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Abstract. Various functional limit theorems for partial sum processes of
strictly stationary sequences of regularly varying random variables in the space

of càdlàg functions D[0, 1] with one of the Skorohod topologies have already
been obtained. The mostly used Skorohod J1 topology is inappropriate when
clustering of large values of the partial sum processes occurs. When all ex-

tremes within each cluster of high-threshold excesses do not have the same
sign, Skorohod M1 topology also becomes inappropriate. In this paper we
alter the definition of the partial sum process in order to shrink all extremes
within each cluster to a single one, which allow us to obtain the functional J1
convergence. We also show that this result can be applied to some standard
time series models, including the GARCH(1,1) process and its squares, the
stochastic volatility models and m–dependent sequences.

1. Introduction

Let (Xn)n≥1 be a strictly stationary sequence of real valued random variables
and define by Sn = X1 + · · · + Xn, n ≥ 1, its accompanying sequence of partial
sums. If the sequence (Xn) is i.i.d. then it is well known (see for example Gnedenko
and Kolmogorov [11], Rvačeva [18], Feller [10]) that there exist real sequences (an)
and (bn) such that

Sn − bn
an

d−→ S as n → ∞, (1.1)

for some non-degenerate α–stable random variable S with α ∈ (0, 2) if and only if
X1 is regularly varying with index α ∈ (0, 2), that is,

P(|X1| > x) = x−αL(x), (1.2)

where L( · ) is a slowly varying function at ∞ and

P(X1 > x)

P(|X1| > x)
→ p and

P(X1 < −x)

P(|X1| > x)
→ q, (1.3)

as x → ∞, with p ∈ [0, 1] and q = 1− p. As α is less than 2, the variance of X1 is
infinite.

The functional generalization of (1.1) has been studied extensively in probability
literature. Define the partial sum processes

Vn(t) =
1

an

⌊nt⌋∑
k=1

(Xk − bn), t ∈ [0, 1],
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where the sequences (an) and (bn) are chosen as

nP(|X1| > an) → 1 and bn = E
(
X1 1{|X1|≤an}

)
.

Here ⌊x⌋ represents the integer part of the real number x. In functional limit theory
one investigates the asymptotic behavior of the processes Vn( · ) as n → ∞. Since
the sample paths of Vn( · ) are elements of the space D[0, 1] of all right-continuous
real valued functions on [0, 1] with left limits, it is natural to consider the weak
convergence of distributions of Vn( · ) with the one of Skorohod topologies on D[0, 1]
introduced in Skorohod [21].

Skorohod [22] established a functional limit theorem for the processes Vn( · )
for infinite variance i.i.d. regularly varying sequences (Xn). Under some weak de-
pendence conditions, weak convergence of partial sum processes were obtained by
Durrett and Resnick [9], Leadbetter and Rootzén [13] and Tyran-Kamińska [23].
Their functional limit theorems hold in Skorohod J1 topology, which is appropriate
when large values of the partial sum processes do not cluster. When clustering of
large values occurs then J1 convergence fails to hold, but the functional limit the-
orem might still hold in the weaker Skorohod M1 topology. Avram and Taqqu [1]
obtained a functional limit theorem with Skorohod M1 topology for sums of mov-
ing averages with nonnegative coefficients. Recently Basrak et al. [3] gave sufficient
conditions for functional limit theorem withM1 topology to hold for stationary, reg-
ularly varying sequences for which all extremes within each cluster of high-threshold
excesses have the same sign.

In this paper we alter the definition of the partial sum process in the manner that
all extremes within each cluster shrink to a single one, which allows us to recover
the J1 convergence. Note that the process Vn(t) jumps at every t = k/n (k ≤ n),
with (Xk− bn)/an being the size of the jump. Now we reduce the number of jumps
(or alternatively increase the intervals between jumps) by introducing a sequence
of positive integers (rn) such that rn → ∞ and kn := ⌊n/rn⌋ → ∞ as n → ∞, and
defining new partial sum processes

Wn(t) =
1

an

⌊knt⌋∑
k=1

(Sk
rn − cn), t ∈ [0, 1],

where Sk
rn = X(k−1)rn+1 + . . . + Xkrn (k, n ∈ N), and cn are centering constants

which will be specified later. The process Wn(t) jumps at every t = k/kn, with
(Sk

rn − cn)/an being the size of the jump. In other words, we break X1, X2, . . . into
blocks of rn consecutive random variables and treat the sums of random variables
within each block as we treated single random variables Xi in the process Vn( · ).
One jump of the process Wn( · ) corresponds to rn consecutive jumps of the process
Vn( · ). In this way we have partially smoothed the trajectories of partial sum
processes such that each cluster can consist of only one excess. Our method is in
fact closely related to the scheme of summing stationary in rows triangular arrays
(see Samur [19]).

Functional limit theorems for the processes Vn( · ) base on the regular variation
property of X1. Therefore in obtaining the functional limit theorem for the pro-
cesses Wn( · ) we need to impose a similar condition on Srn . For this purpose we
will assume Srn satisfies a certain large deviation condition (see relation (2.5) in
the sequel).
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The paper is organized as follows. In Section 2 we introduce some basic re-
sults on point processes and regular variation. We also describe precisely the large
deviation condition that we impose on Srn . In Section 3 we state and prove the
functional limit theorem for the processes Wn( · ) in the J1 topology. Here we also
discuss several examples of stationary sequences covered by our theorem. Finally,
in Section 4 (Appendix) we prove that the mixing conditions used in our main
theorem are implied by some conditions which are given in terms of the standardly
used α–mixing and ρ–mixing conditions.

2. Preliminaries

At the beginning we introduce here some basic notions and results on point
processes which will be used later on. For more background on the theory of point
processes we refer to Kallenberg [12]. Let E = R \ {0}, where R = [−∞,∞]. For
x, y ∈ E define

ρ(x, y) = max
{∣∣∣ 1

|x|
− 1

|y|

∣∣∣, |signx− sign y|
}
, (2.1)

where sign z = z/|z|. With the metric ρ, E becomes a locally compact, complete
and separable matric space. A set B ⊆ E is relatively compact if it is bounded
away from origin, that is, if there exists u > 0 such that B ⊆ E \ [−u, u]. Denote
by B(E) the σ–algebra generated by ρ–open sets. Let M+(E) be the class of all
Radon measures on E, i.e. all nonnegative measures that are finite on relatively
compact subsets of E. A useful topology for M+(E) is the vague topology which
renders M+(E) a complete separable metric space. If µn ∈ M+(E), n ≥ 0, then µn

converges vaguely to µ0 (written µn
v−→ µ0) if

∫
f dµn →

∫
f dµ0 for all f ∈ C+

K(E),
where C+

K(E) denotes the class of all nonnegative continuous real functions on E
with compact support. One metric that induces the vague topology is given by

dv(µ1, µ2) =

∞∑
k=1

2−k

(∣∣∣∣ ∫
E
fk(x)µ1(dx)−

∫
E
fk µ2(dx)

∣∣∣∣ ∧ 1

)
, µ1, µ2 ∈ M+(E),

(2.2)
for some sequence of functions fk ∈ C+

K(E), where a ∧ b = min{a, b}. We call dv
the vague metric.

A Radon point measure is an element of M+(E) of the form m =
∑

i δxi , where
δx is the Dirac measure. Denote by Mp(E) the class of all Radon point measures.
Since Mp(E) is a subset of M+(E), we endow it with the relative topology. Let
Mp(E) be the Borel σ–field of subsets of Mp(E) generated by open sets. A point
process on E is a measurable map from a given probability space to the measurable
space (Mp(E),Mp(E)). A standard example of point process is the Poisson process.
Suppose µ is a given Radon measure on E. Then N is a Poisson process with mean
(intensity) measure µ, or synonymously, a Poisson random measure (PRM(µ)), if
for all A ∈ B(E):

P(N(A) = k) =

{
exp(−µ(A))(µ(A))k/k! if µ(A) < ∞

0 if µ(A) = ∞

and if A1, . . . , Ak ∈ B(E) are mutually disjoint, then N(A1), . . . , N(Ak) are inde-
pendent random variables.
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A sequence of point processes (Nn) on E converges in distribution to a point

process N on E (written Nn
d−→ N) if Ef(Nn) → Ef(N) for every bounded contin-

uous function f : Mp(E) → R. The point processes convergence is characterized by
convergence of Laplace functionals. Denote by B+ the set of bounded measurable
functions f : E → [0,∞). For a point process N on E the Laplace functional of N
is the nonnegative function on B+ given by

ΨN (f) = Ee−N(f), f ∈ B+,

where N(f) =
∫
E f(x)N(dx). Then it holds that given point processes Nn, n ≥ 0,

Nn
d−→ N0 iff ΨNn(f) → ΨN0(f) for all f ∈ C+

K(E) (2.3)

(see Kallenberg [12], Theorem 4.2).
Let (Xn) be a strictly stationary sequence of regularly varying random variables

with index α ∈ (0, 2), and let (an) be a sequence of positive real numbers such that
nP(|X1| > an) → 1 as n → ∞. Regular variation can be expressed in terms of
vague convergence of measures on E:

nP(a−1
n X1 ∈ · ) v−→ µ( · ) as n → ∞,

the Radon measure µ on E being given by

µ(dx) =
(
pαx−α−11(0,∞)(x) + qα(−x)−α−11(−∞,0)(x)

)
dx,

where p and q are as in (1.3).
Using standard regular variation arguments it can be shown that for every λ > 0

it holds that a⌊λn⌋/an → λ1/α as n → ∞. Therefore an can be represented as

an = n1/αL′(n), where L′( · ) is a slowly varying function at ∞.
Through the whole paper we will assume the sequence (Xn) satisfies the following

large deviation type relations:

knP(Srn > xan) → c+x
−α,

knP(Srn < −xan) → c−x
−α,

x > 0, (2.4)

as n → ∞, where c+, c− ≥ 0 are some constants, (rn) is a sequence of positive
integers such that rn → ∞ and rn/n → 0 as n → ∞, and kn = ⌊n/rn⌋. Some
sufficient conditions for relations in (2.4) to hold are given in Bartkiewicz et al. [2]
and Davis and Hsing [7]. It is easy to see (for example by Lemma 6.1 in Resnick
[17]) that (2.4) is equivalent to

knP(a
−1
n Srn ∈ · ) v−→ ν( · ) as n → ∞, (2.5)

where ν is the measure

ν(dx) =
(
c+αx

−α−11(0,∞)(x) + c−α(−x)−α−11(−∞,0)(x)
)
dx. (2.6)

Lemma 2.1. Let α ∈ (0, 1) and assume relation (2.5) holds. Then for any u > 0,

lim
n→∞

knE

(
|Srn |
an

1{ |Srn |
an

≤u
}) =

∫
|x|≤u

|x| ν(dx). (2.7)

Proof. Fix u > 0. Define

νn( · ) = knP(a
−1
n Srn ∈ · ), n ∈ N,

and
fδ(x) = |x|1B(δ, u)(x), x ∈ E, δ ∈ (0, u),
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where B(δ, u) = {x ∈ E : δ < |x| < u} (and B(δ, u) = {x ∈ E : δ ≤ |x| ≤ u}). By

relation (2.5) we have νn
v−→ ν as n → ∞, and this yields∫
E
fδ(x) νn(dx) →

∫
E
fδ(x) ν(dx), (2.8)

as n → ∞ (see Kallenberg [12], 15.7.3). Define

f(x) = |x|1B(u)(x), x ∈ E,

where B(r) = {x ∈ E : |x| < r}. For any δ ∈ (0, u) it holds∣∣∣∣ ∫
E
f(x) νn(dx)−

∫
E
f(x) ν(dx)

∣∣∣∣ ≤
∣∣∣∣ ∫

B(δ)

f(x) νn(dx)−
∫
B(δ)

f(x) ν(dx)

∣∣∣∣
+

∣∣∣∣ ∫
B(δ)c

f(x) νn(dx)−
∫
B(δ)c

f(x) ν(dx)

∣∣∣∣
≤

∣∣∣∣ ∫
B(δ)

f(x) νn(dx)

∣∣∣∣+ ∣∣∣∣ ∫
B(δ)

f(x) ν(dx)

∣∣∣∣
+

∣∣∣∣ ∫
B(δ, u)

f(x) νn(dx)−
∫
B(δ, u)

f(x) ν(dx)

∣∣∣∣. (2.9)

For the first term on the right hand side of (2.9) we have∣∣∣∣ ∫
B(δ)

f(x) νn(dx)

∣∣∣∣ =

∫
E
|x|1B(δ)(x) νn(dx) = kn

∫ ∣∣∣∣Srn

an

∣∣∣∣1{|Srn |<δan} dP

= knE

[
|Srn |
an

1{|Srn |<δan}

]
= knE

[
|Srn |
an

1{|Srn |<δan}1{∩rn
j=1{|Xj |≤δan}}

]

+ knE

[
|Srn |
an

1{|Srn |<δan}1{∪rn
j=1{|Xj |>δan}}

]
.

This term is bounded above by

≤ knE

[∑rn
j=1 |Xj |
an

1{∩rn
j=1{|Xj |≤δan}}

]
+ knδP

( rn∪
j=1

{|Xj | > δan}
)

≤ kn

rn∑
j=1

E

[
|Xj |
an

1{|Xj |≤δan}

]
+ knδ

rn∑
j=1

P(|Xj | > δan)

= knrnE

[
|X1|
an

1{|X1|≤δan}

]
+ knrnδP(|X1| > δan)

= δ · knrn
n

· nP(|X1| > δan) ·
[
E[|X1|1{|X1|≤δan}]

δanP(|X1| > δan)
+ 1

]
. (2.10)

From the definition of the sequences (rn) and (kn) it follows knrn/n → 1 as n → ∞.
SinceX1 is a regularly varying random variable with index α, it follows immediately
nP(|X1| > δan) → δ−α as n → ∞. By Karamata’s theorem it holds that

lim
n→∞

E[|X1|1{|X1|≤δan}]

δanP(|X1| > δan)
=

α

1− α
.
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Now from (2.10) we get

lim sup
n→∞

∣∣∣∣ ∫
B(δ)

f(x) νn(dx)

∣∣∣∣ ≤ δ1−α

(
α

1− α
+ 1

)
,

and therefore, since α ∈ (0, 1),

lim
δ→0

lim sup
n→∞

∣∣∣∣ ∫
B(δ)

f(x) νn(dx)

∣∣∣∣ = 0. (2.11)

By the representation of the measure ν in (2.6) we get∫
|x|<δ

|x| ν(dx) = (c− + c+)
α

1− α
δ1−α.

Hence for the second term on the right hand side of (2.9) we have∣∣∣∣ ∫
B(δ)

f(x) ν(dx)

∣∣∣∣ = ∫
|x|<δ

|x| ν(dx) → 0 as δ → 0. (2.12)

From (2.8) we get for the third term on the right hand side of (2.9)∣∣∣∣ ∫
B(δ, u)

f(x) νn(dx)−
∫
B(δ, u)

f(x) ν(dx)

∣∣∣∣ = ∣∣∣∣ ∫
E
fδ(x) νn(dx)−

∫
E
fδ(x) ν(dx)

∣∣∣∣ → 0

(2.13)
as n → ∞. Now from (2.9) using (2.11), (2.12) and (2.13) we obtain

lim
δ→0

lim sup
n→∞

∣∣∣∣ ∫
E
f(x) νn(dx)−

∫
E
f(x) ν(dx)

∣∣∣∣ = 0.

From this immediately follows∫
E
f(x) νn(dx) →

∫
E
f(x) ν(dx) as n → ∞,

i.e.

knE

(
|Srn |
an

1{ |Srn |
an

≤u
}) →

∫
|x|≤u

|x| ν(dx) as n → ∞.

�

3. Main theorem

Let (Xn) be a strictly stationary sequence of regularly varying random variables
with index α ∈ (0, 2). Assume (2.4) holds. The theorem below gives conditions
under which a stochastic sum process constructed from the sequence (Sk

rn) satisfies
a nonstandard functional limit theorem in the space D[0, 1] of real-valued càdlàg
functions equipped with the Skorohod J1 topology, with a non-Gaussian α–stable
Lévy process as a limit. Recall that the distribution of a Lévy process W ( · )
is characterized by its characteristic triplet, i.e. the characteristic triplet of the
infinitely divisible distribution of W (1). The characteristic function of W (1) and
the characteristic triplet (a, µ, b) are related in the following way:

E[eizW (1)] = exp

(
−1

2
az2 + ibz +

∫
R

(
eizx − 1− izx1[−1,1](x)

)
µ(dx)

)
for z ∈ R; here a ≥ 0, b ∈ R are constants, and µ is a measure on R satisfying

µ({0}) = 0 and

∫
R
(|x|2 ∧ 1)µ(dx) < ∞,
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that is, µ is a Lévy measure. For a textbook treatment of Lévy processes we refer
to Bertoin [4] and Sato [20].

The metric dJ1 that generates the J1 topology on D[0, 1] is defined in the follow-
ing way. Let ∆ be the set of strictly increasing continuous functions λ : [0, 1] → [0, 1]
such that λ(0) = 0 and λ(1) = 1, and let e ∈ ∆ be the identity map on [0, 1], i.e.
e(t) = t for all t ∈ [0, 1]. For x, y ∈ D[0, 1] define

dJ1(x, y) = inf{∥x ◦ λ− y∥[0,1] ∨ ∥λ− e∥[0,1] : λ ∈ ∆},

where ∥x∥[0,1] = sup{|x(t)| : t ∈ [0, 1]} and a∨ b = max{a, b}. Then dJ1 is a metric
on D[0, 1] and is called the Skorohod J1 metric.

The mixing condition appropriate for the result in this section is similar to
the condition A(an) of Davis and Hsing [7], and hence we denote it by A∗(an)
and say that a strictly stationary sequence of random variables (Xn) satisfies the
mixing condition A∗(an) if there exist a sequence of positive integers (rn) such that
rn → ∞ and rn/n → 0 as n → ∞, and such that for every f ∈ C+

K(E) (denoting
kn = ⌊n/rn⌋)

E exp

(
−

kn∑
k=1

f(a−1
n Sk

rn)

)
−
(
Eexp(−f(a−1

n Srn))

)kn

→ 0 as n → ∞. (3.1)

In case α ∈ [1, 2), we will need to assume that the contribution of the smaller
increments of the partial sum process is close to its expectation.

Condition 3.1. There exists a sequence of positive integers (rn) with rn → ∞ and
kn = ⌊n/rn⌋ → ∞ as n → ∞, such that for all δ > 0,

lim
u↓0

lim sup
n→∞

P

[
max

1≤j≤kn

∣∣∣∣ j∑
k=1

(
Sk
rn

an
1{ |Sk

rn
|

an
≤u

} − E

(
Sk
rn

an
1{ |Sk

rn
|

an
≤u

}))∣∣∣∣ > δ

]
= 0.

In Appendix we discuss some sufficient conditions for the mixing condition
A∗(an) and Condition 3.1 to hold.

Theorem 3.2. Let (Xn) be a strictly stationary sequence of regularly varying ran-
dom variables with index α ∈ (0, 2), and let (an) be a sequence of positive real
numbers such that nP(|X1| > an) → 1 as n → ∞. Suppose there exists a sequence
of positive integers (rn) such that, as n → ∞, rn → ∞, kn = ⌊n/rn⌋ → ∞ and

knP

(
Srn

an
∈ ·

)
v−→ ν( · ). (3.2)

Suppose that the mixing condition A∗(an) and Condition 3.1 if α ∈ [1, 2) hold with
the same sequence (rn) as in (3.2). Then for a stochastic process defined by

Wn(t) =

⌊knt⌋∑
k=1

Sk
rn

an
− ⌊knt⌋E

(
Srn

an
1{ |Srn |

an
≤1

}), t ∈ [0, 1],

it holds that

Wn
d−→ W0, n → ∞,

in D[0, 1] endowed with the J1 topology, where W0( · ) is an α–stable Lévy process
with characteristic triplet (0, ν, 0).
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Proof. Let, for any n ∈ N, (Zn,k)k be a sequence of i.i.d. random variables such

that Zn,1
d
= Srn . By relation (3.2) we have

knP

(
Zn,1

an
∈ ·

)
v−→ ν( · ) as n → ∞. (3.3)

Theorem 5.3 in Resnick [17] then implies, as n → ∞,

ξ̃n :=

kn∑
k=1

δa−1
n Zn,k

d−→ PRM(ν) (3.4)

on E. Define the point process ξn =
∑kn

k=1 δa−1
n Sk

rn
. For any f ∈ C+

K(E) we have

Ψξn(f)−Ψξ̃n
(f) = E exp

(
−

kn∑
k=1

f(a−1
n Sk

rn)

)
−
(
Eexp(−f(a−1

n Z1, n))

)kn

= Eexp

(
−

kn∑
k=1

f(a−1
n Sk

rn)

)
−
(
Eexp(−f(a−1

n Srn))

)kn

.

Hence, the mixing condition A∗(an) implies Ψξn(f)−Ψξ̃n
(f) → 0 as n → ∞. Then

by relations (2.3) and (3.4) we obtain, as n → ∞,

kn∑
k=1

δa−1
n Sk

rn

d−→ PRM(ν). (3.5)

Suppose U1, . . . , Ukn are i.i.d. random variables uniformly distributed on [0, 1]
with order statistics U1:kn ≤ U2:kn ≤ . . . ≤ Ukn:kn , which are independent of (Sk

rn).
From (3.5) using Lemma 4.3 of Resnick [16] we obtain, as n → ∞,

kn∑
k=1

δ(Uk, a
−1
n Sk

rn
)

d−→ PRM(LEB× ν).

From the independence of (Uk) and (Sk
rn), we have that

kn∑
k=1

δ(Uk:kn , a−1
n Sk

rn
)

d
=

kn∑
k=1

δ(Uk, a
−1
n Sk

rn
)

as random elements of M+([0, 1]× E). Therefore
kn∑
k=1

δ(Uk:kn , a−1
n Sk

rn
)

d−→ PRM(LEB× ν). (3.6)

Using the arguments from Step 3 in the proof of Theorem 6.3 in Resnick [17] we
get

dv

( kn∑
k=1

δ(k/kn, a
−1
n Sk

rn
),

kn∑
k=1

δ(Uk:kn , a−1
n Sk

rn
)

)
P−→ 0 as n → ∞, (3.7)

where dv is the vague metric on M+([0, 1] × E) (cf. (2.2)). From (3.6) and (3.7)
using Slutsky’s theorem (see for instance Theorem 3.4 in Resnick [17]) we obtain,
as n → ∞,

kn∑
k=1

δ(k/kn, a
−1
n Sk

rn
)

d−→ PRM(LEB× ν) =
∑
k

δ(tk,jk)
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on [0, 1] × E. From this using the same arguments as in the proof of Theorem 7.1
in Resnick [17], we obtain that, as n → ∞,

W (u)
n

d−→ W
(u)
0 (3.8)

in D[0, 1] with the J1 topology, where

W (u)
n ( · ) :=

⌊kn·⌋∑
k=1

Sk
rn

an
1{ |Sk

rn
|

an
>u

} − ⌊kn · ⌋E
(
Srn

an
1{

u<
|Srn |
an

≤1
}),

and

W
(u)
0 ( · ) :=

∑
tk≤·

jk1{|jk|>u} − ( · )
∫
u<|x|≤1

x ν(dx).

From the Lévy-Itô representation of a Lévy process (see Section 5.5.3 in Resnick [17]
or Theorem 19.2 in Sato [20]), there exists a Lévy process W0( · ) with characteristic
triplet (0, ν, 0) such that

sup
t∈[0,1]

|W (u)
0 (t)−W0(t)| −→ 0

almost surely as u ↓ 0. Since uniform convergence implies Skorohod J1 convergence,

we get dJ1(W
(u)
0 ,W0) → 0 almost surely as u ↓ 0. Therefore since almost sure

convergence implies convergence in distribution,

W
(u)
0

d−→ W0 as u → 0, (3.9)

in D[0, 1] with the J1 topology.
If we show that

lim
u↓0

lim sup
n→∞

P[dJ1(W
(u)
n ,Wn) > δ] = 0

for any δ > 0, then from (3.8), (3.9) and Theorem 3.5 in Resnick [17] we will have,
as n → ∞,

Wn
d−→ W0

in D[0, 1] with the J1 topology. Since the J1 metric on D[0, 1] is bounded above by
the uniform metric on D[0, 1], it suffices to show that

lim
u↓0

lim sup
n→∞

P

(
sup

t∈[0,1]

|W (u)
n (t)−Wn(t)| > δ

)
= 0.

We have

P

(
sup

t∈[0,1]

|W (u)
n (t)−Wn(t)| > δ

)
= P

[
max

1≤j≤kn

∣∣∣∣ j∑
k=1

(
Sk
rn

an
1{ |Sk

rn
|

an
≤u

}−E

(
Sk
rn

an
1{ |Sk

rn
|

an
≤u

}))∣∣∣∣ > δ

]
.

(3.10)
For α ∈ [1, 2) this relation is simply Condition 3.1. Therefore it remains to show
(3.10) for the case when α ∈ (0, 1). Hence assume α ∈ (0, 1). For arbitrary (and
fixed) δ > 0 define

I(u, n) = P

[
max

1≤j≤kn

∣∣∣∣ j∑
k=1

(
Sk
rn

an
1{ |Sk

rn
|

an
≤u

} − E

(
Sk
rn

an
1{ |Sk

rn
|

an
≤u

}))∣∣∣∣ > δ

]
.



10 DANIJEL KRIZMANIĆ

Using stationarity and Chebyshev’s inequality we get the bound

I(u, n) ≤ P

[
max

1≤j≤kn

j∑
k=1

∣∣∣∣Sk
rn

an
1{ |Sk

rn
|

an
≤u

} − E

(
Sk
rn

an
1{ |Sk

rn
|

an
≤u

})∣∣∣∣ > δ

]

= P

[ kn∑
k=1

∣∣∣∣Sk
rn

an
1{ |Sk

rn
|

an
≤u

} − E

(
Sk
rn

an
1{ |Sk

rn
|

an
≤u

})∣∣∣∣ > δ

]

≤ δ−1E

[ kn∑
k=1

∣∣∣∣Sk
rn

an
1{ |Sk

rn
|

an
≤u

} − E

(
Sk
rn

an
1{ |Sk

rn
|

an
≤u

})∣∣∣∣]

≤ 2δ−1
kn∑
k=1

E

( |Sk
rn |
an

1{ |Sk
rn

|
an

≤u
})

= 2δ−1knE

(
|Srn |
an

1{ |Srn |
an

≤u
}).

Using Lemma 2.1 we obtain that

lim
n→∞

knE

(
|Srn |
an

1{ |Srn |
an

≤u
}) =

∫
|x|≤u

|x| ν(dx)

= (c− + c+)
α

1− α
u1−α

→ 0 as u → 0.

Hence

lim
u↓0

lim sup
n→∞

I(u, n) = 0,

which completes the proof, with the note that the α–stability of the process W0( · )
follows from Theorem 14.3 in Sato [20] and the representation of the measure ν in
(2.6). �

Remark 3.1. Theorem 3.2 covers a wide range of stationary sequences. In Bartkiewicz
et al. [2] are given some sufficient conditions for relation (3.2) to hold (see their The-
orem 1 and Section 3.2.2) and several examples of standard time series models that
satisfy these conditions, including m–dependent sequences, GARCH(1,1) process
and its squares, solutions to stochastic recurrence equations and stochastic volatil-
ity models. These conditions are:

(C1) The process (Xn) is regularly varying with index α ∈ (0, 2), i.e. for every
d ≥ 1, the d–dimensional random vector X = (X1, . . . , Xd) is multivariate
regularly varying with index α. This means that for some (and then for
every) norm ∥ · ∥ on Rd there exists a random vector Θ on the unit sphere
Sd−1 = {x ∈ Rd : ∥x∥ = 1} such that for every u > 0 and as x → ∞,

P(∥X∥ > ux,X/∥X∥ ∈ · )
P(∥X∥ > x)

w−→ u−αP(Θ ∈ · ),

where the arrow ”
w−→” denotes weak convergence of finite measures.
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(C2) There exists a sequence of positive integers (rn) such that rn → ∞, kn =
⌊n/rn⌋ → ∞ and for every x ∈ R,∣∣φn(x)− (φnrn(x))

kn
∣∣ → 0

as n → ∞, where φnj(x) = Eeixa
−1
n Sj , j = 1, 2, . . ., and φn(x) = φnn(x).

(C3) For every x ∈ R,

lim
d→∞

lim sup
n→∞

n

rn

rn∑
j=d+1

E
∣∣xa−1

n (Sj − Sd) · xa−1
n X1

∣∣ = 0,

where the sequence (rn)n is the same as in (C2) and for an arbitrary random
variable Z we put Z = (Z ∧ 2) ∨ (−2).

(C4) The limits

lim
n→∞

nP(Sd > an) = b+(d) and lim
n→∞

nP(Sd ≤ −an) = b−(d), d ≥ 1,

lim
d→∞

(b+(d)− b+(d− 1)) = c+ and lim
d→∞

(b−(d)− b−(d− 1)) = c−

exists.
(C5) For α > 1 assume EX1 = 0 and for α = 1,

lim
d→∞

lim sup
n→∞

n
∣∣E(sin(a−1

n Sd))
∣∣ = 0.

With appropriate (and standard) assumptions, which are precisely described in
[2], the above mentioned time series models are strongly mixing with geometric
rate, which suffices the mixing condition A∗(an) to hold (see Proposition 4.1 be-
low). Therefore, for α ∈ (0, 1), all conditions of Theorem 3.2 are satisfied and the
conclusion of the theorem follows. Naturally, for α ∈ [1, 2) one has also to verify
Condition 3.1.

4. Appendix

In this section we give some sufficient conditions for the mixing condition A∗(an)
and Condition 3.1 to hold. These conditions are principally based on the well
known strong or α–mixing and ρ–mixing conditions. Let (Ω,F ,P) be a probability
space. For any σ-field A ⊂ F , let L2(A) denote the space of square-integrable,
A-measurable, real-valued random variables. For any two σ-fields A,B ⊆ F define

α(A,B) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ A, B ∈ B}
and

ρ(A,B) = sup
{ |E(XY )− EXEY |√

EX2EY 2
: X ∈ L2(A), Y ∈ L2(B)

}
.

Let now (Xn)n∈Z be a sequence of random variables on (Ω,F ,P), and denote F l
k =

σ({Xi : k ≤ i ≤ l}) for −∞ ≤ k ≤ l ≤ ∞. Then we say the sequence (Xn)n is
α–mixing (or strongly mixing) if

α(n) = sup
j∈Z

α(F j
−∞,F∞

j+n) → 0

and ρ–mixing if

ρ(n) = sup
j∈Z

ρ(F j
−∞,F∞

j+n) → 0

as n → ∞. Note that when the sequence (Xn) is strictly stationary, one has simply
α(n) = α(F0

−∞,F∞
n ), and similar for ρ(n).
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Proposition 4.1. Suppose (Xn) is a strictly stationary sequence of regularly vary-
ing random variables with index α ∈ (0, 2), and (an) a sequence of positive real
numbers such that nP(|X1| > an) → 1 as n → ∞. Assume relation (3.2) holds for
some sequence of positive integers (rn) such that rn → ∞ and rn/n → 0 as n → ∞,
and kn = ⌊n/rn⌋ = o(nt) for some 0 < t < 1. If the sequence (Xn) is strongly mix-
ing with exponential rate, i.e. αn ≤ Cρn for some ρ ∈ (0, 1) and C > 0, where (αn)
is the sequence of α–mixing coefficients of (Xn), then the mixing condition A∗(an)
holds.

Proof. Let (ln) be an arbitrary (and fixed) sequence of positive real numbers such
that ln ∼ nq, i.e. ln/n

q → 1 as n → ∞, where q = min{1/α, (1 − t)/(1 + α)}/2.
Let n be large enough such that ln < rn (note that for large n it holds that
ln < n1−t < rn). We break X1, X2, . . . into blocks of rn consecutive random
variables. The last ln variables in each block will be dropped. Then we shall show
that doing so, the new blocks will be almost independent (as n → ∞) and this will
imply relation (3.1) for the new blocks. The error which occurs by cutting of the
ends of the original blocks will be small, and this will imply condition (3.1) for the
original blocks also.

Take an arbitrary f ∈ C+
K(E). Since its support is bounded away from 0, there

exists some r > 0 such that f(x) = 0 for |x| ≤ r, and since f is bounded, there
exists some M > 0 such that |f(x)| < M for all x ∈ E. For all k, n ∈ N define

Sk
rn, ln = Xkrn−ln+1 + . . .+Xkrn .

Sk
rn, ln

is the sum of the last ln random variables in the k-th block. By stationarity
we have

Sk
rn − Sk

rn, ln

d
= S1

rn − S1
rn, ln = Srn−ln .

This and the following inequality

|Egh− EgEh| ≤ 4C1C2αm,

for a F j
−∞ measurable function g and a F∞

j+m measurable function h such that
|g| ≤ C1 and |h| ≤ C2 (see Lemma 1.2.1 in Lin and Lu [14]), applied kn times, give

∣∣∣∣Eexp

(
−

kn∑
k=1

f(a−1
n Sk

rn − a−1
n Sk

rn, ln)

)
−

(
Eexp(−f(a−1

n Srn−ln))

)kn
∣∣∣∣

≤ 4knαln+1. (4.1)
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Then∣∣∣∣Eexp

(
−

kn∑
k=1

f(a−1
n Sk

rn)

)
−
(
Eexp(−f(a−1

n Srn))

)kn
∣∣∣∣

≤
∣∣∣∣Eexp

(
−

kn∑
k=1

f(a−1
n Sk

rn)

)
− Eexp

(
−

kn∑
k=1

f(a−1
n Sk

rn − a−1
n Sk

rn, ln)

)∣∣∣∣
+

∣∣∣∣Eexp

(
−

kn∑
k=1

f(a−1
n Sk

rn − a−1
n Sk

rn, ln)

)
−
(
Eexp(−f(a−1

n Srn−ln))

)kn
∣∣∣∣

+

∣∣∣∣(Eexp(−f(a−1
n Srn−ln))

)kn

−
(
Eexp(−f(a−1

n Srn))

)kn
∣∣∣∣

=: I1(n) + I2(n) + I3(n). (4.2)

By Lemma 4.3 in Durrett [8] and stationarity we have

I1(n) ≤ E

( kn∑
k=1

|e−f(a−1
n Sk

rn
) − e−f(a−1

n Sk
rn

−a−1
n Sk

rn, ln
)|
)

= knE
∣∣e−f(a−1

n Srn ) − e−f(a−1
n Srn−ln )

∣∣
= knE

∣∣e−f(a−1
n Srn )(1− ef(a

−1
n Srn )−f(a−1

n Srn−ln ))
∣∣

≤ knE
∣∣1− ef(a

−1
n Srn )−f(a−1

n Srn−ln )
∣∣.

It can be shown that for any t > 0 there exists a constant C = C(t) > 0 such that

|1− e−x| ≤ C|x|, for all |x| < t.

Since for all x, y ∈ E, |f(x) − f(y)| < 2M , there exists a positive constant C such
that

I1(n) ≤ CknE|f(a−1
n Srn)− f(a−1

n Srn−ln)|. (4.3)

Further,

E|f(a−1
n Srn)− f(a−1

n Srn−ln)|

= E
[
|f(a−1

n Srn)− f(a−1
n Srn−ln)|1{a−1

n |Srn−ln |>r/2}1{a−1
n |Srn |>r/4}

]
+ E

[
f(a−1

n Srn−ln)1{a−1
n |Srn−ln |>r/2}1{a−1

n |Srn |≤r/4}
]

+ E
[
f(a−1

n Srn)1{a−1
n |Srn−ln |≤r/2}1{a−1

n |Srn |>r}
]

≤ E
[
|f(a−1

n Srn)− f(a−1
n Srn−ln)|1{a−1

n |Srn−ln |>r/2}1{a−1
n |Srn |>r/4}

]
+ MP

(
|Sln |
an

>
r

4

)
+MP

(
|Sln |
an

>
r

2

)
. (4.4)

Since the set S = {x ∈ E : |x| > r/4} is relatively compact and any continuous
function on a compact set is uniformly continuous, it follows that for any ϵ > 0 there
exists δ > 0 such that |f(x)− f(y)| < ϵ for all x, y ∈ S such that ρ(x, y) ≤ δ, where
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ρ is the metric on E defined in (2.1). If |x| > r/2, |y| > r/4 and sign(x) = sign(y),
then x, y ∈ S and

ρ(x, y) =
||x| − |y||

|xy|
≤ 8

r2
|x− y|. (4.5)

Define

gn(x, y) = |f(a−1
n x)− f(a−1

n y)|.

Let ϵ > 0 be arbitrary. Then

E
[
|f(a−1

n Srn)− f(a−1
n Srn−ln)|1{a−1

n |Srn−ln |>r/2}1{a−1
n |Srn |>r/4}

]
= E

[
gn(Srn , Srn−ln)1{a−1

n |Srn−ln |>r/2, a−1
n |Srn |>r/4}1{sign(Srn−ln ) ̸=sign(Srn )}

]
+ E

[
gn(Srn , Srn−ln)1{a−1

n Srn−ln>r/2, a−1
n Srn>r/4}1{a−1

n |Srn−Srn−ln |≤δr2/8}
]

+ E
[
gn(Srn , Srn−ln)1{a−1

n Srn−ln<−r/2, a−1
n Srn<−r/4}1{a−1

n |Srn−Srn−ln |≤δr2/8}
]

+ E
[
gn(Srn , Srn−ln)1{a−1

n Srn−ln>r/2, a−1
n Srn>r/4}1{a−1

n |Srn−Srn−ln |>δr2/8}
]

+ E
[
gn(Srn , Srn−ln)1{a−1

n Srn−ln<−r/2, a−1
n Srn<−r/4}1{a−1

n |Srn−Srn−ln |>δr2/8}
]
.

By stationarity and relation (4.5) this is bounded above by

≤ 2MP

(
|Srn − Srn−ln |

an
>

3r

4

)
+ E

[
gn(Srn , Srn−ln)1{a−1

n Srn−ln>r/2}1{a−1
n Srn>r/4}1{ρ(a−1

n Srn , a−1
n Srn−ln )≤δ}

]
+ E

[
gn(Srn , Srn−ln)1{a−1

n Srn−ln<−r/2}1{a−1
n Srn<−r/4}1{ρ(a−1

n Srn , a−1
n Srn−ln )≤δ}

]
+ 4MP

(
|Srn − Srn−ln |

an
>

δr2

8

)

≤ 2MP

(
|Sln |
an

>
3r

4

)
+ ϵP

(
|Srn |
an

>
r

4

)
+ 4MP

(
|Sln |
an

>
δr2

8

)
.

Therefore, from (4.3) and (4.4) we obtain

I1(n) ≤ 8MCknP

(
|Sln |
an

> γ

)
+ ϵCknP

(
|Srn |
an

>
r

4

)
, (4.6)

where γ = min{r/4, δr2/8} > 0.
Recall that, since X1 is regularly varying with index α ∈ (0, 2) it holds that

P(|X1| > x) = x−αL(x) for any x > 0, where L( · ) is a slowly varying function. It
also holds that an = n1/αL′(n), where L′( · ) is a slowly varying function. Hence
taking an arbitrary 0 < s < min{α, α(1− t− q − αq)/(1− αq)}, we have

knP

(
|Sln |
an

> γ

)
≤ knlnP(|X1| > γan/ln) = knln

(
γan
ln

)−α

L

(
γan
ln

)
= knln

(
γan
ln

)s−α

· cn,
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where

cn =

(
γan
ln

)−s

L

(
γan
ln

)
.

Since an/ln → ∞ as n → ∞, by Proposition 1.3.6 in Bingham et al. [5] we have
that cn → 0 as n → ∞. Further

knln

(
γan
ln

)s−α

=
kn(ln)

1+α−s

γα−saα−s
n

=

(
ln
nq

)1+α−s

· kn
nt

· nt(nq)1+α−s

γα−sn(α−s)/α(L′(n))α−s

≤
(
ln
nq

)1+α−s

· kn
nt

· 1

γα−snp(L′(n))α−s

where p = (α − s)/α − t− (1 + α − s)q. It can easily be checked that p > 0. This
and the fact that ln ∼ nq and kn = o(nt), by Proposition 1.3.6 in Bingham et al.
[5], imply that knln(γan/ln)

s−α → 0 as n → ∞. Hence

knP

(
|Sln |
an

> γ

)
→ 0 as n → ∞. (4.7)

From relation (3.2) we obtain that, as n → ∞,

knP

(
|Srn |
an

>
r

4

)
→ ν({x ∈ E : |x| > r/4}) =: A < ∞. (4.8)

Thus from relations (4.6), (4.7) and (4.8) we obtain

lim sup
n→∞

I1(n) ≤ ACϵ,

and since ϵ > 0 is arbitrary, we have

lim
n→∞

I1(n) = 0. (4.9)

From the assumption that (Xn) is strongly mixing with exponential rate it follows
that knαln+1 → 0 as n → ∞, and hence from (4.1) we obtain

lim
n→∞

I2(n) = 0. (4.10)

Using again Lemma 4.3 in Durrett [8] it follows

I3(n) ≤ knE
∣∣e−f(a−1

n Srn ) − e−f(a−1
n Srn−ln )

∣∣.
Repeating the same procedure as for I1(n) we get

lim
n→∞

I3(n) = 0. (4.11)

Taking into account relations (4.9), (4.10) and (4.11), from (4.2) we obtain that, as
n → ∞,

E exp

(
−

kn∑
k=1

f(a−1
n Sk

rn)

)
−
(
Eexp(−f(a−1

n Srn))

)kn

→ 0,

and this concludes the proof. �

Proposition 4.2. Suppose (Xn) is a strictly stationary sequence of regularly vary-
ing random variables with index of regular variation α ∈ (1, 2), and (an) a sequence
of positive real numbers such that nP(|X1| > an) → 1 as n → ∞. Let (rn) be
sequence of positive integers such that rn → ∞ as n → ∞. If rn = o(ns) for some
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0 < s < 2/α − 1, and the sequence (ρn) of ρ–mixing coefficients of (Xn) decreases
to zero as n → ∞ and ∑

j≥0

ρ⌊2j/3⌋ < ∞, (4.12)

then Condition 3.1 holds.

Proof. Let n ∈ N and u > 0 be arbitrary. Define

Zk = Zk(u, n) =
Sk
rn

an
1{ |Sk

rn
|

an
≤u

} − E
(Sk

rn

an
1{ |Sk

rn
|

an
≤u

}), k ∈ N.

Take an arbitrary δ > 0 and as in the proof of Theorem 3.2 define

I(u, n) = P

[
max

1≤j≤kn

∣∣∣∣ j∑
k=1

Zk

∣∣∣ > δ
]
.

Corollary 2.1 in Peligrad [15] then implies

I(u, n) ≤ δ−2C exp
(
8

⌊log2 kn⌋∑
j=0

ρ̃⌊2j/3⌋

)
knE(Z

2
1 ),

where (ρ̃k) is the sequence of ρ-mixing coefficients of (Zk) and C is some positive
constant (here we put log2 0 := 0). Now standard calculations show that for any
k ∈ N,

ρ̃k ≤ ρ(k−1)rn+1,

and since the sequence (ρk) is non-increasing, we have ρ̃k ≤ ρk. From this and
assumption (4.12) we obtain that

I(u, n) ≤ CLδ−2 knE(Z
2
1 ), (4.13)

for some positive constant L. Further we have

E(Z2
1 ) ≤ E

( |Srn |2

a2n
1{ |Srn |

an
≤u

}) = E
( |Srn |2

a2n
1{ |Srn |

an
≤u

}1{∩rn
i=1{|Xi|≤uan}}

)
+ E

( |Srn |2

a2n
1{ |Srn |

an
≤u

}1{∪rn
i=1{|Xi|>uan}}

)

≤ E
(∣∣∣ rn∑

i=1

Xi

an
1{ |Xi|

an
≤u

}∣∣∣2)+ u2P
( rn∪

i=1

{|Xi| > uan}
)
. (4.14)

Note that

E
(∣∣∣ rn∑

i=1

Xi

an
1{ |Xi|

an
≤u

}∣∣∣2)

= E
(∣∣∣ rn∑

i=1

Xi1{|Xi|≤uan} − E(Xi1{|Xi|≤uan})

an
+

rn∑
i=1

E
(Xi

an
1{ |Xi|

an
≤u

})∣∣∣2)
= E(I21 ) + 2E(I1)I2 + I22 , (4.15)

where

I1 =

rn∑
i=1

Xi1{|Xi|≤uan} − E(Xi1{|Xi|≤uan})

an
and I2 =

rn∑
i=1

E
(Xi

an
1{ |Xi|

an
≤u

}).
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Since I1 is a sum of centered random variables, by Theorem 2.1 in Peligrad [15] we
have

E(I21 ) ≤ C exp
(
8

⌊log2 rn⌋∑
j=0

ρ⌊2j/3⌋(n, u)
)
rnE

(X2
1

a2n
1{ |X1|

an
≤u

}), (4.16)

for all n ∈ N, where (ρj(n, u))j is the sequence of ρ-mixing coefficients of
(Xj

an
1{ |Xj |

an
≤u

}−
E
(Xj

an
1{ |Xj |

an
≤u

}))
j
. Since the function f = fn,u : R → R defined by

f(x) =
x

an
1{ |x|

an
≤u

} − E
(X1

an
1{ |X1|

an
≤u

})
is measurable, it follows that

σ
(Xj

an
1{ |Xj |

an
≤u

} − E
(Xj

an
1{ |Xj |

an
≤u

})) ⊆ σ(Xj)

(see Theorem 4 in Chow and Teicher [6]). From this we immediately obtain
ρj(n, u) ≤ ρj , for all j, n ∈ N and u > 0. Thus from (4.16), by a new applica-
tion of assumption (4.12), we get

E(I21 ) ≤ CLrnE
(X2

1

a2n
1{ |X1|

an
≤u

}). (4.17)

Note also E(I1) = 0. Since α ∈ (1, 2) it holds that E|Xi| < ∞. Hence

I22 ≤ M
r2n
a2n

, (4.18)

for some positive constant M . Now relations (4.14), (4.15), (4.17) and (4.18) imply

knE(Z
2
1 ) ≤ CLknrnE

(X2
1

a2n
1{ |X1|

an
≤u

})+M
knr

2
n

a2n
+ u2knrnP (|X1| > uan)

= u2 · knrn
n

· nP(|X1| > uan) ·
[
CL

E[X2
11{|X1|≤uan}]

u2a2nP (|X1| > uan)
+ 1

]
+M

knr
2
n

a2n
.

From this, using the regular variation property of X1, Karamata’s theorem and the
fact that knrn/n → 1 and

knr
2
n

a2n
=

knrn
n

· rn
ns

· 1

n2/α−1−s(L′(n))2
→ 0

as n → ∞ (here we used again the representation an = n1/αL′(n), with L′( · ) being
a slowly varying function at ∞) we obtain

lim sup
n→∞

knE(Z
2
1 ) ≤ u2−α

( CLα

2− α
+ 1

)
.

Letting u ↓ 0, it follows that limu↓0 lim supn→∞ knE(Z
2
1 ) = 0. Therefore, from

(4.13), we get

lim
u↓0

lim sup
n→∞

I(u, n) = 0,

and Condition 3.1 holds. �
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Remark 4.1. A careful analysis of the proof of Proposition 4.2 shows that the addi-
tional condition on the sequence (rn) (namely, rn = o(ns) for some 0 < s < 2/α−1)
can be dropped if we assume that the random variablesXi are symmetric, since then
we can directly apply Theorem 2.1 of Peligrad [15] to E(|

∑rn
i=1 a

−1
n Xi1{|Xi|≤uan}|2),

and hence we do not need to introduce I2 (to which the additional condition on rn
is related). This also holds for α = 1.
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[18] Rvačeva, E. L., On domains of attraction of multi-dimensional distributions. In: Select.
Transl. Math. Statist. and Probability Vol. 2, pp. 183–205. Am. Math. Soc., Providence,
1962.

[19] Samur, J. D., Convergence of sums of mixing triangular arrays of random vectors with sta-

tionary rows, Ann. Probab. 12 (1984), 390–426.
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