for which z = V,n = Wn, where (V,n) and (Wn) aro the sequences defined 
by ( 4) and (5). By Proposition 1, it follows that if {a, b, c, d} is not regular and if it 
is not equal to TJP for some nonconstant p E JK[X], then m ::0: 3 and n ::0: 3. 

Assume that n ::0: 3. From cd + 1 = z2
, we have 

deg(d) = 2deg(Wn) -f. (72) 

Furthermore, from [9, Lemma 5], it follows that 

deg(d) ::0: 2(2deg(t) + deg(WI)) -1 

= 2(/3 + 1 + deg(tZ1 + cYI))- f. (73) 

If (3 < 1, from (16) and the estimate deg(tZ1 ± cYI) :s; max(deg(tZI), deg(cYI)) = 

,6~51 , it follows that deg(tZ1 + cYI) ::0: 31
; 13 . Hence, from (73), we obtain 

de (d) > 3(3 + 51 
g - 2 

If (3 = /, by [9, Lemma 5] it follows that deg(WI) > ~' so from (73), we have 
deg(d) ::0: 41. D 
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4. Proofs of Theorems 1 and 2 

Now we can prove our first theorem by combining the gap principle from Lemma 5 
with the upper bound from [6, Proposition 1]. This proposition asserts that if {3 > a 
and 1 > 4{3 - a, then 6 < 31, where a, {3, 1, (j are the degrees of a, b, c, d with 
a :::; {3 :::; 1 :::; 6, respectively, and {a, b, c, d} is a polynomial Diophantine quadruple. 

Proof of Theorem 1. Assume that { a1 , a2, ... , as} is a polynomial Diophantine 
8-tuple. Denote by ai the degree of a; for i = 1, ... , 8. Assume that a 1 :::; a 2 

:::; ···:::;as. 
Notice that { a5 , a6 , a7 , as} is a polynomial Diophantine quadruple to which we 

can apply Lemma 5. Since a 5 > 0, it is either regular or as 2:': 5
"'7 ! 3

o:6
• The 

set {a4,a5,a7,as} is also a polynomial Diophantine quadruple. Since a 4 > 0, 
Lemma 5 also implies that it is either regular or as 2:': 5"' 7 !3

a 6
. If { a4, a6 , a7 , as} 

and {as, a6 , a7 , as} are both regular Diophantine quadruples, then for { a6 , a7 , as} 
we have a4 = d+ or a 4 = d_, and as = d+ or as = d_. By Lemma 2, 
deg(d+) = aG + a7 +as, which is larger than a4 and a 5 . Hence, a4 = a 5 = d_, 
which is a contradiction. Therefore, at least one of a 4 and a5 is different from d_. 

We conclude that at least one of the quadruples { a4, a6 , a7 , as} and { a5 , a6 , a7 , as} 
is irregular. If we apply Lemma 5 to that irregular quadruple, we get 

5a7 + 3a6 5a6 + 3a6 
3 as 2:': 2 > 2 > a6. (74) 

Consider now the set {a1,a4,a5,as}. If a 1 = 0, then a4 > a1. If a 1 > 0, by 
[6, Lemma 2], it follows that a 4 2:': a 3 + a 2 > a 1 , so the first condition of [6, 
Proposition 1] is satisfied. We will show that the second condition is satisfied too. 
Consider the polynomial Diophantine quadruple { a3 , a4 , as, a6 }. Since a 3 > 0, by 
Lemma 5, it is either regular or a 6 2:': So:s!3" 4

. The set {a2 ,a4 ,as,aG} is also a. 
polynomial Diophantine quadruple. Since a 2 > 0, by Lemma. 5, we also have that 
it is either regular or a 6 2:': 5

a 5!3
" 4

. As above, we obtain 

5as + 3a4 
a5> ----- 2 

Applying [6, Lemma 2] to the set {a2,a3,a4,as}, from (75), we obtain 

5 
a5 2:': 4a4 + 2a3 > 4a4 2:': 4a4 - a1. 

(75) 

Therefore, the second condition of [6, Proposition 1] is satisfied too and we conclude 
thn.t 

which contradicts (74). D 

Now wn can improve the upper bound from [6, Theorem 3]. 

Proof of' Theorem 2. Thr~ proof is completely analogous to the proof of [6, The
ormn :l]. l•'or Ll)(• ''PJWr hound of rn, we estimate the Ramsey number R(8, 6, 4, 5; 2) 
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using the recurrence 

t 

R( n1, n2, ... , nt; 2) ~ 2 - t + L R( n1, ... , n;.-1, n; - 1, ni+ 1, ... , nt; 2). 
i=1 

Vve also use a list of upper bounds for Ramsey numbers R( n 1 , n2 ; 2) and some other 
known upper bounds e.g., R(3, 3, 3, 3; 2) ~ 62, R(3, 3, 4; 2) ~ 31, which are smaller 
than the upper bounds obtained by the above recurrence. Using all these results 
which can be found in [16] and some well known properties of Ramsey numbers 
from [12], we obtain 

~ ~ R(4,5,6,8;2) 

~ -2 + R(3, 5, 6, 8; 2) + R(4, 4, 6, 8; 2) + R(4, 5, 5, 8; 2) + R(4, 5, 6, 7; 2) 

~ · · · ~ 9800216 + 74786R(3, 5) + 119653R(3, 3, 4; 2) + 27420R(3, 3, 3, 3; 2) 

~ ... ~ 16256503 < 2. 107 . 
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