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Abstract. In this paper, we give some new examples of polynomial D(n)-
triples and quadruples, i.e. sets of polynomials with integer coefficients, such
that the product of any two of them plus a polynomial n ∈ Z[X] is a square of
a polynomial with integer coefficients. The examples illustrate various theoret-

ical properties and constructions for a quadratic polynomial n which appeared
in recent papers. One of the examples gives a partial answer to the question
about number of distinct D(n)-quadruples if n is an integer that is the product
of twin primes.
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1. Introduction

Let n be a nonzero integer. A set {a1, a2, ..., am} of m distinct positive integers
is called a Diophantine m-tuple with the property D(n), or simply D(n)-m-tuple,
if aiaj + n is a perfect square for all 1 ≤ i < j ≤ m. An improper D(n)-m-tuple is
an m-tuple with the same property, but with relaxed condition that the elements
ai can be integers and need not be distinct. Diophantus found the quadruple
{1, 33, 68, 105} with the property D(256). The first Diophantine quadruple with
the property D(1), the set {1, 3, 8, 120}, was found by Fermat (see [4]).

Diophantine triples and quadruples with the property D(n) can be classified as
regular or irregular, depending on whether they satisfy the conditions given in next
two definitions. Let {a, b, c} be a D(n)-triple and

ab+ n = r2, ac+ n = s2, bc+ n = t2,(1)

where r, s, t are positive integers.

Definition 1. A D(n)-triple {a, b, c} is called regular if it satisfies the condition

(2) (c− b− a)2 = 4(ab+ n).

Equation (2) is symmetric under permutations of a, b, c. Also, from (2), using
(1), we get

c± = a+ b± 2r,

and we have

ac± + n = (a± r)2, bc± + n = (b± r)2.

Definition 2. A D(n)-quadruple {a, b, c, d} is called regular if it satisfies the con-
dition

n(d+ c− a− b)2 = 4(ab+ n)(cd+ n).(3)
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Equation (3) is symmetric under permutations of a, b, c, d. Since the right hand
side of (3) is a square, it follows that a regular D(n)-quadruple can exist only if
n is a square, whereas regular D(n)-triples exist for all n. When n is a square,
the quadruple formed by adding a zero to a regular triple is an improper regular
quadruple. Equation (3) is a quadratic equation in d with roots

d± = a+ b+ c+
2

n
(abc± rst),

and we have

ad± + n =
1

n
(rs± at)2, bd± + n =

1

n
(rt± bs)2, cd± + n =

1

n
(st± cr)2.

An irregular D(n)-tuple is one that is not regular. A semi-regular D(n)-quadruple
is one which contains a regular triple, and a twice semi-regular D(n)-quadruple is
one that contains two regular triples.

For n = 1, we have the following conjecture (see [10]).

Conjecture 1. If {a, b, c, d} is a D(1)-quadruple and d > max{a, b, c}, then d =
d+.

It is clear that Conjecture 1 implies that there does not exist a D(1)-quintuple.
Baker and Davenport [1] proved Conjecture 1 for the triple {a, b, c} = {1, 3, 8} with
the unique extension d = 120. Dujella and Pethő [16] proved it for all triples of
the form {1, 3, c}. Conjecture 1 was recently verified for all triples of the form
{k−1, k+1, c} (see [7, 18, 3]). Dujella [10] proved that there are only finitely many
D(1)-quintuples and there does not exist a D(1)-sextuple. Fujita [19] proved that
any D(1)-quintuple contains a regular Diophantine quadruple, i.e. if {a, b, c, d, e}
is a D(1)-quintuple and a < b < c < d < e, then d = d+.

Polynomial variant of the above problem was first studied by Jones [22, 23] and
it was for the case n = 1.

Definition 3. Let n ∈ Z[X] and let {a1, a2, ..., am} be a set of m different nonzero
polynomials with integer coefficients. We assume that there does not exist a poly-
nomial p ∈ Z[X] such that a1

p ,...,
am
p and n

p2 are integers. The set {a1, a2, ..., am}
is called a polynomial D(n)-m-tuple if for all 1 ≤ i < j ≤ m the following holds:
aiaj + n = b2ij where bij ∈ Z[X].

The assumption concerning the polynomial p means that not all elements of
{a1, a2, ..., am} are allowed to be constant. Since the constructions from Definitions
1 and 2 are obtained using only algebraic manipulations, they are also valid in the
polynomial case.

Dujella and Fuchs [11] proved that all polynomial D(1)-quadruples in Z[X] are
regular. Note that this is not true in C[X], as Dujella and Jurasić showed in [15]
by giving the following example{√

−3

2
,−2

√
−3

3
(X2 − 1),

−3 +
√
−3

3
X2 +

2
√
−3

3
,
3 +

√
−3

3
X2 +

2
√
−3

3

}
of a D(1)-quadruple in Q(

√
−3)[X] which is not regular. In [15], it is shown that

there does not exist a Diophantine 8-tuple in C[X] (see also [12]).
For polynomial D(n)-m-tuples with n constant, from [15, Theorem 1] it follows

that m ≤ 7 for all n ∈ Z\{0}. Dujella and Fuchs, jointly with Tichy [13] and later
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with Walsh [14], considered the case n = µ1X + µ0 with integers µ1 ̸= 0 and µ0.
Let

L = sup{|S| : S is a polynomial D(µ1X+µ0)-m-tuple for some µ1 ̸= 0, µ0 ∈ Z}

where |S| denotes the number of elements in the set S, and let Lk be the number of
polynomials of degree k in a polynomial D(µ1X+µ0)-m-tuple S. The results from
[14] are sharp bounds L0 ≤ 1, L1 ≤ 4, Lk ≤ 3 for all k ≥ 2, and finally L ≤ 12.
Jurasić [24] considered the case where n is a quadratic polynomial in Z[X]. Let

Q = sup{|S| : S is a polynomial D(µ2X
2 + µ1X + µ0)-m-tuple

for some µ2 ̸= 0, µ1, µ0 ∈ Z}

and let Qk be the number of polynomials of degree k in a polynomial D(µ2X
2 +

µ1X + µ0)-m-tuple S. In [24], it was proved that Q ≤ 98 and that if a polynomial
D(n)-m-tuple for a quadratic n contains only polynomials of odd degree, then
m ≤ 18. Moreover, Q0 ≤ 2, Q1 ≤ 4, Q2 ≤ 81, Q3 ≤ 5, Q4 ≤ 6, and Qk ≤ 3 for
k ≥ 5. The bounds for Q0, Q1 and Qk for all k ≥ 5 are sharp.

In Section 2 we give some examples of a polynomial D(n)-triples and quadruples,
where n is a quadratic polynomial. These examples show that several auxiliary
results from [24] are sharp, i.e. in the cases when the existence of Diophantine
triples with certain properties cannot be excluded, such triples indeed exist. In
Section 3 we study D(n)-quadruples if n is an integer that is the product of twin
primes and we construct a polynomial Diophantine quadruple for the quadratic
polynomial corresponding to that case. In Section 4 we give polynomial examples
for all cases of Gibbs’ construction of adjugates of a D(n)-quadruples. In some of
them we use quadruples constructed in Sections 2 and 3.

2. Diophantine triples with elements of the same degree

Although the final bound from [24, Theorem 1], Q ≤ 98, is likely very far from
being optimal, the bounds from [24] for polynomials of fixed degree, i.e. bounds
for Qk, are sharp or almost sharp, except for k = 2. In particular, they are sharp
for k = 0, k = 1 and k ≥ 5, in view of the following examples given in [24]: the set
{3, 5} is a polynomial D(9X2 + 24X + 1)-pair, the set

{X,X + 8, 2X + 2, 5X + 20}

is a polynomial D(−(X + 9)(X − 1))-quadruple, the set

{X2l−1 +X,X2l−1 + 2X l + 2X, 4X2l−1 + 4X l + 5X}

is a polynomial D(−X2)-triple for any integer l ≥ 2, and the set

{X2l +X l, X2l +X l + 4X, 4X2l + 4X l + 8X}

is a polynomial D(4X2)-triple for any integer l ≥ 1.
However, even in the cases k = 2, 3, 4, several auxiliary results from [24] are

(almost) sharp, as it will be illustrated by concrete examples in this section.
The main role in the proofs of the upper bounds on Qk, k ≥ 2 has [13, Lemma

1]. It says that for a polynomial D(n)-triple {a, b, c} for which (1) holds, there exist
polynomials e, u, v, w ∈ Z[X] such that ae + n2 = u2, be + n2 = v2, ce + n2 = w2.
More precisely,

e = n(a+ b+ c) + 2abc− 2rst,(4)
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u = at− rs, v = bs− rt, w = cr − st, and

c = a+ b+
e

n
+

2

n2
(abe+ ruv).(5)

We define

e = n(a+ b+ c) + 2abc+ 2rst,(6)

and we easily get

e · e = n2(c− a− b− 2r)(c− a− b+ 2r).(7)

Moreover, we have (see [24])

e = n(a+ b− c) + 2rw,(8)

e = n(a− b+ c) + 2sv,(9)

e = n(−a+ b+ c) + 2tu.(10)

Let Z+[X] denote the set of all polynomials with integer coefficients with positive
leading coefficient. For a, b ∈ Z[X], a < b means that b− a ∈ Z+[X].

The polynomial e had an important role in getting upper bounds for Qk, k ≥ 2,
and also in classifying various types of Diophantine triples with the same degree. In
[24], all possibilities for e for a given quadratic polynomial n were investigated. Here
we are interested to find examples ofD(n)-triples which illustrate these possibilities.
Trivial case is e = 0, for which we have a regular triple {a, b, a + b + 2r}. Let
{a, b, c}, where a < b < c, be a polynomial D(n)-triple containing only quadratic
polynomials and let e ∈ Z[X] be defined by (4). We are looking at extensions of
{a, b} to a polynomial D(n)-triple {a, b, c} with c > b and then at the corresponding
e ∈ Z[X] defined by (4). We have (see [24, Lemmas 4-8]):

A2) If n and e have a common linear factor but n - e (we consider divisi-
bility over Q[X]), then n = n1n2 where n1, n2 are linear polynomials over
Q such that n1 - n2. For fixed a and b, there exist at most two such e-s.
B2) If n|e, then n = λn2

1 where λ ∈ Q\{0} and n1 is a linear polynomial
over Q. For fixed a and b, there is at most one such e.
C2) If e ∈ Z \ {0}, then, for fixed a and b, there is at most one such e.
D2) If e is a linear polynomial which does not divide n, then, for fixed a
and b, there is at most one such e.
E2) Let e be a quadratic polynomial which does not have a common non-
constant factor with n. Then there is at most one polynomial c′ ̸= c such
that {a, b, c′}, a < b < c′, is a polynomial D(n)-triple and f ∈ Z[X], ob-
tained by applying (4) on that triple (f = n(a + b + c′) + 2abc′ − 2rs′t′,
where ac′ + n = s′2, bc′ + n = t′2), is a quadratic polynomial which does
not have a common nonconstant factor with n, or the analogous statement
holds for {a, b′, c}, a < b′ < c, b′ ̸= b or for {a′, b, c}, a′ < b < c, a′ ̸= a (see
[24, Lemma 8] for details).

In [24, Lemmas 9-11], the following results were proved for the sets of polynomials
of degree k ≥ 3. Let {a, b, c}, a < b < c, be a polynomial D(n)-triple of polynomials
of degree k, then beside e = 0 we have the following possibilities. If k = 3:

A3) For fixed a and b, there is at most one e ∈ Z\{0} defined by (4).
B3) Let e ∈ Z[X] be a linear polynomial defined by (4). Then e - n. For
fixed a and b, there exist at most two such e-s.

For k = 4, we have:
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A4) Let e ∈ Z\{0} be defined by (4). Then, for fixed a and b, there exist
at most three such e-s.

For k ≥ 5, we have only trivial situation e = 0 (see [24, Proposition 2 4.)]).

The proofs of [24, Lemmas 4-8] give us methods for a construction of the examples
for the cases where k = 2. The first polynomial D(n)-triple is an example for the
case A2), obtained using [24, Lemma 5]. Let n = n1n2 and e = e1e2, where
ni, ei for i = 1, 2 are linear polynomials over Q. In the proof of [24, Lemma 4]
we have a = A2(X − ϕ1)(X − ϕ2), where A ∈ N and ϕ1, ϕ2 ∈ Q. Analogously,
b = B2(X −χ1)(X −χ2), c = C2(X −λ1)(X −λ2), where B,C ∈ N and χi, λi ∈ Q
for i = 1, 2. From [13, Lemma 1] we obtain bν + n22 = v21 , where v = n1v1
and cν + n22 = w2

1, where w = n1w1 and v1, w1 ∈ Q[X], deg(v1),deg(w1) ≤ 1,
ν ∈ Q\{0}. Assume that at least one of the polynomials u1, v1 and w1 has a
degree equal to 0. Since deg(e) = deg(n) = deg(r) = 2, if deg(w) = 1, then by (8)
deg(a+ b− c) = 1. Hence, A2 +B2 = C2. Analogously, if deg(v) = 1, then by (9)
we obtain C2 = −A2 +B2 < B2, a contradiction. Also, if deg(u) = 1, then by (10)
we get C2 = A2 − B2 < A2, a contradiction. Therefore only w1 can have a degree
equal to 0. From [24, Lemma 4], we have

n2 =
ε2 − ε1

2
X +

ε1ϕ1 − ε2ϕ2
2

,

u1 =
ε1 + ε2

2
X − ε1ϕ1 + ε2ϕ2

2
,

where A2ν = ε1ε2 and ε1, ε2 ∈ Q\{0}. Analogously, for b and c, we get n2 =
τ2−τ1

2 X + τ1χ1−τ2χ2

2 , v1 = τ1+τ2
2 X − τ1χ1+τ2χ2

2 and n2 = ψ2−ψ1

2 X + ψ1λ1−ψ2λ2

2 ,

w1 = ψ1+ψ2

2 X − ψ1λ1+ψ2λ2

2 , where B2ν = τ1τ2, C
2ν = ψ1ψ2 and τi, ψi ∈ Q\{0} for

i = 1, 2. We conclude that ε2 − ε1 = τ2 − τ1 = ψ2 − ψ1 := η and ψ1 + ψ2 = 0.

Hence, ψ1 = −η
2 , ψ2 = η

2 so C2ν = −η2

4 . Note that ν = −Q2, for some Q ∈ Q\{0}.
Multiplying A2+B2 = C2 by ν, we get ε1(ε1+η)+τ1(τ1+η) = −η2

4 , from which we
obtain ε1 = −η

2 ±BQ and τ1 = −η
2 ±AQ. If we choose, for example, A = 3, B = 4,

Q = 1, η = 10, ϕ2 = 0, χ1 = 1, χ2 = 2 using the equations ε1ϕ1−ε2ϕ2 = τ1χ1−τ2χ2,
ab+ n = r2 and (5), we obtain a polynomial D(36(5X − 6)(29X − 54))-triple

{9X(X − 12), 16(X − 1)(X − 2), (5X + 14)(5X − 26)}.

Here e = −1296(29X − 54)2.

Similarly we find the example for the case B2), described in [24, Lemma 4].
From (7) it follows that n|ē and from (4) and (6) we get ē − e = 4rst, so n|rst.
Therefore, by (4) n|abc. Since in this case n = λn2

1, where λ ∈ Q\{0} and n1 is a
linear polynomial over Q, we may assume that n1|a. Now, from [13, Lemma 1] we
get that n1|u1, where u1 ∈ Q[X] and u = n1u1. Hence, n21|u21 so n21|a. For A = 3,
B = 4, Q = 1, η = 10, ϕ1 = ϕ2 = 0, χ2 = 1, analogously as in the previous case,
we obtain a polynomial D(900X2)-triple

{9X2, 16(X + 4)(X − 1), 25(X − 2)(X + 2)}.

Here e = −32400X2. This triple can be extended to a regular D(n)-quadruple

{9X2, 16(X + 4)(X − 1), 25(X − 2)(X + 2), d}
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in two ways. From (3) we obtain d = −36 and d = 4(2X+1)(2X−3)(X+3)(X+1).

For the case C2), we follow the strategy from the proof of [24, Lemma 6]. Let
a = A2(X2 + α1X + α0), b = B2(X2 + β1X + β0) and c = C2(X2 + γ1X + γ0),
where αi, βi, γi ∈ Q for i = 0, 1. By [13, Lemma 1], there exist u, v, w ∈ Z[X], such
that ae+n2 = u2, be+n2 = v2 and ce+n2 = w2. Here we have deg(u) = deg(v) =
deg(w) = 2 and the leading coefficients of the polynomials u, v, w are equal to the
leading coefficient of n, up to a sign. Denote by µ, ϑ, ν, ω the leading coefficients
of n, u, v, w, respectively. By (8) ω = µ, by (10) ϑ = −µ and by (9) ν = −µ. From
ae+ n2 = u2 it follows that

u+ n = ε1,(11)

u− n = ε2(X
2 + α1X + α0),

where ε1ε2 = A2e and ε1, ε2 ∈ Q\{0}. From (11), we obtain

−n =
ε2
2
X2 +

ε2α1

2
X +

ε2α0 − ε1
2

,

u =
ε2
2
X2 +

ε2α1

2
X +

ε2α0 + ε1
2

.

For b and c we have equations analogous to (11). Let B2e = τ1τ2 and C2e = ψ1ψ2,

where τi, ψi ∈ Q\{0} for i = 1, 2. It follows that −n = τ2
2 X

2 + τ2β1

2 X + τ2β0−τ1
2 ,

v = τ2
2 X

2 + τ2β1

2 X + τ2β0+τ1
2 and n = ψ2

2 X
2 + ψ2γ1

2 X + ψ2γ0−ψ1

2 , w = ψ2

2 X
2 +

ψ2γ1
2 X+ ψ2γ0+ψ1

2 . From the expressions for n, we conclude that ε2 = τ2 = −ψ2 and
α1 = β1 = γ1. Using this and the fact that the discriminants of the polynomials
ae+n2, be+n2 and ce+n2 must be equal to 0, we obtain a system of equations with
infinitely many solutions. One of that solutions is A = 2, B = 4, e = −3(α0 − β0),

ε2 = 3, ε1 = −α0 + β0, γ2 = 8β0−5α0

3 . The equations (1) are satisfied for a = 4X2,

b = 16X2 − 2, c = 36X2 − 12, n = 24X2 + 1. Hence,

{4X2, 16X2 − 2, 36X2 − 12}
is a polynomialD(24X2+1)-quadruple, where e = −24. This triple can be extended
to a twice semi-regular polynomial D(24X2 + 1)-quadruple

{4X2, 16X2 − 2, 36X2 − 12, 4X2 − 4}.(12)

For the triple {4X2, 36X2 − 12, 4X2 − 4}, we have e = 180X2 − 30. For a = 4X2

and b = 16X2 − 2 we also have e = 640X2 − 40, for which we get a polynomial
D(24X2+1)-triple {4X2, 16X2−2, 324X2−24}. For e = 0 we have a regular poly-
nomial D(24X2 + 1)-triple {4X2, 16X2 − 2, 36X2}. Observe that quadruple (12)
can be obtained by taking k = 1 and m = 4X2 in [5, formula (15)].

Let us now find an example for the case D2), using the proof of [24, Lemma 7].
Using (8), we obtain

1− 2rξ = σn,(13)

where ξ, σ ∈ Q\{0}. We further obtain

e =
1

ξ2 + σ
(a+ b+ 2r − 2nξ).

Since e must be a linear polynomial, from the coefficient with X2 on the right

side of the previous equation we conclude that ξ = (A+B)2

2µ , where µ is a leading
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coefficient of n. Now, from (13) it follows that σ = −AB(A+B)2

µ2 . For a = X2 +X,

B = 2 and µ = 6, using the relation ab + n = r2 and (5), we obtain a polynomial
D(6X2 + 3X + 1)-triple

{X(X + 1), (2X − 1)(2X + 1), 9X2 − 9X − 3}.

Here e = −24X − 8. Notice that, for a = X(X + 1) and b = (2X − 1)(2X + 1),
from e = 1

ξ2+σ (a + b − 2r + 2nξ) we obtain e = 8(5X + 3)(4X − 1) and then

c = 81X2 + 27X − 15.

We will now illustrate the case E2), described in [24, Lemma 8 1)]. Let a = X2,
b = 16X2 + 8 and n = 16X2 + 9. We obtain ψ = 2

3 , ϕ = − 1
3 and then

e = 273X2 + 126, f = 33X2 + 18. For e we get c = 100X2 + 44, and for f we
get c′ = 36X2 + 20 so we have two polynomial D(n)-triples {a, b, c} and {a, b, c′}.
The second of them is a part of a twice semi-regular polynomial D(n)-quadruple
{X2, 16X2 + 8, 25X2 + 14, 36X2 + 20} (this quadruple can be obtained by taking
k = X2 in the formula for a D(16k + 9)-quadruple from [5, Section 6]).

For the cases where k = 3 and k = 4, we find the examples using a method
of undetermined coefficients and then fixing some of the coefficients to 0 or to 1.
Let us first find the example for the case A3). Let a = X3 + α2X

2 + α1X + α0,
n = µ2X

2+µ0, u = µ2X
2+ϑ1X+ϑ0 be a polynomials over Q. From ae+n2 = u2,

we obtain e = 2ϑ1µ2, α0 =
ϑ20 − µ2

0

2ϑ1µ2
, α1 =

ϑ0
µ2

and α2 = −2µ0µ2 − 2ϑ0µ2 − ϑ21
2ϑ1µ2

.

Let b = X3 + β2X
2 + β1X + β0 and v = µ2X

2 + ν1X + ν0 be a polynomials
over Q. From be + n2 = v2 and the obtained expression for e, we get ϑ1 = ν1.

Also, β2 = −2µ0µ2 − 2ν0µ2 − ϑ21
2ϑ1µ2

, β1 =
ν0
µ2

, and β0 =
ν20 − µ2

0

2ϑ1µ2
. We now equate the

expression (X3 + α2X
2 + α1X + α0)(X

3 + β2X
2 + β1X + β0) + µ2X

2 + µ0 with
the square of a polynomial of degree 3. It is easy to obtain equal coefficients of X6,
X5, X4, X3 at both sides of the equation. Then, comparing the coefficients of X2,
X1 and X0, we get three equations in unknowns µ2, µ0, ϑ1, ϑ0, ν0. If µ0 = 0, the
system has a nontrivial rational solution for ν0 = 27τ6, τ ∈ Q. Namely, µ2 = 9τ4,
ϑ1 = 9τ5, ϑ0 = −9τ6. By taking τ = 1 and multiplying the elements of the obtained
rational triple by 2, we finally get a polynomial D(36X2)-triple

{(X − 1)(X + 1)(2X − 1), (X + 3)(2X2 +X + 3), 4(2X + 3)(X2 + 2X + 3)},

with e = 1296. We can extend this triple to the regular quadruple in Q[X] by
taking the fourth element d = 4

9X
2(X + 2)(2X + 5)(2X + 1)(2X2 + 3X + 4).

Let us consider the case B3). If we write ae + n2 = u2, where a, e, n, u are
polynomials over Q, in the form

(X3 + α2X
2 + α1X + α0)((ε

2 − φ2)X + γ) + (φX2)2 = (εX2 + ϑ1X + ϑ0)
2,

the coefficients of X4 are equal on both sides of the equation. Comparing the other
coefficients, we obtain

α2 =
γ − 2ϑ1ε

−ε2 + φ2
, α1 =

ϑ21ε
2 − ϑ21φ

2 + γ2 − 2γϑ1ε− 2φε2 + 2φ3 + 2ϑ0ε
3 − 2ϑ0εφ

2

(−ε2 + φ2)2
,
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α0 = −−γϑ2
1ε

2+γϑ2
1φ

2−γ3+2γ2ϑ1ε+2γφε2−2γφ3−2γϑ0ε
3+2γϑ0εφ

2+2ϑ0ϑ1ε
4−4ϑ0ϑ1ε

2φ2+2ϑ0ϑ1φ
4

(−ε2+φ2)3 ,

ϑ1 = ϑ0ε
2φ−ϑ0εφ

2+γ2+ϑ0ε
3−ϑ0φ

3−ε3−φε2+εφ2+φ3

(φ+ε)γ . Similarly, from be+ n2 = v2 we

get β2 =
γ − 2ν1ε

−ε2 + φ2
, β1 =

ν21ε
2 − ν21φ

2 + γ2 − 2γν1ε− 2φε2 + 2φ3 + 2ν0ε
3 − 2ν0εφ

2

(−ε2 + φ2)2
,

β0 = −−γν2
1ε

2+γν2
1φ

2−γ3+2γ2ν1ε+2γφε2−2γφ3−2γν0ε
3+2γν0εφ

2+2ν0ν1ε
4−4ν0ν1ε

2φ2+2ν0ν1φ
4

(−ε2+φ2)3 ,

ν1 = ν0ε
2φ−ν0εφ2+γ2+ν0ε

3−ν0φ3−ε3−φε2+εφ2+φ3

(φ+ε)γ , where v = εX2 + ν1X + ν0 and

b = X3 + β2X
2 + β1X + β0 are polynomials over Q. We are left with the condi-

tion that (X3 + α2X
2 + α1X + α0)(X

3 + β2X
2 + β1X + β0) + φX2 is equal to a

square of a polynomial r with degree 3. It is easy to obtain the equal coefficients
of X6, X5, X4, X3 on both sides of the equation. Comparing the coefficients of
X2, X1, X0 on both sides of the equation, we get three equations in the remaining

unknowns. For ν0 = − γ2

ε(φ+ ε)2
and ϑ0 =

γ2(φ+ 2ε)

(φ+ ε)2εφ
the equations for X1 and

X0 are satisfied. Inserting those expressions for ν0 and ϑ0 into the equation for
X2, we obtain

ε2φ9 + 6φ8ε3 + 15ε4φ7 + 20ε5φ6 + 15ε6φ5 + 6ε7φ4

+ ε8φ3 − 4γ4φ2 − 16γ4εφ− 16ε2γ4 = 0.(14)

One solution of the equation (14) is ε = −3, φ = 9, γ = 54, for which we have
a = X3+ 5

2X
2−5X+ 3

2 , b = X3− 3
2X

2−9X+ 27
2 , n = 9X2, r = X3+ 1

2X
2−9X+ 9

2 ,

e = −72X +54, u = 3X2 − 21X +9, v = 3X2 +27X − 27, and c = 4
9X

3 + 10
9 X

2 +
16
9 X + 2

3 . Multiplying those expressions by 18, we get integer coefficients. Indeed,

{9(X − 1)(2X2 + 7X − 3), 9(X + 3)(X − 3)(2X − 3), 4(2X + 1)(X2 + 2X + 3)}

is a polynomial D(2916X2)-triple with e = −419904X + 314928. Extending this
triple to the regular quadruple in Q[X] we get the fourth element d = 4

9X
2(X +

2)(2X − 5)(2X + 7)(2X2 +X − 12).
Let us take a closer look at equation (14). It leads to the condition 4φ3ε2(φ +

ε)6(φ + 2ε)2 = U4. By substituting φ = T 2, ε = Z, we get the elliptic surface
(elliptic curve over Q(T )) 2TZ(T 2 +Z)(T 2 +2Z) = V 2. Now, substituting 4TZ =
X, we obtain the elliptic surface in the Weierstrass form

X3 + 6T 3X2 + 8T 6X = Y 2.(15)

The rank of curve (15) over Q(T ) is equal to 0. But standard conjectures predict
that for infinitely many specializations T = t, the specialized curve has positive rank
over Q. We list some small solutions (ε, φ, γ) of equation (14): (−180, 900, 1296000),
(−160, 1600, 3456000), (−153, 289, 235824), (−136, 289, 265302), (−135, 225, 60750),
(−108, 144, 7776), (−96, 144, 13824), (−90, 100, 750), (−90, 225, 91125), (−48, 144,
27648), (−36, 144, 23328), (−18, 9, 81), (−10, 100, 6750), (−6, 9, 27), (−3, 9, 54),
(72, 144, 46656), (200, 1600, 4320000).

Finally, let us find the example for the case A4). For a, e, n, u ∈ Q[X], it must
hold ae+ n2 = u2. Thus, let us find an identity of the form

(16) (X4+α3X
3+α2X

2+α1X+α0)(ϑ
2
2−µ2

2)+(µ2X
2+µ0)

2 = (ϑ2X
2+ϑ1X+ϑ0)

2.
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From (16), we obtain α3 = 2
ϑ2ϑ1
ϑ22 − µ2

2

, α2 =
ϑ21 − 2µ2µ0 + 2ϑ2ϑ0

ϑ22 − µ2
2

, α1 = 2
ϑ1ϑ0
ϑ22 − µ2

2

and α0 =
ϑ20 − µ2

0

ϑ22 − µ2
2

. Similarly, from be + n2 = v2, where b = X4 + β3X
3 + β2X

2 +

β1X + β0 and v = ν2X
2 + ν1X + ν0 are polynomials over Q, we see that ν2 =

ϑ2, and then we get β3 = 2
ϑ2ν1

ϑ22 − µ2
2

, β2 =
ν21 − 2µ2µ0 + 2ϑ2ν0

ϑ22 − µ2
2

, β1 = 2
ν1ν0

ϑ22 − µ2
2

,

β0 =
ν20 − µ2

0

ϑ22 − µ2
2

. From the condition that (X4+α3X
3+α2X

2+α1X+α0)(X
4+β3X

3+

β2X
2 + β1X + β0) + µ2X

2 + µ0 is a square of a polynomial of degree 4, we have a
system of three equations. For ϑ1 = ν1 = µ0 = 0, one of the equations has a rational
solution if ϑ0ν0 is a square. Thus, we assume that ν0 = ϑ0τ

2, where τ ∈ Q, and then

ϑ2 =
µ2(1 + τ2)

2τ
. It remains to solve the equation 32τ9ϑ30+µ

4
2τ

8+64τ7ϑ30−4µ4
2τ

6+

32τ5ϑ30+6µ4
2τ

4−4µ4
2τ

2+µ4
2 = 0, which has a solution if −2ϑ30τ(1+τ

2)2 is a fourth

power. Therefore, we take ϑ0 = −2τ(1 + τ2)2. We obtain µ2 = 4τ2
τ4 + 2τ2 + 1

(τ − 1)(τ + 1)
,

and then a = X4 − 2
1 + τ2

τ2 − 1
X2 + 1, b = X4 − 2τ2

1 + τ2

τ2 − 1
X2 + τ4, e = 4τ2(τ4 + 2τ2 + 1)2,

n = 4τ2
τ4 + 2τ2 + 1

(τ − 1)(τ + 1)
X2. For τ = 2 we obtain polynomials over Q and multiplying

them by 12, we get that

{4(3X2 − 1)(X2 − 3), 4(X2 − 12)(3X2 − 4), 25(3X2 − 25)(X2 − 3)}

is a polynomial D(19200X2)-triple with e = 17280000. Extending this triple to
the regular quadruple in Q[X] we get the fourth element d = 1

12X
2(X − 3)(X +

3)(3X2 − 31)(3X2 − 19)(3X2 − 7).

3. Diophantine quadruples for products of twin primes

By considering congruences modulo 4, it is easy to prove that if n is an integer
of the form n = 4k+2, then there does not exist a Diophantine quadruple with the
property D(n) [2, 21, 25]. On the other hand, it was proved in [5] that if an integer
n does not have the form 4k+2 and n ̸∈ S1 = {−4,−3,−1, 3, 5, 8, 12, 20}, then there
exists at least one Diophantine quadruple with the property D(n). Moreover, if n ̸≡
2 (mod 4) and n ̸∈ S2, where S2 = S1 ∪ {−15,−12,−7, 7, 13, 15, 21, 24, 28, 32, 48,
60, 84}, then there exist at least two distinct D(n)-quadruples. Thus, it seems
natural to ask whether similar results hold for integers n with at least ℓ distinct
D(n)-quadruples, where ℓ ≥ 3. An experimental search for quadruples with ele-
ments of small size, together with some theoretical observations from [8, 9], suggest
that the answer is negative.

Conjecture 2. The set S3 of all integers n, not of the form 4k + 2, with the
property that there exist at most two different D(n)-quadruples is infinite.

By the results from [8] we know that if an integer n is not of the form 4k + 2,
|n| > 48, and there exist at most two distinct D(n)-quadruples, then n has one
of the following forms: 4k + 3, 16k + 12, 8k + 5, 32k + 20. Since multiplying all
elements of D(4k + 3) and D(8k + 5)-quadruples by 2 we obtain D(16k + 12) and
D(32k+20)-quadruples respectively (by [5, Remark 3], all D(16k+12)-quadruples
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can be obtained on this way), we may restrict our attention to the integers of the
forms 4k + 3 and 8k + 5. We now quote main result of [9].

Lemma 1.

(i) Let n be an integer such that n ≡ 3 (mod 4), n ̸∈ {−9,−1, 3, 7, 11}, and
there exist at most two distinct D(n)-quadruples. Then |n−1|

2 , |n−9|
2 and

|9n−1|
2 are primes. Furthermore, either |n| is prime or n = pq, where p and

q = p+ 2 are twin primes.
(ii) Let n be an integer such that n ≡ 5 (mod 8), n ̸∈ {−27,−3, 5, 13, 21, 45},

and there exist at most two distinct D(n)-quadruples. Then the integers

|n|, |n−1|
4 , |n−9|

4 and |9n−1|
4 are primes.

Note that by Dickson’s conjecture on simultaneous prime values of linear poly-
nomials, and its extension by Schinzel and Sierpiński [26], it is predicted that there
are infinitely many integers n satisfying the primality conditions from Lemma 1.
Note also that there is one notable difference between (i) and (ii) parts of Lemma
1, which concerns twin primes occurring in (i). However, the preliminary version of
(ii) also contained similar condition concerning the numbers n of the form n = pq,
where p and q are primes such that q = p+ 4. But, it was possible to remove this
case because of the following polynomial formula: the set

{2, 32X2 + 32X + 10, 2(12X + 11)(12X3 + 17X2 + 7X + 1),

2(12X + 1)(12X3 + 19X2 + 9X + 1)}

has the property D((6X + 1)(6X + 5)). Thus, we may ask whether the condition
concerning the product of twin primes can be removed from the statement (i) of
Lemma 1. We will give partial positive answer to this question. Namely, we will
show that the condition can be removed if p ≡ 1 (mod 4).

Let us recall that in [5] it was proved that for an integer k ̸∈ {−1, 0, 1, 2}, the sets
{1, k2−2k−2, k2+1, 4k2−4k−3} and {1, 9k2+8k+1, 9k2+14k+6, 36k2+44k+13}
are two distinct D(4k + 3)-quadruples.

If p and q are twin primes, then p = 2k − 1, q = 2k + 1, for a positive integer k,
and n = pq = 4k2 − 1. Thus, our goal is to find a new polynomial quadruple with
property D(4X2 − 1). Motivated by the following example

{1, 1667501, 1834262, 6999553}

of a D(41 ·43)-quadruple (note that for n = 41 ·43 = 1763 the numbers n−1
2 = 881,

n−9
2 = 877 and 9n−1

2 = 7933 are primes), we search for a polynomial quadruple of
the form {1, a, b, a+ b+ 2r}, where a and b are polynomials of degree 4. In search
for more general result, we take n = αX2 + β. Since the polynomial n is even, we
assume that a(−X) = b(X). Let us put

a+ n = (α2X
2 − α1X + α0)

2,(17)

b+ n = (α2X
2 + α1X + α0)

2.(18)

We express a and b from (17) and (18). Then ab + n is a polynomial of degree 8,
which should be a perfect square. Thus, we put

(19) ab+ n = (α2
2X

4 + (−α+ 2α0α2 − α2
1)X

2 + γ)2.

This gives us three equations in α0, α1, α2, α, β, γ. Let r = α2
2X

4 + (−α+ 2α0α2 −
α2
1)X

2 + γ. Consider the set {1, a, b, a+ b+ 2r}. In order to satisfy the definition
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of a D(n)-quadruple, it remains to satisfy the condition that a + b + 2r + n is a
perfect square. Namely, by (17) and (18), 1 · a+n and 1 · b+n are squares, and we
have ab+ n = r2, a(a+ b+ 2r) + n = (a+ r)2, b(a+ b+ 2r) + n = (b+ r)2. From

a+b+2r+n = 4α2
2X

4+(−3α+8α0α2)X
2−β+2γ+2α2

0 =

(
2α2X

2 +
−3α+ 8α0α2

4α2

)2

,

we get

γ =
16α2

2β + 32α2
2α

2
0 + 9α2 − 48α2α0α

32α2
2

.

Inserting this in the three equations induced by (19), we get

α0 = −9α2
2 + 78α2

1α2 + 64α4
1

36α2
1α2

,

α = −24α2 + 16α2
1

9
,

β =
2(27α3

2 + 198α2
1α

2
2 + 420α4

1α2 + 200α6
1)

81α2
1α

2
2

.

In that way, we obtained two parametric families of a polynomial quadruples of the
desired type. It remains to choose the parameters α1 and α2 in order to obtain
D(4X2−1)-quadruples. We get the following pairs (α1, α2) = (±3,−15

2 ), (±3
2 ,−3),

(±1
2 ,−

5
3 ). The last task is to get integer elements of the quadruple. By taking

(α1, α2) = ( 32 ,−3), we are almost done, since we get a = 9X4−9X3− 3
2X+ 5

4X
2+ 5

4 ,

b = 9X4 + 9X3 + 3
2X + 5

4X
2 + 5

4 , a+ b+ 2r = 36X4 − 4X2 + 1, i.e. the set

{1, 9X4 − 9X3 − 3

2
X +

5

4
X2 +

5

4
, 9X4 + 9X3 +

3

2
X +

5

4
X2 +

5

4
, 36X4 − 4X2 + 1}

is the Diophantine quadruple with the property D(4X2 − 1). For X odd, say
X = 2k + 1, numbers a and b are integers. Therefore, we get that if k ̸∈ {−1, 0} is
an integer, then

{1, 144k4 + 216k3 + 113k2 + 20k + 1, 144k4 + 360k3 + 329k2 + 134k + 22,

576k4 + 1152k3 + 848k2 + 272k + 33}(20)

is a D((4k + 1)(4k + 3))-quadruple. Thus, we proved the following extension of
Lemma 1 (i).

Theorem 1. Let n be an integer such that n ≡ 3 (mod 4), n ̸∈ {−9,−1, 3, 7, 11},
and there exist at most two distinct D(n)-quadruples. Then |n−1|

2 , |n−9|
2 and |9n−1|

2
are primes. Furthermore, either |n| is prime or n = pq, where p ≡ 3 (mod 4) and
q = p+ 2 are twin primes.

4. Adjugates of D(n)-quadruples

In [20] Gibbs described the following construction by which from one Diophan-
tine quadruple we can obtain up to eight new Diophantine quadruples. Given a
(possibly improper) Diophantine quadruple {a1, a2, a3, a4} with the property D(n)
such that aiaj + n = x2ij , an adjugate quadruple is obtained by constructing the
symmetric matrix S with components Sii = ai and Sij = xij for i ̸= j and form-
ing its adjugate matrix T . The adjugate quadruple {A1, A2, A3, A4} is a (possibly
improper) Diophantine quadruple such that AiAj + N = X2

ij , where Ai = −Tii,
Xij = −Tij and N = n det(S). A quadruple has at most eight distinct adjugates
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which arise from different combinations of the signs of xij . Gibbs also stated the
following relationships between properties of a quadruple and its adjugates:

A) If a quadruple is regular with property D(1), then four of its eight
adjugates are the regular quadruples formed by dropping one of its four
components and replacing it with the other extension value.
B) If a quadruple is semi-regular, then four of its eight adjugates will be
improper quadruples with zero component.
C) If a quadruple is twice semi-regular, then two of its adjugates have two
zeros and four others have one zero component.
D) If a quadruple is improper with a zero component then all of its adju-
gates include a regular triple.
E) If a quadruple is improper with two duplicate components then it can
have at most six distinct adjugates and four of them are improper with two
duplicate components.
F) If a quadruple is improper with two zero components then all of its
adjugates are twice semi-regular, but four of them are improper with two
duplicate components and there are only two other distinct adjugates.

Gibbs gave numerical examples for each of the cases A)–F). We will give poly-
nomial examples for all cases. In some of them we will use quadruples constructed
in the previous sections. We will give details on quadruples obtained by Gibbs’ con-
struction only in the cases where this construction produces Diophantine quadruples
for quadratic polynomials.

A) The set {X − 1, X +1, 4X(2X − 1)(2X +1), 8X(2X − 1)(2X +1)(2X2 − 1)}
is a regular polynomial D(1)-quadruple (see [3]). By the above construction, we
obtain:

– four regular D(1)-quadruples and
– irregular quadruples with the properties

D(256X6 − 256X5 − 128X4 + 128X3 + 16X2 − 8X + 1),
D(256X6 + 256X5 − 128X4 − 128X3 + 16X2 + 8X + 1),
D(4096X8 − 5120X6 + 1920X4 − 224X2 + 9) and
D(−16384X10 + 28672X8 − 16896X6 + 3968X4 − 320X2 + 9).

B) By applying Gibbs’ construction on the quadruple (20), which is a semi-
regular polynomial D((4X + 1)(4X + 3))-quadruple

{1, (12X + 1)(12X3 + 17X2 + 8X + 1), (12X + 11)(12X3 + 19X2 + 10X + 2),

(24X2 + 16X + 3)(24X2 + 32X + 11)},

we obtain:

– four improper irregular quadruples and
– (proper) irregular quadruples with the properties

D((4X +1)2(4X +3)2(82944X8 +331776X7 +560448X6 +520128X5

+ 288280X4 + 96752X3 + 18928X2 + 1944X + 81)),
D((2X +1)2(4X +1)2(4X +3)(331776X7 +1078272X6 +1453824X5

+ 1047744X4 + 430528X3 + 98800X2 + 11356X + 507)),
D((2X +1)2(4X +1)(4X +3)2(331776X7 +1244160X6 +1951488X5

+ 1659456X4 + 824512X3 + 237776X2 + 36284X + 2161)) and
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D(−(4X + 1)2(4X + 3)2(11943936X10 + 59719680X9 + 133373952X8

+ 175177728X7 + 149726016X6 + 86878656X5 + 34567880X4

+ 9272656X3 + 1593200X2 + 156264X + 6471)).

C) The set {4X, 16X − 2, 36X − 12, 4X − 4}, obtained from (12), is a twice
semi-regular polynomial D(24X + 1)-quadruple, from which we obtain:

– six improper irregular quadruples and
– irregular quadruples with the properties

D((24X + 1)(6144X3 − 6656X2 + 2616X − 279)) and
D(−(24X + 1)2(6144X3 − 5184X2 + 816X − 1)).

D) InA) we obtained the set {X+1, 4(X+2), 3(3X+5), 0}, which is an improper
regular polynomial D(1)-quadruple. For this set, using Gibbs’ construction we
obtain:

– four improper regular quadruples,
– a regular D(1)-quadruple and
– the following (proper) quadruples for quadratic polynomials:

{X+1, 8(2X+3), X+3, 4(2X+3)(3X+4)(6X+11)} is a semi-regular
D(48X2 + 136X + 97)-quadruple,
{5(5X + 9), 4(X + 2), X + 3, 4(2X + 3)(3X + 4)(6X + 11)} is a semi-
regular polynomial D(96X2 + 320X + 265)-quadruple,
{5(5X + 9), 8(2X + 3), 3(3X + 5), 4(2X + 3)(3X + 4)(6X + 11)} is a
semi-regular polynomial D(−3(48X2 + 152X + 117))-quadruple.

E) The set {−2, X,X+4, X+4} is an improper irregular polynomial D(2X+9)-
quadruple (see [5]), which includes three regular triples. By the above construction
we obtain six improper irregular quadruples.

However, if we take the set

{(X − 1)(X + 1)(5X2 + 3)2, (X − 1)(X + 1)(5X2 + 3)2,

(3X − 1)(3X + 1)(5X2 + 3)2, 32X2(7X2 + 1)},
which is an improper irregular polynomial D(4X2(5X2 +3)4)-quadruple (obtained
using [6, Proposition 3]), the above construction gives:

– four improper irregular quadruples and
– irregular quadruples with the properties

D(4X2(5X2 + 3)2(225X6 + 370X4 − 23X2 + 4) and
D(4X4(5X2 + 3)2(124X6 − 63X4 − 6X2 + 9)).

Let us mention that it is possible to find a polynomial quadruple with two pairs
of equal elements. E.g.

{4X2, 4X2,−(X2 −X − 1)(X2 +X − 1),−(X2 −X − 1)(X2 +X − 1)}
is an improper twice semi-regular polynomial D(4(X − 1)2X2(X + 1)2)-quadruple
(see [17]). Here Gibbs’ construction gives five improper irregular quadruples.

F) The set {−4(X+5),−3(X+6), 0, 0}, obtained in E), is an improper irregular
polynomial D((2X + 9)2)-quadruple. For this set we obtain:

– four improper twice semi-regular quadruples and
– the following (proper) quadruples for quadratic polynomials:

{−(7X + 36),−2,−5(3X + 16), (X + 4)} is a twice semi-regular poly-
nomial D((2X + 9)(8X + 41))-quadruple,
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{X,−2(4X +19),−5(3X +16), X +4} is a twice semi-regular polyno-
mial D((2X + 9)(12X + 49))-quadruple.
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