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Abstract. Let G = Sp4/k be the k-split symplectic group of k-rank 2, where k is a totally real
number field. In this paper we compute the Eisenstein cohomology of G with respect to any finite–
dimensional, irreducible, k-rational representation E of G∞ = Rk/QG(R), where Rk/Q denotes the
restriction of scalars from k to Q. The approach is based on the work of Schwermer regarding
the Eisenstein cohomology for Sp4/Q, Kim’s description of the residual spectrum of Sp4, and the
Franke filtration of the space of automorphic forms. In fact, taking the representation theoretic
point of view, we write, for the group G, the Franke filtration with respect to the cuspidal support,
and give a precise description of the filtration quotients in terms of induced representations. This
is then used as a prerequisite for the explicit computation of the Eisenstein cohomology. The
special focus is on the residual Eisenstein cohomology. Under a certain compatibility condition for
the coefficient system E and the cuspidal support, we prove the existence of non–trivial residual
Eisenstein cohomology classes, which are not square–integrable, that is, represented by a non–
square–integrable residue of an Eisenstein series.

Introduction

General Background. The cohomology of an arithmetic congruence subgroup Γ of a connected,
reductive algebraic k-group G, where k is a number field, is isomorphic to a subspace of the
cohomology of the space of automorphic forms. This identification was conjectured by Borel and
Harder and first established in a conceptual way by Harder in the case of groups of rank one in
[Har73], [Har75] and [Har87]. In all these works he relates the cohomology of Γ and the cohomology
of the space of automorphic forms using the fact that the cohomology of Γ is isomorphic to the
cohomology of a certain compact space Γ\X, which is an orbifold with orbifold boundary ∂(Γ\X).

More precisely, let G∞ = Rk/QG(R) be the Lie group of real points of the algebraic Q-group
Rk/QG obtained from G by the restriction of scalars from k to Q. Let K∞ be a maximal compact
subgroup of G∞, and AG,∞ = Rk/QAG(R) the real points of the restriction of scalars from k to Q
of a maximal k-split central torus AG of G. Then X = G∞/K∞A◦

G,∞ is the Riemannian symmetric

space associated to the Lie group G∞ = Rk/QG(R) and K∞A◦
G,∞. The aforementioned space Γ\X

is then the Borel–Serre compactification of the quotient Γ\X (locally symmetric if Γ is torsionfree).
Let E be a finite–dimensional, complex, k-rational representation of G∞. For simplicity, assume

that AG acts trivially on E. It naturally defines a sheaf Ẽ on Γ\X and let H∗(Γ\X, Ẽ) (respectively

H(∂(Γ\X), Ẽ) ) denote the corresponding sheaf cohomology spaces.
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With this framework in place, Harder showed in the case of groups of rank one (cf. [Har73]) that

one can construct the “cohomology at infinity”, i.e., a subspace of H∗(Γ\X, Ẽ) isomorphic to the
image of the natural restriction map

H∗(Γ\X, Ẽ) → H∗(∂(Γ\X), Ẽ),

by means of Eisenstein series, hence by a special type of automorphic forms. The “cohomology

at infinity” forms a natural complement within H∗(Γ\X, Ẽ) to the kernel of the above restriction
map, which is itself the cohomology of a space of square–integrable automorphic forms. Therefore,

all cohomology classes in H∗(Γ\X, Ẽ) are representable by automorphic forms.

In the early 90’s, J. Franke finally proved in [Fra98] that such an identification of H∗(Γ\X, Ẽ)
with a subspace of the cohomology of the space of automorphic forms can also be given for an
arbitrary connected, reductive algebraic group G. In order to use automorphic forms most effec-
tively, it turns out that it is useful to translate the above picture into the setting of representation
theory over groups of adèlic points of G. To this end, let A be the ring of adèles of k, Af the finite
adèles, g∞ the Lie algebra of G∞. Let A be the space of automorphic forms on G(A), that is, the
space of smooth functions of moderate growth on G(A) that are left invariant for G(k) and AG(R)◦,
finite for the action of a fixed maximal compact subgroup of G(A), and annihilated by an ideal of
finite codimension in the center of the universal enveloping algebra of the complexification of g∞,
cf. [BJ]. It is a (g∞,K∞, G(Af ))-module and its relative Lie algebra cohomology with respect to
E is a G(Af )-module

Hq(G,E) := Hq(g∞,K∞,A⊗ E)

called the automorphic cohomology of G/k with respect to E.
As shown in [Fra98], every automorphic form on G can be obtained as the sum of principal values

of derivatives of the Eisenstein series attached to a cuspidal or residual representation of a Levi
factor of a parabolic k-subgroup of G. Since every residual automorphic representation of a Levi
factor is obtained as a residue of a cuspidal Eisenstein series attached to a cuspidal automorphic
representation π of a Levi factor L of another parabolic k-subgroup P of G, we may consider the
cuspidal support of an automorphic form. Here we allow the case P = G which gives the cuspidal
automorphic forms. Having fixed an ideal J of finite codimension inside the center of the universal
enveloping algebra of g∞,C = g∞⊗RC, let AJ be the space of those automorphic forms annihilated
by some power of J . The discussion above gives rise to a direct sum decomposition of AJ into

AJ =
⊕
{P}

AJ (P ) =
⊕
{P}

⊕
φ

AJ (P,φ)

along the associate classes of parabolic k-subgroups {P} and the various cuspidal supports φ. For
a precise definition of the spaces AJ (P,φ) see [FS], Section 1. The main tool used to establish this
important result is a certain kind of filtration of AJ , introduced by Franke in [Fra98]. If Am

J (P )
denotes the m-th filtration step of the summand AJ (P ), he showed that each consecutive quotient
Am

J (P )/Am+1
J (P ) can be described in terms of induced representations from the discrete spectrum

of the Levi subgroups containing the one of the given P . More precisely, Franke in fact proved
in [Fra98] that each consecutive quotient as above is spanned by main values of the derivatives of
cuspidal and residual Eisenstein series.
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If we choose J to be the ideal annihilating the dual representation of E, this moreover induces
a decomposition of automorphic cohomology

Hq(G,E) =
⊕
{P}

⊕
φ

Hq(g∞,K∞,AJ (P,φ)⊗ E).

As AJ (G) is the space of cuspidal automorphic forms in AJ , one calls Hq(g∞,K∞,AJ (G) ⊗ E)
the space of cuspidal cohomology. Its natural complement in the above decomposition,

Hq
Eis(G,E) :=

⊕
{P}̸={G}

⊕
φ

Hq(g∞,K∞,AJ (P,φ)⊗ E)

is called Eisenstein cohomology. Finally, it is a consequence of Franke’s aforementioned theorem
that taking an appropriate open compact subgroup Cf of G(Af ), the cohomology of Γ\X appears
as a direct summand in the Cf -invariant points of H

q(G,E). This phenomenon can be rephrased
by saying that regarding Hq(G,E) one considers the cohomology of all congruence subgroups at
the same time. Moreover, this proves that the cohomology of an arithmetic congruence subgroup
Γ of a connected, reductive algebraic k-group G is isomorphic to a subspace of the cohomology of
the space of automorphic forms.

The contents of this article. In this paper we study the Eisenstein cohomology of the k-split
symplectic group G = Sp4/k of k-rank 2, where k is a totally real number field. We rely on:

(a) the treatment of the case Sp4 over Q done by Schwermer in [Sch86] and [Sch95], in par-
ticular, the points of evaluation of the Eisenstein series that may possibly give non–trivial
cohomology classes are given in that work,

(b) the description of the residual spectrum of Sp4 over arbitrary number field given by Kim
in [Kim],

(c) the filtration of the spaces AJ (P ) used by Franke in the proof of his result in [Fra98].

In the first part of this article we summarize the notation and conventions used in the paper
and we give the necessary theoretical background concerning automorphic forms, Eisenstein series
and the above mentioned decomposition along the cuspidal support for the case Sp4/k. Following
Harder’s idea for GL2/k, see [Har87], Sect. 2.8, we also prove that there is no Eisenstein cohomol-
ogy supported in the Borel subgroup, unless the highest weight of the algebraic E has repeating
coordinates in the various field embeddings σ : k ↪→ C (cf. Proposition 2.1), whence we take this
as a standing assumption.

We then recall the Franke filtration and make it concrete for the case of Sp4/k. As already
mentioned, the evaluation points we must consider are the same as those in [Sch86] and [Sch95],
where the case Sp4 over Q is treated. The residual spectrum of Sp4 over k, described in [Kim], is the
starting point of the filtration. This finally leads to an explicit description from the representation
theoretic point of view of the consecutive quotients Am

J (P,φ)/Am+1
J (P,φ) and the length of the

filtration in dependence of the parabolic P and the cuspidal support φ in question, which is the
content of our Theorems 3.3 and 3.6. As a next step, we calculate the cohomology of all the
consecutive quotients of the filtration Am

J (P,φ)/Am+1
J (P,φ) with respect to an arbitrary coefficient

system E (cf. Propositions 4.2– 4.6). In particular, we describe explicitly the G(Af )-module
structure of these cohomology spaces. This completes the preparatory work we need.
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The second part of this article contains the main results of this paper. By analyzing the
long exact sequences in cohomology defined by the short exact sequences coming from form-
ing the filtration quotients Am

J (P,φ)/Am+1
J (P,φ) we can almost fully determine the summands

Hq(g∞,K∞,AJ (P,φ)⊗ E) in the Eisenstein cohomology of G indexed by a proper standard par-
abolic k-subgroup P and a cuspidal support φ. The main theorems are Theorem 5.1 (dealing with
the maximal parabolic case) and Theorem 5.4 (describing the minimal parabolic case). Necessary
and sufficient conditions for the existence of Eisenstein cohomology classes representable by residues
of Eisenstein series are given in our Corollaries 5.2 and 5.6 for the case of a maximal and minimal
parabolic subgroup, respectively. In particular, we would like to draw the reader’s attention to
Corollary 5.6, which says that, under a compatibility condition on the highest weight of the coef-
ficient module E and the cuspidal support, there exist non–trivial Eisenstein cohomology classes,
which can be represented by non–square integrable residues of Eisenstein series attached to the
minimal parabolic subgroup. The compatibility condition says that a certain filtration step in the
Franke filtration is non-trivial. These residues are themselves obtained from poles of order one,
i.e., of non–maximal order, of some Eisenstein series whose cuspidal support is a character of the
minimal parabolic subgroup of a certain special form depending on E. As Harder pointed out to
the second named author, he constructed classes of this internal nature for GLn. For symplectic
groups, however, according to our knowledge, classes of this type have not been found, yet, whence
we think of this result as one of the interesting new features compared to existing literature on this
subject (cf. [Sch95] for Sp4 over k = Q or [Har93]).

Finally, we analyze the case of the trivial representation more closely. As we do so, we obtain
an improvement of Borel’s result on the injectivity and bijectivity of the Borel map Jq in the case
Sp4/k (cf. Section 6), where k is a totally real number field of degree n over Q. His general theorem
implies for our case that Jq is injective for all degrees q ≤ n− 1 and an isomorphism for q = 0, 1.
Our Corollary 6.1 improves these bounds. Namely, Jq is injective (at least) up to the degree 3n, and
it is an isomorphism up to the degree 2n− 1. However, as the referee pointed out, this result also
follows from the results regarding the Borel map obtained in the diploma thesis [KR] of Kewenig
and Rieband. In their thesis they study the Borel map following the approach of Franke in [Fra08],
and describe explicitly the kernel of J∗ in the case of the symplectic group of arbitrary rank over
any number field. Their result in our case implies that the image of the Borel map is non–trivial in
higher degrees than in our Corollary 6.1. Since we were not aware of this thesis while writing this
paper, and as it is still unpublished, we follow a suggestion of the referee to include a summary of
their result made explicit in our case.

Acknowledgments. We are grateful to Joachim Schwermer for useful discussions, and inviting
the first named author to the Erwin Schrödinger Institute, where most of the work on this paper
was done. We would like to thank the anonymous referee for making us aware of the diploma thesis
[KR]. We are also grateful to Christian Krattenthaler for his help with combinatorial questions.
Finally, we thank the second named author’s friend Jakub Orbán.

1. Notation

1.1. Number field. Let k be a totally real number field with n archimedean places, kv its com-
pletion at the place v, and A = Ak its ring of adèles. Let S∞ be the set of archimedean (i.e., real)
places and Sf the set of non–archimedean places of k. Let Af be the finite adèles.



EISENSTEIN COHOMOLOGY OF Sp4 5

1.2. Symplectic group of rank two and parabolic data. Let G = Sp4/k be the simple k-split
algebraic k-group of k-rank two and Cartan type C2. Let P0 be a fixed Borel subgroup of G/k.
It is a minimal parabolic k-subgroup of G with Levi subgroup L0 and unipotent radical N0. We
assume that L0 is realized as the group of diagonal matrices diag(a1, a2, a

−1
1 , a−1

2 ).

Now, define for t = diag(a1, a2, a
−1
1 , a−1

2 ) as usual ei(t) = ai. We may assume that ∆k = {α1 =
e1 − e2, α2 = 2e2} is the set of simple k-roots of G with respect to L0 corresponding to our choice
of P0, and Ψ+

k = {α1, α2, α3 = e1 + e2, α4 = 2e1} is the set of positive k-roots.
Let Pi = LiNi, i = 1, 2, be the (maximal) parabolic k-subgroup corresponding to the root αi,

meaning that αi is the only simple k-root of G vanishing identically on the maximal central k-split
torus Ai of Li, i = 1, 2. Hence, L1

∼= GL2 and L2
∼= GL1 × SL2 and Ai, i = 1, 2, is isomorphic to

GL1/k, realized in the following way: A1 consists of diagonal matrices diag(a, a, a−1, a−1), while
A2 consists of diagonal matrices diag(a, 1, a−1, 1). For sake of uniformness of notation, we will also
write A0 for a maximal k-split central torus in L0.

For a k-algebraic group, let X∗(H) (resp. X∗(H)) denote the group of k-rational characters
(resp. co-characters) of H. We set ǎPi = X∗(Ai) ⊗Z R and aPi = X∗(Ai) ⊗Z R. For i = 1, 2,
the inclusion Ai ↪→ A0 defines inclusions aPi ↪→ aP0 and ǎPi ↪→ ǎP0 and therefore decompositions

aP0 = aPi ⊕ aPi
0 and ǎP0 = ǎPi ⊕ ǎPi

0 . We will also use a
Pj

Pi
to denote the intersection of aPi and a

Pj

0

in aP0 and use the analogous notation ǎ
Pj

Pi
.

Having fixed positivity on the set of roots defines open positive chambers ǎ+Pi
with closures

denoted by ǎ+Pi
. The cone dual to the positive Weyl chamber ǎ+Pi

is denoted by +ǎPi and its closure
+ǎPi .

We write ∆(Pi, Ai) for the set of weights with respect to Ai of the adjoint action of Pi on Ni.
As usual, we denote ρPi the half sum of these weights. In particular, the half sum of positive roots
ρ is then ρ = ρ0 = ρP0 .

1.3. Weyl group. Let w1 be the simple reflection with respect to α1 and w2 with respect to α2.
Then the k-Weyl group of G with respect to T is

W = Wk = {id, w1, w2, w1w2, w2w1, w1w2w1, w2w1w2, w1w2w1w2}.
The absolute Weyl group WC of G(k⊗C) is then the direct product of n copies of W . We will also
need the set of Kostant representatives for Pi: If i = 1, 2 it is defined as WPi = {w ∈ W |w−1(αi) >
0}, and for i = 0 we simply have WP0 = W . Note that WP1 = {id, w2, w2w1, w2w1w2} and
WP2 = {id, w1, w1w2, w1w2w1}.

1.4. Lie subgroups and Lie algebras. Fix a maximal compact subgroup K =
∏

v Kv = K∞Kf

of G(A) in good position with respect to P0. Denote by Rk/Q(.) the restriction of scalars from
k to Q. As usual we write H∞ = Rk/Q(H)(R) for the product

∏
v∈S∞

H(R) of the groups of
real points of an algebraic k-group H. Then G∞ ∼= Sp4(R)n and K∞ is a maximal compact
subgroup of the semi–simple Lie group G∞. It is isomorphic to the product of n copies of U(2).
If Q is any Lie subgroup of G∞, we write the same but fractional letter (i.e., q) for its real Lie
algebra and qC = q⊗R C for its complexification. In particular, in this notation, aPi , i = 0, 1, 2, is
isomorphic to the Lie algebra of Ai(R) = Ai(kv) for every archimedean place v ∈ S∞ and aPi,C is
its complexification. We will sometimes also write aPi,σ to stress at which place v ∈ S∞, identified
with the corresponding field embedding σ : k ↪→ C, we look at. Furthermore, ǎPi is in a natural way
isomorphic to the dual space of aPi . As Ai(R)◦ can be diagonally embedded into Li,∞ and G∞, we
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can also view aPi (resp. ǎPi) as being diagonally embedded into the Lie algebras li,∞ and g∞ (resp.
their dual spaces). In this setup, if we write Mi,∞ =

∩
χ∈X∗(Li)

ker(|χ|), then we can decompose the

Levi factors Li,∞ = Mi,∞Ai(R)◦, i = 0, 1, 2. Back to the case of a general Lie subgroup Q of G∞,
we write Z(q) for the center of the universal enveloping algebra U(qC) and KQ for the intersection
K∞ ∩Q.

1.5. Coefficient system. Throughout the paper E = EΛ denotes an irreducible, finite–dimensional
representation of G∞ on a complex vector space determined by its highest weight Λ. We can write
Λ = ((Λ1)σ, (Λ2)σ)σ, where σ runs through the set of field embeddings k ↪→ R and (Λj)σ denotes
the coordinate with respect to the functional ej viewed on the copy of aP0,C corresponding to σ.
We abbreviate Λσ = ((Λ1)σ, (Λ2)σ) (so that Λ = (Λσ)σ). The highest weight, being algebraically
integral and dominant, implies that (Λ1)σ, (Λ2)σ ∈ Z and (Λ1)σ ≥ (Λ2)σ ≥ 0. We will always
assume that E is the complexification of an algebraic representation of G/k. Furthermore, we will
assume that the coordinates of Λ are repeating in the field embeddings, i.e., Λσ = Λτ for all field
embeddings σ, τ . This will turn out to be no severe restriction (cf. Prop. 2.1), since for all coef-
ficient systems E with a highest weight having non-repeating coordinates, the space of Eisenstein
cohomology supported in the Borel subgroup necessarily vanishes.

2. Automorphic Forms and Eisenstein Cohomology

This section recalls the decomposition of the space of automorphic forms along the cuspidal
support, and the corresponding decomposition in cohomology. Although this is well–known, it is
included here in order to fix the notation. We will also prove that Eisenstein cohomology supported
in the Borel subgroup is trivial, unless the coordinates of Λ are repeating in the field embeddings
σ : k ↪→ C.

2.1. Automorphic forms. Let A be the space of automorphic forms on G(A). Recall that a
smooth complex function on G(A) is an automorphic form if it is left G(k)-invariant, K-finite,
annihilated by an ideal of finite codimension in Z(g∞), and of moderate growth, cf. [BJ]. Thus,
automorphic forms in A may be viewed as functions on G(k)\G(A).

As we are only interested in automorphic forms which have non–trivial (g∞,K∞)-cohomology
with respect to the coefficient system E, we take J to be the ideal of finite codimension in Z(g∞)
annihilating the dual representation Ě. Then, we define AJ to be the subspace of A consisting
of automorphic forms annihilated by some power of J . It is a (g∞,K∞;G(Af ))-module. Only
such automorphic forms may represent a non–trivial cohomology class with respect to E, cf. [FS,
Rem. 3.4].

2.2. Induced representations. Let Π be an automorphic representation of the Levi factor Li(A)
of a standard proper parabolic k-subgroup Pi, where i = 0, 1, 2, such that the vector space of Π is the
space of smooth K-finite functions in an irreducible constituent of the discrete spectrum of Li(A).
Observe that we use here a standard convention: we say that Π is an automorphic representation of
Li(A), although it is not a representation of Li(A) at all, but only an (li,∞,KLi,∞ ;Li(Af ))-module.

Let λ ∈ ǎPi,C. Then λ gives rise to a character of Li(A) by

l 7→ exp⟨λ,HPi(l)⟩,
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where HPi : G(A) → aPi is the standard height function on G(A) (cf., e.g., [Fra98, p. 185]). Then
we define

Ii(λ,Π) = Ind
G(A)
Pi(A) (Π⊗ exp⟨λ,HPi(·)⟩) ,

where the induction is normalized in such a way that it preserves unitarizability.
Let WΠ denote the space of smooth K-finite functions on Li(k)Ni(A)\G(A) such that for any

g ∈ G(A) the function fg(l) = f(lg) of l ∈ Li(A) belongs to the space of Π. Note that every
irreducible constituent of the discrete spectrum of Li(A) appears with multiplicity one (see [JL]
for i = 1 and [Ram] for i = 2). Then, the space of the induced representation Ii(λ,Π) may be
identified with the space of functions of the form

g 7→ fλ(g) = f(g) exp⟨λ+ ρPi ,HPi(g)⟩,

where f ranges over all functions in WΠ.
The tensor product WΠ ⊗ S(ǎPi,C) of WΠ with the symmetric algebra of ǎPi,C can be endowed

with the structure of a (g∞,K∞;G(Af ))-module as in [Fra98, p. 218 and p. 234] and [LS, p. 155].
Since we are just working with the normalized parabolic induction instead of WΠ, this gives rise to
a (g∞,K∞;G(Af ))-module structure on

Ii(λ,Π)⊗ S(ǎPi,C)

for a given λ.
Finally, since Ii(λ,Π) decomposes into a restricted tensor product of local induced representa-

tions, we have

Ii(λ,Π) ∼= Ii(λ,Π∞)⊗ Ii(λ,Πf ),

where Π∞ and Πf are the infinite and finite part of Π, respectively, and

Ii(λ,Π∞) = Ind
(g∞,K∞)
(li,∞,KLi,∞ ) (π∞ ⊗ exp∞⟨λ,HPi(·)⟩) ,

Ii(λ,Πf ) = Ind
G(Af )

Pi(Af )

(
Πf ⊗ expf ⟨λ,HPi(·)⟩

)
,

and the induction is normalized.

2.3. Eisenstein series. Let Π be a discrete spectrum representation of Li(A) as above. Let f be
a function in WΠ, and for any λ ∈ ǎPi,C let fλ be the function in the space of Ii(λ,Π) attached to
f as above. Then we define the Eisenstein series, at least formally, as

E(g, fλ) =
∑

γ∈Pi(k)\G(k)

fλ(γg) =
∑

γ∈Pi(k)\G(k)

f(γg) exp⟨λ+ ρPi ,HPi(γg)⟩.

The series converges absolutely and locally uniformly in g for λ sufficiently regular (i.e. deep enough
in the positive Weyl chamber defined by P ). It can be analytically continued to a meromorphic
function on all of ǎPi,C. Away from its poles it defines an automorphic form on G(A). For a proof
of these facts, see Lemma 4.1 and Lemma 6.1 in [Lan] or Section II.1.5, Section IV.1.8, Section
IV.3 and Section IV.4 in [MW].
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2.4. Decomposition along the cuspidal support. There is a decomposition of the space of
automorphic forms along their cuspidal support, which induces a decomposition of AJ , cf. [FS,
Sect. 1], [MW, Thm. III.2.6]. We denote by {P} the associate class of parabolic k-subgroups of G
represented by a parabolic k-subgroup P of G. In our case, there are four such classes represented
by P0, P1, P2, G. As a first step, one has a (g∞,K∞;G(Af ))-module decomposition

AJ = AJ (P0)
⊕

AJ (P1)
⊕

AJ (P2)
⊕

AJ (G),

where for an associate class of parabolic k-subgroups represented by P the space AJ (P ) consists
of automorphic forms in AJ which are negligible along all parabolic k-subgroups not belonging
to {P}. Here negligible along a parabolic k-subgroup Q means that the constant term along Q is
orthogonal to the space of cuspidal automorphic forms on the Levi factor of Q. Observe that AJ (G)
is the space of cuspidal automorphic forms in AJ , and since we are interested in the Eisenstein
cohomology (see Sect. 5), we concentrate on the remaining three subspaces corresponding to classes
of proper parabolic k-subgroups.

For the second step in decomposition, let φ = (φP )P∈{Pi} be the associate class of unitary
cuspidal automorphic representations of the Levi factors LP (A) of parabolic k-subgroups P ∈ {Pi},
trivial on the diagonally embedded group AP (R)◦, and satisfying conditions listed in [FS, Sect. 1.2].
The set of all such φ for a class {Pi} is denoted by Φi. Then there is a (g∞,K∞;G(Af ))-module
decomposition

AJ (Pi) =
⊕
φ∈Φi

AJ (Pi, φ),

where AJ (Pi, φ) is defined as follows. The conditions listed in [FS, Sect. 1.2] ensure that the
associate class φ ∈ Φi is obtained by conjugating a single unitary cuspidal automorphic represen-
tation π of Li(A), and that the infinitesimal character of its archimedean component is related in
a certain way to the infinitesimal character of Ě. Then the space AJ (Pi, φ) may be defined in two
equivalent ways, cf. [FS, Sect. 1]. Roughly speaking, it is spanned by all residues and main values
of the derivatives of the Eisenstein series attached to π at certain values of its complex parameter.
The condition on the infinitesimal character of the archimedean component of π ensures that the
automorphic forms so obtained are indeed annihilated by a power of J .

2.5. Eisenstein cohomology. The cohomology of a congruence subgroup of G∞, with respect to
a finite–dimensional representation E, may be interpreted in terms of its automorphic spectrum.
Passing to the inductive limit over all congruence subgroups, its study is reduced to the study
of automorphic cohomology H∗(G,E) of G with respect to E. It is defined as the relative Lie
algebra cohomology of the space of smooth left G(k)–invariant functions on G(A) with values in E.
However, Borel proved in [Bor83] that it suffices to consider the subspace consisting of K∞-finite
functions of uniform moderate growth. Finally, using his filtration, Franke proved that in fact even

H∗(G,E) ∼= H∗(g∞,K∞,AJ ⊗ E).

The decomposition of the space AJ of automorphic forms along their cuspidal support, gives rise
to the decomposition

H∗(G,E) =
⊕

{P}∈C

H∗(g∞,K∞,AJ (P )⊗ E)
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in the cohomology, where the sum ranges over the associate classes {P} of parabolic k-subgroups
of G. The cohomology space corresponding to the associate class {G} is called the cuspidal coho-
mology, since AJ (G) is the subspace of cuspidal automorphic forms in AJ . The remaining part in
the decomposition is called the Eisenstein cohomology. Thus,

H∗
Eis(G,E) =

2⊕
i=0

⊕
φ∈Φi

H∗(g∞,K∞,AJ (Pi, φ)⊗ E).

In this paper we describe H∗
Eis(G,E) by determining the summands in this decomposition.

2.6. Repeating coordinates. We will now justify why we assume that the highest weight Λ of E
has repeating coordinates in the field embeddings σ : k ↪→ C. Otherwise, H∗(g∞,K∞;AJ (P0)⊗E)
vanishes. With this assumption, the infinitesimal character of a π ∈ φP has repeating coordinates,
too. Hence, slightly abusing notation we will consider this infinitesimal character as an element in
ǎPi
0 which is diagonally embedded in g∞, although strictly speaking, it is a sum of n copies of such

an element.

Proposition 2.1. Let E be an irreducible, finite-dimensional complex representation of G∞ of high-
est weight Λ = (Λσ)σ = ((Λ1)σ, (Λ2)σ)σ, where σ ranges over all field embeddings k ↪→ C. Assume
that E is the complexification of a k-rational representation of G/k. If Λ does not have repeating
coordinates, i.e. Λσ = Λτ for all field embeddings σ, τ : k ↪→ C, then H∗(g∞,K∞,AJ (P0)⊗E) = 0.

Proof. We start off more general. Assume only H∗
Eis(G,E) ̸= 0. By the last section there is hence

a proper standard parabolic k-subgroup P = Pi, i ∈ {0, 1, 2}, of G and cuspidal support φ ∈ Φi

such that

H∗(g∞,K∞,AJ (P,φ)⊗ E) ̸= 0.

Hence, there is a unitary cuspidal automorphic representation π ∈ φP of LP (A) and a point λ ∈ ǎP,C
such that H∗(g∞,K∞, IP (λ, π) ⊗ S(ǎP,C) ⊗ E) ̸= 0. Applying Frobenius reciprocity and [BW, III

Thm. 3.3] shows that for all σ : k ↪→ C there exists a wσ ∈ WP such that π∞ ⊗ Cλ+ρP has
non-trivial (lP,∞,KLP,∞)-cohomology with respect to S(ǎP,C)⊗

⊗
σ Fwσ . Here, Cλ+ρP denotes the

one-dimensional complex representation of aP ↪→ lP,∞ on which a ∈ aP acts by multiplication by
(λ+ρP )(a) and Fwσ is the irreducible finite–dimensional representation of LP (R) of highest weight
wσ(Λσ+ρ)−ρ. Recall that this makes sense since ρ has repeating coordinates. Hence the Künneth
rule implies that necessarily

(2.6.1) H∗(aP,∞, π|A◦
P,∞

⊗
⊗
σ

Cwσ(Λσ+ρ)−ρ|aP,σ
⊗ Cλ+ρP ⊗ S(ǎP,C)) ̸= 0.

Observe that, AP being abelian and π a cuspidal representation, π|A◦
P,∞

= χ̃|A◦
P,∞

for a unitary

character χ̃ : AP (k)AP (R)◦\AP (A) → C. Hence, the non-vanishing of (2.6.1) implies that

χ̃−1|A◦
P,∞

=
⊗
σ

Cwσ(Λσ+ρ)−ρ|aP,σ
− 1

n
(
∑

σ wσ(Λσ+ρ)−ρ|aP,σ
)

and

λ = − 1

n

∑
σ

wσ(Λσ + ρ)|aP,σ = −prh∞→aP ((wσ(Λσ + ρ))σ).
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Observe furthermore that since E is the complexification of a k-rational representation of G/k,
H∗(nP,∞, E) =

⊕
w=(wσ)σ∈(WP )n

⊗
σ Fwσ is the complexification of a k-rational representation

of LP /k. In particular,
⊗

σ Cwσ(Λσ+ρ)−ρ|aP,σ
is the complexification of a rational character of

AP /k. This shows that there is a k-rational, (possibly non-unitary) continuous character χ :
AP (k)\AP (A) → C which equals χ̃ modulo AP (R)◦ and which satisfies that the differential of its
restriction to the diagonally embedded group AP (R)◦ is λ+ ρP . Let E0(AP ) be the group of units
in AP (k), i.e. of those elements which are in the maximal compact subgroup at all places. Then the
same arguments as in [Har87, Sect. 2.5.5] show that χ, being k-rational and continuous, must be
trivial on the connected component of the Zariski closure of E0(AP ). Indeed, every such character
has to vanish on some suitable open compact subgroup Cf ⊂ AP (Af ), whence it is trivial on

E+(Cf ) := AP (k) ∩AP (R)◦ ∩ Cf .

Here, we think of AP (k) as being diagonally embedded in all of AP (A). By its k-rationality, χ
also vanishes on the Zariski-closure of E+(Cf ). Further, E+(Cf ) is a subgroup of E0(AP ) of finite
index. Since every such subgroup is necessarily a congruence subgroup, see [Che, Thm. 1], χ must

even be trivial on the connected component of the Zariski closure E0(AP ) of E0(AP ), as claimed.

However, as k is totally real, E0(AP ) fits into the following exact sequence

1 → E0(AP ) → Rk/Q(AP ) → AP /Q → 1,

see [Har87, Sect.2.8] and [Ser89, Chp. II 3.1-3.3], implying that χ−1
σ = χ−1

τ for all field embeddings
σ, τ . In particular, wσ(Λσ + ρ)|aP,σ = wτ (Λτ + ρ)aP,τ for all σ and τ . Now, if P = P0, this is
only possible if wσ = wτ and hence only if Λσ = Λτ , i.e., if the highest weight of E has repeating
coordinates. �

3. The Franke filtration

We recall briefly the filtration of the space of adèlic automorphic forms obtained by Franke in
[Fra98, Sect. 6], and its refinement along the cuspidal support by Franke and Schwermer [FS, Sect.
1]. The filtration is valid for any reductive group defined over k, but we write it for G = Sp4/k.
In that case we give a precise description of the quotients of consecutive filtration steps in terms of
induced representations.

3.1. Filtration along the cuspidal support. In [Fra98, Sect. 6], Franke defines a finite de-
scending filtration of the spaces AJ (Pi) such that the consecutive quotients of the filtration are
described as certain induced representations from the discrete spectrum on the Levi factors of par-
abolic k-subgroups containing Pi. His filtration depends on a choice of a function T defined on a
finite subset of ǎ0 with values in Z. Thus, the filtration steps are indexed by integers, although
there are only finitely many non–trivial quotients of consecutive filtration steps.

Let Am
J (Pi) denote the filtration step corresponding to m ∈ Z. Then, as in [FS, Sect. 5.2],

where the case of a maximal proper parabolic subgroup of GLn was considered, one can define the
filtration of each summand AJ (Pi, φ) in the decomposition of AJ (Pi) by

Am
i (φ) := Am

J (Pi) ∩ AJ (Pi, φ).

Then, Am
i (φ) consists of those automorphic forms in the filtration step Am

J (Pi), which are obtained
as residues and main values of derivatives of Eisenstein series attached to π ∈ φPi .
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In the rest of this section we explain, following [Fra98, Sect. 5.2 and Sect. 6], how to describe the
quotients of the filtration of AJ (Pi, φ). The description in our case given below does not hold in
general. Here we substantially use the fact that J annihilates a finite–dimensional representation,
and that we have fixed the cuspidal support φ, and thus obtain a bit simpler description than the
general case in [Fra98].

Since the dual representation Ě of E has highest weight −wlong,G(Λ) = Λ, where wlong,G =
w1w2w1w2 is the longest Weyl group element, its infinitesimal character is given by Λ+ ρ0. Hence,
the annihilator J in Z(g∞) of Ě, annihilates precisely the Weyl group orbit of Λ + ρ0 = (Λ1 +
2,Λ2 + 1), where the coordinates are with respect to the basis {e1, e2} of ǎ0.

3.2. Case of minimal parabolic subgroup. We consider first the associate class {P0} of the fixed
minimal parabolic k-subgroup P0. Let φ = (φP )P∈{P0} be an associate class of cuspidal automorphic
representations of the Levi factors of the parabolic k-subgroups in {P0}. Let µ1 ⊗ µ2 ∈ φP0 be a
unitary character of L0(A), trivial on L0(k), where µ1 and µ2 are unitary characters of k×\A×.

We begin with the following lemma which singles out the possible infinitesimal characters of a
discrete spectrum representation of the Levi factor and evaluation points for the corresponding
Eisenstein series occurring in the description of the filtration of AJ (P0). Since Λ has repeating
coordinates as well as the evaluation point, it follows that the possible infinitesimal characters have
repeating coordinates as, too. As mentioned earlier, we consider them as elements of ǎPi

0 .

Lemma 3.1. Let Λ = (Λ1,Λ2) be the highest weight of E, and J the ideal annihilating the dual of
E. All possible infinitesimal characters ν ∈ ǎR0 of the infinite component of the discrete spectrum
automorphic representation of the Levi factor LR(A) of a standard parabolic k-subgroup R supported
in µ1 ⊗ µ2 ∈ φP0, and the evaluation points λ ∈ ǎR for the corresponding Eisenstein series, such
that ν + λ is annihilated by J , are given as follows.

For P0 we have ν = 0 and λ is any element of the Weyl group orbit of Λ + ρ0. For P1 we have
either

λ = ±
(
3 + Λ1 + Λ2

2
,
3 + Λ1 + Λ2

2

)
and ν =

(
1 + Λ1 − Λ2

2
,−1 + Λ1 − Λ2

2

)
,

or

λ = ±
(
1 + Λ1 − Λ2

2
,
1 + Λ1 − Λ2

2

)
and ν =

(
3 + Λ1 + Λ2

2
,−3 + Λ1 + Λ2

2

)
.

For P2 we have either
λ = ± (2 + Λ1, 0) and ν = (0, 1 + Λ2) ,

or
λ = ± (1 + Λ2, 0) and ν = (0, 2 + Λ1) .

For G we have λ = 0 and ν is the Weyl group orbit of Λ + ρ0.

Proof. This is a direct calculation already contained in [Sch86]. It exploits the fact that J annihi-
lates the Weyl group orbit of Λ + ρ0, and thus χ and ξ are just projections of an element in that
orbit to ǎPi

0 and ǎPi , respectively. �
Since the quotients of the filtration are described using (residual) Eisenstein series evaluated at

λ ∈ ǎ+R, we need the following result regarding the analytic behavior of the Eisenstein series for
Sp4(A). Kim in [Kim, Sect. 5] studied these Eisenstein series. We state here only the part of his
results which we require in the sequel.
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Proposition 3.2 (Kim, [Kim]). The space AJ (P0, φ) contains no irreducible constituent of the
discrete spectrum of G(A) unless Λ = 0 and the trivial character of L0(A) belongs to φP0. If Λ = 0
and the trivial character of L0(A) belongs to φP0, then the only constituent of the discrete series
of G(A) belonging to AJ (P0, φ) is one–dimensional and isomorphic to the trivial representation of
G(A), i.e. consists of constant functions on G(A).

The following theorem gives the Franke filtration in the case we consider. However, it depends
on the choice of an integer–valued function T defined on a finite subset SJ of ǎ0 with the property

T (λ1) < T (λ2) if λ1 ̸= λ2 and λ2 ∈ λ1 − +ǎ0

for all λ1, λ2 ∈ ǎ0. If λ1 and λ2 satisfy the above condition either for T (λ1) < T (λ2) or T (λ2) <
T (λ1) we say that they are comparable, otherwise we say that they are incomparable. The subset

SJ consists of natural embeddings of those λ obtained in Lemma 3.1 which satisfy λ ∈ ǎ+Pi
. However,

if a particular cuspidal support is fixed, not all elements of SJ play a role. Hence, in order to obtain
the filtration of AJ (P0, φ), we fix a choice of T depending on φ in the course of the proof.

Theorem 3.3. Let {P0} be the associate class of a minimal parabolic k-subgroup, and let φ ∈ Φ0

be the associate class of the character µ1 ⊗ µ2 of L0(A), where µ1 and µ2 are unitary characters
of k×\A×. The filtration of AJ (P0, φ), with respect to the function T appropriately chosen during
the course of the proof, has at most three non–trivial filtration steps

AJ (P0, φ) = A0
0(φ) ⊃ A1

0(φ) ⊃ A2
0(φ),

where A2
0(φ) is non–trivial if and only if Λ1 = Λ2 = 0 and µ1 = µ2 = 1, where 1 is the trivial

character of A×, while A1
0(φ) is non–trivial if and only if

• Λ1 = Λ2 and µ1 = µ2,
• or Λ2 = 0 and µ2 = 1.

If A2
0(φ) is non–trivial, it is one–dimensional and isomorphic as a (g∞,K∞;G(Af ))-module to

A2
0(φ)

∼= 1G(A),

where 1G(A) is the trivial character of G(A), i.e A2
0(φ) consists of constant functions on G(A). If

A1
0(φ) is non–trivial, then the quotient A1

0(φ)/A2
0(φ) is isomorphic to

A1
0(φ)/A2

0(φ)
∼=

I1(
3
2 + Λ, µ ◦ det)⊗ S(ǎP1,C), if Λ = Λ1 = Λ2 and µ = µ1 = µ2, but Λ ̸= 0 or µ ̸= 1,

I2(2 + Λ1, µ⊗ 1SL2(A))⊗ S(ǎP2,C), if Λ2 = 0 and µ2 = 1, but Λ1 ̸= 0 or µ1 ̸= 1,

I1(
3
2 , µ ◦ det)⊗ S(ǎP1,C)

⊕
I2(2, µ⊗ 1SL2(A))⊗ S(ǎP2,C), if Λ1 = Λ2 = 0 and µ1 = µ2 = 1

as a (g∞,K∞;G(Af ))-module, where in the first case Λ denotes the integer Λ1 = Λ2, and µ denotes
the character µ1 = µ2, and 1SL2(A) is the trivial character of SL2(A). And finally, the quotient

A0
0(φ)/A1

0(φ) is isomorphic to

A0
0(φ)/A1

0(φ)
∼= I0(Λ + ρ0, µ1 ⊗ µ2)⊗ S(ǎP0,C)

as a (g∞,K∞;G(Af ))-module for any Λ and µ1 ⊗ µ2.

Proof. We follow closely [Fra98, Sect. 6], adjusted to the considered situation. As in [Fra98, p. 233],
taking into account the cuspidal support, consider the set M(P0, φ) of quadruples (R,Π, ν, λ), such
that:



EISENSTEIN COHOMOLOGY OF Sp4 13

• R = LRNR is a standard parabolic k-subgroup of G containing an element of the associate
class {P0}.

• Π is a discrete spectrum representation of LR(A) with cuspidal support µ1 ⊗ µ2 obtained
as the iterated residue at the value ν ∈ ǎR0 of the Eisenstein series on LR(A) attached to
µ1 ⊗ µ2.

• λ ∈ ǎ+R is such that λ+ ν is annihilated by J .

Observe that the possible pairs (λ, ν) are given in Lemma 3.1, where one should take into account

only the cases with λ ∈ ǎ+R.
For m ∈ Z let Mm(P0, φ) be the subset of M(P0, φ) consisting of those quadruples for which

T (λ) = m, where λ is viewed as an element in ǎ0 via the natural embedding. Then, by [Fra98,
Thm. 14], the quotient

(3.2.1) Am
0 (φ)/Am+1

0 (φ) ∼=
⊕

(R,Π,ν,λ)∈Mm(P0,φ)

I(λ,Π)⊗ S(ǎR,C).

Observe at this point that the direct sum on the right hand side is obtained due to the fact that
J annihilates a finite–dimensional representation, and thus it annihilates a Weyl group orbit not
intersecting the boundary of the Weyl chambers in ǎ0 (see [Fra98, Thm. 19]). We introduce also
the notation MR(P0, φ) and Mm

R (P0, φ) for the set of all quadruples in M(P0, φ) and Mm(P0, φ),
respectively, with a certain parabolic subgroup R as the first entry.

Consider first the case R = G. Then always λ = 0, and thus, Mm
G (P0, φ) is trivial except possibly

for m = T (0). The residual representation Π of G(A) is obtained as a residue of the Eisenstein
series attached to µ1 ⊗ µ2 at ν ∈ ǎ0 such that ν is annihilated by J . By part (1) of Proposition
3.2, the only possibility is that µ1 = µ2 = 1 and Λ = 0. In that case ν = (2, 1) and Π ∼= 1G(A).
Thus we have determined the quadruples in MG(P0, φ). Namely,

Mm
G (P0, φ) =

{
{G,1G(A), (2, 1), 0}, if m = T (0) and Λ1 = Λ2 = 0 and µ1 = µ2 = 1
∅, otherwise.

Let R = P1. Since Π is a residual representation of LR(A) ∼= GL2(A), it is isomorphic to

Π ∼= µ ◦ det. Hence, necessarily µ1 = µ2 and ν = (1/2,−1/2) ∈ ǎP1
0 . By Lemma 3.1, such ν can be

obtained only if Λ1 = Λ2 and λ = (3/2 + Λ, 3/2 + Λ), where we denote Λ = Λ1 = Λ2. Thus, we
have

Mm
P1
(P0, φ) =


{(

P1, µ ◦ det,
(
1
2 ,−

1
2

)
,
(
3
2 + Λ, 32 + Λ

))}
,

if T (32 + Λ, 32 + Λ) = m and
Λ1 = Λ2 = Λ and µ1 = µ2 = µ,

∅, otherwise.

Similarly, for R = P2, we have Π is a residual representation of LR(A) ∼= GL1(A) × SL2(A).
However, the only residual representation of SL2(A) is the trivial character 1SL2(A) of SL2(A).
Thus, necessarily µ2 is the trivial character and ν = (0, 1). By Lemma 3.1, such ν is obtained only
if Λ2 = 0, and then λ = (2 + Λ1, 0) is the corresponding λ. So in this case we have

Mm
P2
(P0, φ) =


{(

P2, µ1 ⊗ 1SL2(A), (0, 1) , (2 + Λ1, 0)
)}

,
if T (2 + Λ1, 0) = m and
Λ2 = 0 and µ2 = 1,

∅, otherwise.
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Finally, if R = P0, then Π = µ1 ⊗ µ2. Hence, ν = 0 and λ = (2 + Λ1, 1 + Λ2). Thus

Mm
P0
(P0, φ) =

{
{(P0, µ1 ⊗ µ2, 0, (2 + Λ1, 1 + Λ2))} , if T (2 + Λ1, 1 + Λ2) = m,

∅, otherwise.

The description of M(P0, φ) reveals that for a given Λ the values of a function T are required only
at certain subset of SJ . More precisely, MP1(P0, φ) and MP2(P0, φ) may possibly be non–empty
only for Λ1 = Λ2 = 0. Therefore, only in that case T (λ) for λ coming from both cases matter. Note
that in this case the two λ are incomparable. We define T (0) = 2 and T (2 + Λ1, 1 + Λ2) = 0, and
also

T

(
3 + Λ1 + Λ2

2
,
3 + Λ1 + Λ2

2

)
= T (2 + Λ1, 0) = 1.

Although there exist Λ1,Λ2 such that the last two points are comparable, as already explained,
both points matter only for Λ1 = Λ2 = 0, and in that case they are incomparable. Therefore, we
may define T in this way.

Now the theorem follows. Namely, A2
0(φ) is non–trivial if and only if MG(P0, φ) is non–trivial

which is if and only if the conditions given in the theorem are satisfied. In that case the only
summand in the decomposition (3.2.1) is the trivial representation of G(A).

The space A1
0(φ) is non–trivial if and only if at least one of MP1(P0, φ) and MP2(P0, φ) is non–

empty. Note that if MG(P0, φ) is non–empty then both MPi(P0, φ), for i = 1, 2, are non–empty.
Hence, this filtration step is non–trivial exactly if at least one of the two conditions given in the
theorem is satisfied. Then the decomposition of the quotient follows directly from (3.2.1).

Finally, A0
0(φ) is always non–trivial, and the decomposition of the quotient of this filtration step

is obtained from (3.2.1). �

3.3. Case of maximal parabolic subgroups. Let Pi = LiNi, for i = 1, 2, be one of the maximal
proper standard parabolic k-subgroups. Let φ = (φP )P∈{Pi} ∈ Φi be an associate class of cuspidal

automorphic representations. Let π ∈ φPi , and let χ ∈ ǎPi
0 be the infinitesimal character of its

archimedean component, where ǎPi
0 is diagonally embedded into ǎ0,∞.

The filtration of AJ (Pi, φ), for i = 1, 2, depends on the analytic behavior of the Eisenstein series
attached to π ∈ φPi . This was studied by Kim in [Kim, Sect. 3 and 4] and we recall the result for
convenience of the reader.

Proposition 3.4 (Kim, [Kim]). (1) In the case of parabolic subgroup P1, the Eisenstein series
E(g, fs), attached to a cuspidal automorphic representation π of L1(A) ∼= GL2(A), has a

pole at s = ν ∈ ǎ+P1
if and only if ν = (1/2, 1/2), the central character of π is trivial, and

the principal L-function L(1/2, π) ̸= 0. The space spanned by the residues Ress=1/2E(g, fs)
is isomorphic to the unique irreducible quotient J1(1/2, π) of I1(1/2, π).

(2) In the case of parabolic subgroup P2, the Eisenstein series E(g, fs), attached to a cuspidal
automorphic representation π ∼= µ⊗ σ of L2(A) ∼= GL1(A)×SL2(A), has a pole at s = ν ∈
ǎ+P2

if and only if ν = (1, 0) and the Rankin–Selberg L-function L(s, µ × σ) has a pole at

s = 1 (see [Kim, p. 137] for more explicit formulation of this condition). The space spanned
by the residues Ress=1E(g, fs) is isomorphic to the unique irreducible quotient J2(1, π) of
the induced representation I2(1, π).

Before proceeding we need the following technical lemma.
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Lemma 3.5. Let Λ = (Λ1,Λ2) be the highest weight of E, and J the ideal annihilating the dual

of E. Then the infinitesimal character χ ∈ ǎPi
0 of the archimedean component of π ∈ φPi, where

φ = (φP )P∈{Pi} ∈ Φi, and the corresponding ξ ∈ ǎPi such that ξ + χ is annihilated by J are given
as follows. For P1 we have either

ξ = ±
(
3 + Λ1 + Λ2

2
,
3 + Λ1 + Λ2

2

)
and χ =

(
1 + Λ1 − Λ2

2
,−1 + Λ1 − Λ2

2

)
,

or

ξ = ±
(
1 + Λ1 − Λ2

2
,
1 + Λ1 − Λ2

2

)
and χ =

(
3 + Λ1 + Λ2

2
,−3 + Λ1 + Λ2

2

)
.

For P2 we have either

ξ = ± (2 + Λ1, 0) and χ = (0, 1 + Λ2) ,

or

ξ = ± (1 + Λ2, 0) and χ = (0, 2 + Λ1) .

Observe that for each Pi and a fixed cuspidal support φ at most one of the two possibilities may
occur.

Proof. As in Lemma 3.1, this is a direct calculation already contained in [Sch86]. �

Theorem 3.6. Let the notation be as above. Let ξ ∈ ǎ+Pi
be such that ξ + χ ∈ ǎ0 is annihilated by

J . The filtration of AJ (Pi, φ) has at most two non–trivial steps

AJ (Pi, φ) = A1
i (φ) ⊃ A2

i (φ),

where the quotient is isomorphic to

A1
i (φ)/A2

i (φ)
∼= Ii(ξ, π)⊗ S(ǎPi,C)

as a (g∞,K∞;G(Af ))-module, and A2
i (φ) is non–trivial if and only if

• in the case of P1 we have Λ1 = Λ2 = Λ, the infinitesimal character χ = (32 + Λ,−3
2 − Λ),

ξ = (12 ,
1
2), and there is a section fs of the induced representation I1(s, π) such that the

Eisenstein series E(g, fs) has a pole at s = ξ = (12 ,
1
2),

• in the case of P2 we have Λ2 = 0, the infinitesimal character χ = (0, 2+Λ1), ξ = (1, 0), and
there is a section fs of the induced representation I2(s, π) such that the Eisenstein series
E(g, fs) has a pole at s = ξ = (1, 0).

If non–trivial, it is isomorphic to

A2
i (φ)

∼= Ji(ξ, π)

as a (g∞,K∞;G(Af ))-module.

Proof. This follows from [Fra98, Sect. 6], but we explain for the convenience of the reader in some
detail our case, although it is quite similar to the proof of Theorem 3.3. Similarly as in [Fra98,
p. 233], but taking into account that we have fixed the cuspidal support, consider the set M(Pi, φ)
of quadruples (R,Π, ν, λ), such that:

• R = LRNR is a standard parabolic k-subgroup of G containing an element of the associate
class {Pi}, i.e. either R = Pi or R = G.
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• Π is a discrete spectrum representation of LR(A) with cuspidal support π obtained as the
iterated residue at the value ν ∈ ǎRPi

of the Eisenstein series on LR(A) attached to π. If
R = Pi, then Π = π and ν = 0. If R = G then Π is the residual representation of G(A)
with support π and ν ∈ ǎ+Pi

is the pole of the Eisenstein series attached to π.

• λ ∈ ǎ+R is such that λ+ ν + χ is annihilated by J . If R = G, then λ = 0, and thus ν + χ is
annihilated by J . If R = Pi, then λ+ χ is annihilated by J .

Observe that by the third condition ξ = λ + ν and χ form one of the pairs computed in Lemma
3.5.

For m ∈ Z let Mm(Pi, φ) be the subset of M(Pi, φ) consisting of those quadruples for which
T (λ) = m, where λ is viewed as an element in ǎ0 via the natural embedding. Then, by [Fra98,
Thm. 14], the quotient

(3.3.1) Am
i (φ)/Am+1

i (φ) ∼=
⊕

(R,Π,ν,λ)∈Mm(Pi,φ)

I(λ,Π)⊗ S(ǎR,C).

As in Theorem 3.3, the direct sum on the right hand side is obtained due to the fact that J anni-
hilates a finite–dimensional representation (see [Fra98, Thm. 19]). We introduce also the notation
MR(Pi, φ) and Mm

R (Pi, φ) for the set of all quadruples in M(Pi, φ) and Mm(Pi, φ), respectively,
with a parabolic subgroup R as the first entry.

For R = G, we always have λ = 0. Hence, Mm
G (Pi, φ) is empty except for m = T (0). Moreover,

Π in a quadruple with R = G should be a residual representation of G(A) supported in π. By
Proposition 3.4, if π satisfies certain conditions, then the Eisenstein series attached to π has a pole
for P1 only at ν = (1/2, 1/2) with the residue Π ∼= J1(ν, π), and for P2 at ν = (1, 0) with the
residue Π ∼= J2(ν, π). Since λ = 0, we have ξ = ν, and thus Lemma 3.5 shows that these ξ can
be achieved only if Λ1 = Λ2 for P1, and Λ2 = 0 for P2. In both cases, Lemma 3.5 gives also a
unique infinitesimal character χ such that ν + χ is annihilated by J . More precisely, for P = P1 it
is χ =

(
Λ + 3

2 ,−Λ− 3
2

)
, where Λ = Λ1 = Λ2, and for P = P2 it is χ = (0, 2 + Λ1). Thus we have

found all quadruples in MG(Pi, φ). Namely,

Mm
G (P1, φ) =


{(

G, J1(1/2, π),
(
1
2 ,

1
2

)
, 0
)}

,
if m = T (0) and Λ1 = Λ2 = Λ and
χ =

(
Λ + 3

2 ,−Λ− 3
2

)
and π is as in Prop. 3.4 (1),

∅, otherwise,

while

Mm
G (P2, φ) =

 {(G, J2(1, π), (1, 0) , 0)} ,
if m = T (0) and Λ2 = 0 and
χ = (0,Λ1 + 2) and π is as in Prop. 3.4 (2),

∅, otherwise.

On the other hand, for R = Pi, we have Π = π and hence ν = 0. Thus, in this case ξ = λ
and χ form one of the pairs given in Lemma 3.5 with the positive sign taken for ξ. Thus λ ̸= 0,
and for a given π and its infinitesimal character χ there is a unique λ forming the quadruple
(Pi, π, 0, λ) ∈ MPi(Pi, φ). Therefore, having fixed the cuspidal support (and of course the highest
weight Λ), we may choose a function T such that T (λ) is the same integer satisfying T (λ) < T (0)
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for all λ ̸= 0 appearing among the quadruples. Finally, the sets Mm
Pi
(Pi, φ) are given as

Mm
Pi
(Pi, φ) =

 {(Pi, π, 0, λ)} ,
if m = T (λ) and λ and the infinitesimal character χ
form one of the pairs given in Lemma 3.5,

∅, otherwise.

It has no effect on the filtration if we assume that T (0) = 2 and T (λ) = 1 for λ ̸= 0. Then the
only non–empty sets Mm(Pi, φ) are

M1(Pi, φ) = M1
Pi
(Pi, φ),

and possibly
M2(Pi, φ) = M2

G(Pi, φ).

The second set is non–trivial if and only if the conditions for non–triviality of A2
i (φ) given in the

theorem are satisfied. Therefore, the Franke description of the quotients (3.3.1) shows that

A1
i (φ)/A2

i (φ)
∼= Ii(ξ, π)⊗ S(ǎPi,C),

where (Pi, π, 0, λ) is the only element of M1(Pi, φ), and ξ = λ, as claimed, and if A2
i (φ) non–trivial

A2
i (φ)

∼= Ji(ξ,Π),

since the induction is from G(A) to itself, and ǎG is trivial. �

4. The Cohomology of Filtration Quotients

4.1. We shall now determine the cohomology of the various quotients

Am
i (φ)/Am+1

i (φ)

of the filtration of AJ (Pi, φ), with m ∈ Z and i = 0, 1, 2, using their description given in Theorems
3.3 and 3.6. Therefore observe that for each archimedean place v of k we may write Li(kv) = Li(R)
as a direct product Li(R) = Ai(R)◦ × Li(R)ss of the connected component of the group of real
points of a maximal central k-split torus Ai(R)◦, and the semi–simple part Li(R)ss, where

Li(R)ss =

 {±1} × {±1} = F2 × F2, if i = 0,
{±1}o SL2(R) = SL±

2 (R), if i = 1
{±1} × SL2(R) = F2 × SL2(R), if i = 2

Recall that SL±
2 (R) = {g ∈ GL2(R)| det(g) = ±1}, and F2 is the multiplicative group of two ele-

ments. An irreducible representation of Li(R) may hence be decomposed into a character of Ai(R)◦
and an irreducible representation of Li(R)ss. In particular, a finite-dimensional, irreducible repre-
sentation of Li(R) is the product of a character of Ai(R)◦ and a finite-dimensional representation
of Li(R)ss. The latter one is either F 0(a, b) := sgnaF2

⊗ sgnbF2
if i = 0 or in the case of i = 1, 2 the

representation F i
ℓ (a), i.e., the unique irreducible representation of Li(R)ss of dimension ℓ tensored

by sgna. Recall that the (−1)-element in Li(R)ss is represented by

(
−1 0
0 1

)
if i = 1 and by (−1, id)

if i = 2. In the special case that ℓ = 1, we will also use the usual notation F 1
0 (a) = sgna

SL±
2 (R) resp.

F 2
0 (a) = sgnaF2

= sgnaF2
⊗1SL2(R).

In what follows we need to know the cohomological, irreducible unitary representations of Li(R)ss
which is determined in the following lemma. Therefore recall that for every integer r ≥ 2, SL±

2 (R)
has one discrete series representation Dr indexed by its lowest O(2)-type r, while SL2(R) has two
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discrete series representations D+
r (resp. D−

r ) indexed by the lowest (resp. highest) SO(2)-type r
(resp. −r).

Lemma 4.1. Let F 0(a, b) and F i
ℓ (a), i = 1, 2, be the finite–dimensional irreducible representations

of L0(R)ss and Li(R)ss, respectively, as defined above. Let τ be any irreducible unitary representa-
tions of Li(R)ss, i = 0, 1, 2.

(i=0)

Hq(lss0 ,KL0(R)ss , τ ⊗ F 0(a, b)) =

{
C, if q = 0 and τ ∼= F 0(a, b),
0, otherwise.

(i=1) If ℓ = 1 then

Hq(lss1 ,KL1(R)ss , τ ⊗ sgna
SL±

2 (R)) =


C


if q = 0 and τ ∼= sgna

SL±
2 (R),

if q = 1 and τ ∼= D2,
if q = 2 and τ ∼= sgna+1

SL±
2 (R)

0, otherwise.

If ℓ > 1 then

Hq(lss1 ,KL1(R)ss , τ ⊗ F 1
ℓ (a)) =

{
C, if q = 1 and τ ∼= Dℓ+1,
0, otherwise.

(i=2) If ℓ = 1 then

Hq(lss2 ,KL2(R)ss , τ ⊗ sgnaF2
) =

 C,
{

if q = 0, 2 and τ ∼= sgnaF2
,

if q = 1 and τ ∼= sgnaF2
⊗D±

2 ,
0, otherwise.

If ℓ > 1 then

Hq(lss2 ,KL2(R)ss , τ ⊗ F 2
ℓ (a)) =

{
C, if q = 1 and τ ∼= sgnaF2

⊗D±
ℓ+1,

0, otherwise.

Proof. This follows from the Künneth-rule and the well–known properties of the cohomological
unitary dual of SL±

2 (R) and SL2(R), cf. [Sch83, p. 118–122]. �

4.2. The first maximal parabolic subgroup. Let φ = (φP )P∈{P1} ∈ Φ1 be an associate class

of unitary cuspidal automorphic representations and π ∈ φP1 a representative. Let χ ∈ ǎP1
0 be the

infinitesimal character of its archimedean component, where ǎP1
0 is diagonally embedded into ǎ0,∞

and take ξ ∈ ǎ+P1
such that ξ + χ ∈ ǎ0 is annihilated by J . Which pairs of vectors ξ and χ satisfy

this latter condition is listed in Proposition 3.5 but for the readers convenience we recall that we
must have

ξ =
3 + Λ1 + Λ2

2
and χ =

1 + Λ1 − Λ2

2
,

or

ξ =
1 + Λ1 − Λ2

2
and χ =

3 + Λ1 + Λ2

2
.

In this section we determine the cohomology of the quotients

A1
1(φ)/A2

1(φ) and A2
1(φ),

using their explicit description in our Theorem 3.6. We obtain
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Proposition 4.2. Let E be an irreducible representation of G∞ as in Sect. 1.5, so that its highest
weight Λ = (Λ1,σ,Λ2,σ)σ has repeating coordinates in the field embeddings σ : k ↪→ C, and may
hence be written as Λ = (Λ1,Λ2). Then we obtain as a G(Af )-module

Hq(g∞,K∞,A1
1(φ)/A2

1(φ)⊗ E) ∼=
{

I1(ξ, πf )
m1(π,q) if πv|L1(R)ss = D2χ+1 ∀v ∈ S∞

0 otherwise

where

m1(π, q) =

(
n− 1

q − 3n

)
if χ =

3 + Λ1 + Λ2

2

and

m1(π, q) =

(
n− 1

q − 4n

)
if χ =

1 + Λ1 − Λ2

2

In particular this space vanishes outside the degrees 3n ≤ q ≤ 4n − 1 in the first, and outside the
degrees 4n ≤ q ≤ 5n− 1 in the second case.

If A2
1(φ) is non–trivial, i.e, if Λ1 = Λ2 = Λ, ξ = 1

2 , χ = 3
2 + Λ and π satisfies that its central

character is trivial and L(12 , π) ̸= 0, then

Hq(g∞,K∞,A2
1(φ)⊗ E) ∼=

{
J1(ξ, πf )

m1(q) if πv = D2Λ+4 ∀v ∈ S∞
0 otherwise

where

m1(q) = #{(r1, . . . , rn) | rj ∈ {2, 4} and
n∑

j=1

rj = q} =

{ (
n

2n− q
2

)
, if q is even,

0, otherwise.

In particular, this cohomology vanishes if q is either odd or not in the range 2n ≤ q ≤ 4n.

Proof. We begin by calculating the (g∞,K∞)-cohomology of A1
1(φ)/A2

1(φ). By Theorem 3.6 we
get

Hq(g∞,K∞,A1
1(φ)/A2

1(φ)⊗E) ∼= Hq(g∞,K∞, I1(ξ, π)⊗ S(ǎP1,C)⊗ E)
∼= Hq(g∞,K∞, I1(ξ, π∞)⊗ S(ǎP1,C)⊗ E)⊗ I1(ξ, πf )

where the fist space carries the trivial G(Af )-module structure. Therefore we only need to show
that

Hq(g∞,K∞, I1(ξ, π∞)⊗ S(ǎP1,C)⊗ E)

is of dimension m1(π, q) if πv|L1(R)ss = D2χ+1 for all archimedean places v and vanishes otherwise.

Now [BW, III Thm. 3.3], together with our Prop 2.1, shows that there is a unique w ∈ WP1 for all
σ : k ↪→ C such that the representation π∞⊗Cξ+ρP1

has non-trivial (l1,∞,KL1,∞)-cohomology with

respect to S(ǎP1,C) ⊗
⊗

σ Fw. Here, Cξ+ρP1
denotes the one-dimensional complex representation

of aP1 ↪→ l1,∞ on which a ∈ aP1 acts by multiplication by (ξ + ρP1)(a) and Fw is the irreducible
finite-dimensional representation of L1(R) of highest weight w(Λ+ρ)−ρ. Again by [BW, III Thm.
3.3] it is clear that either

(4.2.1) w = w2w1 if χ =
3 + Λ1 + Λ2

2
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and

(4.2.2) w = w2w1w2 if χ =
1 + Λ1 − Λ2

2
.

So the length of w is l(w) = 2 in case (4.2.1) and l(w) = 3 in case (4.2.2) whereas Fw =
Cw(Λ+ρ)−ρ|aP1

⊗ F 1
2χ(a), for some a ∈ {0, 1} in both cases. Furthermore, in any case,

Hq(g∞,K∞, I1(ξ, π∞)⊗ S(ǎP1,C)⊗ E)

∼= Hq−l(w)n(l1,∞,KL1,∞, π∞ ⊗ S(ǎP1,C)⊗ Cξ+ρP1
⊗

⊗
σ Fw)

∼= Hq−l(w)n(m1,∞,KM1,∞, π∞ ⊗
⊗

σ Fw)

The first line is [BW, III Thm. 3.3], while the second line follows directly as in [Fra98, p. 256] if
we apply the Künneth-rule to the decomposition l1,∞ = m1,∞ ⊕ aP1 .

Now observe that KL1,∞ ∩ A◦
1,∞ = {1}. Hence, [BW, II Prop. 3.1] implies together with the

Künneth rule that

(4.2.3) Hq−l(w)n(m1,∞,KM1,∞, π∞ ⊗
⊗
σ

Fw)

∼=
⊕

r+s=q−l(w)n

∧r
Cn−1 ⊗

⊕
(sv)v∈S∞ ,∑

v sv=s

⊗
v∈S∞

Hsv(lss1 ,KL1(R)ss , πv|L1(R)ss ⊗ F 1
2χ(a))

 .

Since a cuspidal automorphic representation π ∈ φP1 cannot have a one–dimensional archimedean
component, we conclude by Lemma 4.1 that we must have

πv|L1(R)ss
∼= D2χ+1

∀v ∈ S∞ in order to get non–vanishing cohomology. Moreover, Lemma 4.1 says that in this case⊗
v∈S∞

Hsv(lss1 ,KL1(R)ss , πv|L1(R)ss ⊗ F 1
2χ(a)) =

{
C, if sv = 1 ∀v ∈ S∞,
0, otherwise.

Hence, s = n and so the dimension of the vector space (4.2.3) is

dimC

 ⊕
r+s=q−l(w)n

∧r
Cn−1 ⊗

⊕
(sv)v∈S∞ ,∑

v sv=s

⊗
v∈S∞

Hsv(lss1 ,KL1(R)ss , πv|L1(R)ss ⊗ F 1
2χ(a))

 =

(
n− 1

q − (l(w) + 1)n

)
.

But as l(w) = 2 in case (4.2.1) and l(w) = 3 in case (4.2.2), this shows the claim.

Next we calculate the cohomology of A2
1(φ) if it is non–trivial. So according to Thm. 3.6 and

Prop. 3.4 we assume that Λ1 = Λ2 = Λ, ξ = 1
2 , χ = 3

2 +Λ and π satisfies that its central character

is trivial and L(12 , π) ̸= 0. By Theorem 3.6 we get furthermore that

Hq(g∞,K∞,A2
1(φ)⊗ E) ∼= Hq(g∞,K∞, J1(ξ, π)⊗ E)

∼= Hq(g∞,K∞, J1(ξ, π∞)⊗ E)⊗ J1(ξ, πf )
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The (sp4(R), U(2))–cohomology of the Langlands quotient J1(ξ, πv) with respect to E = E(Λ,Λ) is
computed in [BW, VI Thm.1.7] and together with [BW, VI Lem. 1.5] we obtain

Hq(sp4(R), U(2), J1(ξ, πv)⊗ E) ∼=
{

C, if q = 2, 4 and πv = D2Λ+4,
0, otherwise.

Applying the Künneth rule now, this gives the last assertion of the proposition.
�

4.3. The second maximal parabolic subgroup. This section is in complete analogy to the
previous one. So, let φ = (φP )P∈{P2} ∈ Φ2 be an associate class of unitary cuspidal automorphic

representations and π ∈ φP2 . Let χ ∈ ǎP2
0 be the infinitesimal character of its archimedean com-

ponent, where ǎP2
0 is diagonally embedded into ǎ0,∞, and take ξ ∈ ǎ+P2

such that ξ + χ ∈ ǎ0 is
annihilated by J . We recall from Proposition 3.5 that we must have

ξ = 2 + Λ1 and χ = 1 + Λ2,

or
ξ = 1 + Λ2 and χ = 2 + Λ1.

The cohomology of the quotients

A1
2(φ)/A2

2(φ) and A2
2(φ),

is obtained in the following proposition.

Proposition 4.3. Let E be an irreducible representation of G∞ as in Section 1.5, so that its
highest weight Λ = (Λ1,σ,Λ2,σ)σ has repeating coordinates in the field embeddings σ : k ↪→ C, and
may hence be written as Λ = (Λ1,Λ2). Then we obtain as a G(Af )-module

Hq(g∞,K∞,A1
2(φ)/A2

2(φ)⊗ E) ∼=
{

I2(ξ, πf )
m2(π,q), if πv|L2(R)ss = sgnξF2

⊗D±
χ+1 ∀v ∈ S∞,

0, otherwise,

where

m2(π, q) =

(
n− 1

q − 3n

)
if χ = Λ1 + 2

and

m2(π, q) =

(
n− 1

q − 4n

)
if χ = Λ2 + 1

In particular this space vanishes outside the degrees 3n ≤ q ≤ 4n − 1 in the first, and outside the
degrees 4n ≤ q ≤ 5n− 1 in the second case.

If A2
2(φ) is non–trivial, i.e, if Λ2 = 0, ξ = 1, χ = 2+Λ1 and π = µ⊗ σ satisfies that L(s, µ× σ)

has a pole at s = 1, then

Hq(g∞,K∞,A2
2(φ)⊗E) ∼=

{
J2(ξ, πf )

m2(q), if σv = D±
Λ1+3 ∀v ∈ S∞,

0, otherwise,

where

m2(q) = #{(r1, . . . , rn) | rj ∈ {2, 4} and

n∑
j=1

rj = q} =

{ (
n

2n− q
2

)
, if q is even,

0, otherwise.

In particular, this cohomology vanishes if q is either odd or not in the range 2n ≤ q ≤ 4n.
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Proof. As in the case of P1, in order to show the assertions on the (g∞,K∞)-cohomology of
A1

2(φ)/A2
2(φ), it is enough to prove that

Hq(g∞,K∞, I2(ξ, π∞)⊗ S(ǎP2,C)⊗ E)

is of dimension m2(π, q) if πv|L2(R)ss = sgnξF2
⊗D±

χ+1 for all archimedean places and vanishes other-

wise. Again, [BW, III Thm. 3.3] together with our Prop 2.1 shows that there is a unique w ∈ WP2

for all σ : k ↪→ C such that the representation π∞⊗Cξ+ρP2
has non-trivial (l2,∞,KL2,∞)-cohomology

with respect to S(ǎP2,C)⊗
⊗

σ Fw. Here, Cξ+ρP2
denotes the one-dimensional complex representa-

tion of aP2 ↪→ l2,∞ on which a ∈ aP2 acts by multiplication by (ξ+ρP2)(a) and Fw is the irreducible
finite-dimensional representation of L2(R) of highest weight w(Λ + ρ)− ρ. Explicitly we get

(4.3.1) w = w1w2 if χ = Λ1 + 2

and

(4.3.2) w = w1w2w1 if χ = Λ2 + 1.

In any of these two cases Fw = Cw(Λ+ρ)−ρ|aP2
⊗ F 2

χ(ξ). Furthermore, as in the case of P1,

(4.3.3) Hq(g∞,K∞, I2(ξ, π∞)⊗ S(ǎP2,C)⊗ E) ∼= Hq−l(w)n(m2,∞,KM2,∞, π∞ ⊗
⊗
σ

Fw).

Again KL2,∞ ∩A◦
2,∞ = {1}, whence the latter cohomology space is isomorphic to

⊕
r+s=q−l(w)n

∧r
Cn−1 ⊗

⊕
(sv)v∈S∞ ,∑

v sv=s

⊗
v∈S∞

Hsv(lss2 ,KL2(R)ss , πv|L2(R)ss ⊗ F 2
χ(ξ))


Since a cuspidal automorphic representation π ∈ φP2 cannot have a one–dimensional archimedean
component, we conclude by Lemma 4.1 that we must have

πv|L2(R)ss
∼= sgnξF2

⊗D±
χ+1

for all v ∈ S∞ in order to get non–vanishing cohomology. Moreover, it follows from Lemma 4.1
that in this case⊗

v∈S∞

Hsv(lss2 ,KL2(R)ss , πv|L2(R)ss ⊗ F 2
χ(ξ)) =

{
C, if sv = 1 ∀v ∈ S∞,
0, otherwise.

Therefore, s = n and so the vector space (4.3.3) has dimension

dimC

 ⊕
r+s=q−l(w)n

∧r
Cn−1 ⊗

⊕
(sv)v∈S∞ ,∑

v sv=s

⊗
v∈S∞

Hsv(lss2 ,KL2(R)ss , πv|L2(R)ss ⊗ F 2
χ(ξ))

 =

(
n− 1

q − (l(w) + 1)n

)
.

But as l(w) = 2 in case (4.3.1) and l(w) = 3 in case (4.3.2), this shows the claim.
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It remains to calculate the cohomology of A2
2(φ) if it is non–trivial. So, according to Thm. 3.6

and Prop. 3.4 we assume that Λ2 = 0, ξ = 1, χ = 2 + Λ1 and π ∼= µ⊗ σ satisfies that L(s, µ× σ)
has a pole at s = 1. Then, by Theorem 3.6 we obtain

Hq(g∞,K∞,A2
2(φ)⊗ E) ∼= Hq(g∞,K∞, J2(ξ, π)⊗ E)

∼= Hq(g∞,K∞, J2(ξ, π∞)⊗ E)⊗ J2(ξ, πf )

The (sp4(R), U(2))–cohomology of the Langlands quotients J2(ξ, πv) with respect to E = E(Λ,Λ) is
computed in [BW, VI Thm.1.7] together with [BW, VI Lem. 1.5], which yields

Hq(sp4(R), U(2), J2(ξ, πv)⊗ E) ∼=
{

C, if q = 2, 4 and σv = D±
Λ1+3,

0, otherwise.

Now the proposition follows. �

4.4. The minimal parabolic subgroup. We still have to determine the cohomology of the
various filtration quotients coming from the minimal parabolic k-subgroup P0. As in the notational
Section 1.5, a coefficient module E is given represented by its highest weight Λ = (Λ1,Λ2). Let
µ = µ1 ⊗ µ2 be a unitary character of L0(A) = GL1(A)×GL1(A) representing a cuspidal support
φ ∈ Φ0. We obtain

Proposition 4.4. There is an isomorphism of G(Af )-modules

Hq(g∞,K∞,A0
0(φ)/A1

0(φ)⊗ E) ∼=

 I0(Λ + ρ0, µf )
m0(q), if µv|L0(R)ss = sgnΛ1

F2
⊗ sgnΛ2

F2
,

∀v ∈ S∞
0, otherwise,

where

m0(q) =

(
2n− 2

q − 4n

)
In particular, this cohomology space vanishes if q is outside the range 4n ≤ q ≤ 6n− 2.

Proof. Using Theorem 3.3 we see that

Hq(g∞,K∞,A0
0(φ)/A1

0(φ)⊗ E) ∼= Hq(g∞,K∞, I0(Λ + ρ0, µ)⊗ S(ǎP0,C)⊗ E)
∼= Hq(g∞,K∞, I0(Λ + ρ0, µ∞)⊗ S(ǎP0,C)⊗ E)⊗ I0(Λ + ρ0, µf ),

whence it suffices to prove that the space

Hq(g∞,K∞, I0(Λ + ρ0, µ∞)⊗ S(ǎP0,C)⊗ E)

is of dimension m0(q) if µv|L0(R)ss = sgnΛ1
F2

⊗ sgnΛ2
F2

for all v ∈ S∞ and vanishes otherwise. Similar

to the case of the maximal parabolic subgroups, this can be accomplished harking back to [BW,
III Thm. 3.3] and [BW, II Prop. 3.1]. First, we observe that w = w2w1w2w1 is the only ele-
ment of WP0 = W which may give rise to a L0(R)-module Fw such that

⊗
σ Fw has non–trivial

(l0,∞,KL0,∞)-cohomology with respect to µ∞ ⊗ S(ǎP0,C) ⊗ CΛ+2ρ0 . The module Fw is isomorphic
to Fw = Cw(Λ+ρ)−ρ ⊗ F 0(Λ1,Λ2). Secondly, we derive as in the proofs of Propositions 4.2 and 4.3
that
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(4.4.1) Hq(g∞,K∞, I0(Λ + ρ0, µ∞)⊗ S(ǎP0,C)⊗ E) ∼= Hq−4n(m0,∞,KM0,∞, µ∞ ⊗
⊗
σ

Fw).

Third, applying [BW, II Prop. 3.1] and the Künneth rule to the last cohomology space reveals that
it is isomorphic to

⊕
r+s=q−4n

∧r
C2n−2 ⊗

⊕
(sv)v∈S∞ ,∑

v sv=s

⊗
v∈S∞

Hsv(lss0 ,KL0(R)ss , µv|L0(R)ss ⊗ F 0(Λ1,Λ2))

 .

Here, observe that KM0,∞ has trivial intersection with A◦
0,∞ and m0,∞ is of dimension 2n − 2.

Fourth, checking Lemma 4.1 gives that in order to get non-vanishing cohomology, it is necessary
that µv|L0(R)ss = F 0(Λ1,Λ2) = sgnΛ1

F2
⊗ sgnΛ2

F2
and sv = 0 for all v ∈ S∞ and then⊗

v∈S∞

Hsv(lss0 ,KL0(R)ss , µv|L0(R)ss ⊗ F 0(Λ1,Λ2)) = C.

Hence, s = 0, too, and we obtain that the dimension of the vector space (4.4.1) is

dimC

 ⊕
r+s=q−4n

∧r
C2n−2 ⊗

⊕
(sv)v∈S∞ ,∑

v sv=s

⊗
v∈S∞

Hsv(lss0 ,KL0(R)ss , µv|L0(R)ss ⊗ F 0(Λ1,Λ2))

 =

(
2n− 2

q − 4n

)
.

This shows the assertion. �

We now deal with the case of the quotient A1
0(φ)/A2

0(φ), if it is non-trivial, i.e., if µ and Λ satisfy
one of the singularity–conditions given in Theorem 3.3. That is, if either

(4.4.2) Λ1 = Λ2 and µ1 = µ2,

or

(4.4.3) Λ2 = 0 and µ2 = 1.

or both, i.e.,

(4.4.4) Λ1 = Λ2 = 0 and µ1 = µ2 = 1.

There is the following proposition.

Proposition 4.5. In each of the three cases (4.4.2), (4.4.3) and (4.4.4), there is an isomorphism
of G(Af )-modules:

(1) In case (4.4.2)

Hq(g∞,K∞,A1
0(φ)/A2

0(φ)⊗ E) ∼= I1

(
Λ1 +

3

2
, µf ◦ det

)n1(µ,q)

where

n1(µ, q) =

(
n− 1

q − 3n− 2l(µ)

)
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with

l(µ) = #{v ∈ S∞|µv|L1(R)ss = sgnΛ1

SL±
2 (R)

}

In particular, this cohomology space vanishes if q is outside the range 3n ≤ q ≤ 6n− 1.
(2) In case (4.4.3)

Hq(g∞,K∞,A1
0(φ)/A2

0(φ)⊗E) ∼=

 I2(Λ1 + 2, µf ⊗ 1SL2(Af ))
n2(q) if µv|F2 = sgnΛ1

F2

∀v ∈ S∞
0 otherwise

where

n2(q) =

⌊ q−3n
2

⌋∑
j=0

(
n− 1

q − 3n− 2j

)(
n

j

)
.

In particular, this cohomology space vanishes if q is outside the range 3n ≤ q ≤ 6n− 1.
(3) Finally, in case (4.4.4)

Hq(g∞,K∞,A1
0(φ)/A2

0(φ)⊗ E)

is isomorphic as a G(Af )-module to the direct sum

I1

(
3

2
,1L1(Af )

)( n−1
q−5n)⊕

I2(2,1L2(Af ))
n2(q),

where n2(q) is as in the case (2). So, this space vanishes again if q is outside the range
3n ≤ q ≤ 6n− 1.

Proof. By the very form of the quotient A1
0(φ)/A2

0(φ), described in Theorem 3.3, we should deter-
mine the G(Af )-module structure of the cohomology spaces

Hq

(
g∞,K∞, I1

(
Λ1 +

3

2
, µ ◦ det

)
⊗ S(ǎP1,C)⊗ E

)
∼= Hq

(
g∞,K∞, I1

(
Λ1 +

3

2
, µ∞ ◦ det

)
⊗ S(ǎP1,C)⊗ E

)
⊗ I1

(
Λ1 +

3

2
, µf ◦ det

)
and

Hq(g∞,K∞, I2(Λ1 + 2, µ⊗ 1SL2(A))⊗ S(ǎP2,C)⊗ E)

∼= Hq(g∞,K∞, I2(Λ1 + 2, µ∞ ⊗ 1SL2,∞)⊗ S(ǎP2,C)⊗ E)⊗ I2(Λ1 + 2, µf ⊗ 1SL2(Af ))

According to Theorem 3.3, the first one is needed to treat (4.4.2), the second one to treat (4.4.3)
and their direct sum to treat (4.4.4).

We will start determining the first one, i.e., by what we just said, we may assume that Λ1 = Λ2

and µ1 = µ2. A short moment of thought shows that in order to calculate the first cohomology
space, one may proceed literally as in the proof of Proposition 4.2 with w = w2w1w2 to obtain

Hq

(
g∞,K∞, I1

(
Λ1 +

3

2
, µ∞ ◦ det

)
⊗ S(ǎP1,C)⊗ E

)
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∼= Hq−3n(l1,∞,KL1,∞, µ∞ ⊗ S(ǎP1,C)⊗ CΛ1+2ρP1
⊗

⊗
σ Fw)

∼= Hq−3n(m1,∞,KM1,∞, µ∞ ⊗
⊗

σ Fw)

∼=
⊕

r+s=q−3n

[∧rCn−1 ⊗
⊕

(sv)v∈S∞ ,∑
v sv=s

⊗
v∈S∞

Hsv(lss1 ,KL1(R)ss , µv|L1(R)ss ⊗ F 1
1 (Λ1 + 1))

]
.

Recall that F 1
1 (Λ1 + 1) = sgnΛ1+1

SL±
2 (R)

is one-dimensional. As µ is one-dimensional, too, we must

have µv|L1(R)ss = sgnav
SL±

2 (R)
for some av, v ∈ S∞. Depending on the parity of av, we obtain by our

Lemma 4.1 that

Hsv(lss1 ,KL1(R)ss , µv|L1(R)ss ⊗ F 1
1 (Λ1 + 1)) ∼=

 C, if av ≡ Λ1 + 1 mod 2 and sv = 0,
C, if av ≡ Λ1 mod 2 and sv = 2,
0, otherwise.

Hence, if we let

l(µ) = #{v ∈ S∞|av ≡ Λ1 mod 2} = #{v ∈ S∞|µv|L1(R)ss = sgnΛ1

SL±
2 (R)

},

then s = 2l(µ) and so

dimC(H
q(g∞,K∞, I1(Λ1 +

3

2
, µ∞ ◦ det)⊗ S(ǎP1,C)⊗ E)) =

(
n− 1

q − 3n− 2l(µ)

)
.

This proves the assertion in case (4.4.2).

We turn now to the case of (4.4.3), i.e., we may assume that Λ2 = 0 and µ2 = 1. As above,
we may again proceed precisely as in the corresponding maximal parabolic case, namely as in the
proof of Proposition 4.3 with w = w1w2w1 in order to analyze

Hq(g∞,K∞, I2(Λ1 + 2, µ⊗ 1SL2(A))⊗ S(ǎP2,C)⊗ E).

We obtain
Hq(g∞,K∞, I2(Λ1 + 2, µ∞ ⊗ 1SL2,∞)⊗ S(ǎP2,C)⊗ E)

∼=
⊕

r+s=q−3n

∧r
Cn−1 ⊗

⊕
(sv)v∈S∞ ,∑

v sv=s

⊗
v∈S∞

Hsv(lss2 ,KL2(R)ss , (µv ⊗ 1SL2(R))|L2(R)ss ⊗ F 2
1 (Λ1)).

As F 2
1 (Λ1) = sgnΛ1

F2
⊗1SL2(R), Lemma 4.1 forces µv|F2 = sgnΛ1

F2
and gives

Hsv(lss2 ,KL2(R)ss , (µv ⊗ 1SL2(R))|L2(R)ss ⊗ F 2
1 (Λ1)) ∼=

{
C if sv = 0, 2
0 otherwise

Hence, the dimension of Hq(g∞,K∞, I2(Λ1+2, µ∞⊗1SL2,∞)⊗S(ǎP2,C)⊗E) is the number of ways
to write q − 3n as a sum q − 3n = r +

∑
v∈S∞

sv where 0 ≤ r ≤ n − 1 and for each v ∈ S∞, sv is
either 0 or 2. It is an easy exercise in combinatorics to show that this number is actually n2(q) as
predicted by our proposition. Now the proof is complete. �

We conclude this section by determining the cohomology of the last remaining filtration step
A2

0(φ). According to Theorem 3.3 it is non–trivial if and only if µ = 1L0(A) and Λ = (0, 0) and
then isomorphic to

A2
0(φ) = 1G(A).
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We show

Proposition 4.6. Let µ = 1L0(A) and Λ = (0, 0). Then the cohomology of A2
0(φ) is isomorphic as

a G(Af )-module to

Hq(g∞,K∞,A2
0(φ)⊗E) ∼= Hq(g∞,K∞,1G(A))

∼= 1
n0(q)
G(Af )

where

n0(q) = #{q =

n∑
j=1

rj |rj ∈ {0, 2, 4, 6}}

It therefore vanishes if q is odd and if q is even,

n0(q) =

⌊ q
8
⌋∑

j=0

(−1)j
(
n

j

)(
n+ q

2 − 4j − 1

n− 1

)
.

Proof. It is well–known that

Hq(sp4(R), U(2),1G(R)) ∼= C

if q = 0, 2, 4, 6 and vanishes otherwise. For instance, see [OS], table on p. 489. Therefore, it only
remains to show that for even degrees q there is the equality

n0(q) := #{q =

n∑
j=1

rj |rj ∈ {0, 2, 4, 6}} =

⌊ q
8
⌋∑

j=0

(−1)j
(
n

j

)(
n+ q

2 − 4j − 1

n− 1

)
.

By definition, n0(q) is the coefficient of xq in (x0 + x2 + x4 + x6)n. If we put y = x2, this is the

coefficient of y
q
2 in

(1 + y + y2 + y3)n =
(1− y4)n

(1− y)n

=
∑
j

(−1)j
(
n

j

)
y4j

∑
u

(
n+ u− 1

n− 1

)
yu.

Since we want 4j + u = q
2 , it follows that this coefficient is

⌊ q
8
⌋∑

j=0

(−1)j
(
n

j

)(
n+ q

2 − 4j − 1

n− 1

)
,

which shows the claim. �

5. The main results

5.1. We are now ready to state and prove the main results of this paper on the Eisenstein coho-
mology of the group G = Sp4/k. Recall that it can be decomposed along the proper parabolic
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k-subgroups and the various cuspidal supports as a direct sum

H∗
Eis(G,E) =

2⊕
i=0

⊕
φ∈Φi

H∗(g∞,K∞,AJ (Pi, φ)⊗ E).

We proceed distinguishing the three standard parabolic k-subgroups Pi and the various cuspidal
supports φ ∈ Φi, i = 0, 1, 2 in question. In order to keep notation at a minimum, we shall abbreviate
in this section

Hq(Am
i (φ)/Am+1

i (φ)⊗ E) := Hq(g∞,K∞,Am
i (φ)/Am+1

i (φ)⊗E)

and similarly

Hq(Am
i (φ)⊗ E) := Hq(g∞,K∞,Am

i (φ)⊗ E)

for the G(Af )-module of (g∞,K∞)-cohomology with respect to E of the quotients of the filtration
of AJ (Pi, φ). Furthermore, if M is any G(Af )-module and S any G(Af )-submodule of M , we will
express this by writing S = Sb(M).

5.2. Maximal parabolic subgroups. The case of the maximal parabolic k-subgroups Pi, i =
1, 2, can be treated simultaneously. Let φ = (φP )P∈{Pi} ∈ Φi be an associate class of unitary cuspi-
dal automorphic representations and π ∈ φPi a representative, i.e., a unitary cuspidal automorphic

representation of Li(A) which is trivial on the diagonally embedded group Ai(R)◦. Let χ ∈ ǎPi
0

be the infinitesimal character of π∞, where ǎPi
0 is diagonally embedded in ǎ0,∞, and ξ ∈ ǎ+Pi

such
that ξ+χ ∈ ǎ0 is annihilated by J , a condition which is explained in Proposition 3.5 and repeated
at the beginning of Sections 4.2 and 4.3. Recall from Theorem 3.6 that, if A2

i (φ) is non–trivial,
then it is isomorphic to the residual representation A2

i (φ)
∼= Ji(ξ, π). We therefore have a natural

morphism of G(Af )-modules

Jq
i (φ) : H

q(g∞,K∞,A2
i (φ)⊗ E) → Hq(g∞,K∞,AJ (Pi, φ)⊗ E)

induced by the inclusion Ji(ξ, π) ↪→ AJ (Pi, φ) ↪→ AJ . With this notation at hand we obtain the
following theorem describing the G(Af )-module structure of the summandHq(g∞,K∞,AJ (Pi, φ)⊗
E) in the Eisenstein cohomology Hq

Eis(G,E) of G.

Theorem 5.1. Let G = Sp4/k be the split algebraic group of type C2 over a totally real number
field k. Let E be an irreducible, finite-dimensional representation of G∞ so that its highest weight
Λ = (Λ1,σ,Λ2,σ)σ has repeating coordinates in the field embeddings σ : k ↪→ C, and may hence be
written as Λ = (Λ1,Λ2) and assume that E is the complexification of an algebraic representation of
G/k. Let φ = (φP )P∈{Pi} ∈ Φi, i = 1, 2, and π ∈ φPi a unitary cuspidal automorphic representation
of Li(A).

(1) If A2
i (φ) is non–trivial, i.e., if

(i = 1) Λ1 = Λ2 = Λ, ξ = 1
2 , χ = 3

2 +Λ and π satisfies that its central character is trivial and

L(12 , π) ̸= 0
(i = 2) Λ2 = 0, ξ = 1, χ = 2+ Λ1 and π = µ⊗ σ satisfies that L(s, µ× σ) has a pole at s = 1

then there is the following isomorphism of G(Af )-modules
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Hq(g∞,K∞,AJ (Pi, φ)⊗E) ∼=



Hq(A2
i (φ)⊗ E) 2n ≤ q ≤ 3n− 1

Hq(A1
i (φ)/A2

i (φ)⊗E) mod Jq
i (φ)(H

q(A2
i (φ)⊗ E)) 3n ≤ q ≤ 4n− 1

q even
Sb(Hq(A1

i (φ)/A2
i (φ)⊗ E)) 3n ≤ q ≤ 4n− 1

q odd
Jq
i (φ)(H

q(A2
i (φ)⊗ E)) q = 4n

0 otherwise

Moreover, J3n
i (φ)(H3n(A2

i (φ)⊗ E)) ∼= H3n(A2
i (φ)⊗ E).

(2) If, however, A2
i (φ) is trivial, then there is the following isomorphism of G(Af )-modules in

all degrees q:

Hq(g∞,K∞,AJ (Pi, φ)⊗ E) ∼= Hq(A1
i (φ)/A2

i (φ)⊗ E) ∼= Hq(A1
i (φ)⊗E).

Before we prove this theorem, we list a couple of remarks and consequences.

Corollary 5.2. (1) As a consequence of the theorem, if A2
i (φ) ̸= 0, then there exist non–trivial

Eisenstein cohomology classes in Hq(g∞,K∞,AJ (Pi, φ)⊗E) representable by (derivatives
of) residues of Eisenstein series at least in all even degrees q, satisfying 2n ≤ q ≤ 3n.

(2) Furthermore, again if A2
i (φ) ̸= 0, there exist non–trivial Eisenstein cohomology classes

in Hq(g∞,K∞,AJ (Pi, φ)⊗ E) representable by derivatives of holomorphic main values of
Eisenstein series at least in all even degrees q in the range 3n ≤ q ≤ 4n− 1. If A2

i (φ) = 0,
then there exist non–trivial Eisenstein cohomology classes in Hq(g∞,K∞,AJ (Pi, φ) ⊗ E)
representable by derivatives of holomorphic main values of Eisenstein series in degrees 3n ≤
q ≤ 4n − 1, respectively 4n ≤ q ≤ 5n − 1, depending on the infinitesimal character χ of
π ∈ φPi, cf. Propositions 4.2 and 4.3.

Remark 5.3. (1) We recall that the spaces Hq(A2
i (φ) ⊗ E) and Hq(A1

i (φ)/A2
i (φ) ⊗ E) used

in the statement of the theorem are described explicitly in Propositions 4.2 and 4.3.
(2) We cannot exclude that Jq

i (φ)(H
q(A2

i (φ) ⊗ E)) ̸= 0 in even degrees 3n ≤ q ≤ 4n, so
holomorphic and residual Eisenstein cohomology classes might not be separated by their
degrees.

Proof of Theorem 5.1 and its Corollary 5.2. By the very construction of the filtration, we have
AJ (Pi, φ) ∼= A1

i (φ). Hence, it suffices to prove the above theorem for Hq(A1
i (φ)⊗ E). In order to

do that, we use the long exact sequence in (g∞,K∞)-cohomology obtained from the short exact
sequence

0 → A2
i (φ) → A1

i (φ) → A1
i (φ)/A2

i (φ) → 0.

But having this strategy in mind, the theorem is an easy consequence of the vanishing properties
of

Hq(A1
i (φ)/A2

i (φ)⊗ E) and Hq(A2
i (φ)⊗ E)

obtained in Propositions 4.2 and 4.3. The corollary now follows from the theorem and the obser-
vation that A2

i (φ) is a residual automorphic representation and that A1
i (φ)/A2

i (φ) is spanned by
derivatives of holomorphic main values of Eisenstein series. �
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5.3. The minimal parabolic subgroup. We are now considering the case of the minimal par-
abolic k-subgroup P0. Therefore, let µ = µ1 ⊗ µ2 ∈ φ ∈ Φ0 be a unitary character of L0(A) which
is trivial on the diagonally embedded group A0(R)◦. Recall from Theorem 3.3 that A2

0(φ) is non–
trivial if and only if µ = 1L0(A) and Λ = (0, 0) and then isomorphic to the residual representation

A2
0(φ)

∼= 1G(A).

Hence, we can again consider the morphism

Jq : Hq(g∞,K∞,1G(A)) → Hq
Eis(G,C)

induced by the inclusion 1G(A) ↪→ AJ (P0, φ) ↪→ AJ . We shall now prove a theorem dealing with

the summands Hq(g∞,K∞,AJ (P0, φ)⊗ E) in the Eisenstein cohomology Hq
Eis(G,E) of G.

Theorem 5.4. Let G = Sp4/k be the split algebraic group of type C2 over a totally real number
field k. Let E be an irreducible, finite-dimensional representation of G∞ so that its highest weight
Λ = (Λ1,σ,Λ2,σ)σ has repeating coordinates in the field embeddings σ : k ↪→ C, and may hence be
written as Λ = (Λ1,Λ2) and assume that E is the complexification of an algebraic representation
of G/k. Let φ = (φP )P∈{P0} ∈ Φ0, and µ ∈ φP0 a unitary character of L0(A).

(1) If A2
0(φ) is non–trivial, i.e., if µ = 1L0(A) and Λ = (0, 0) then there is the following

isomorphism of G(Af )-modules

Hq(g∞,K∞,AJ (P0, φ)) ∼=


Hq(1G(A)) 0 ≤ q ≤ 3n− 1
Hq(A1

0(φ)/A2
0(φ)) mod Jq(Hq(1G(A))) 3n ≤ q ≤ 4n− 1

q even
Sb(Hq(A1

0(φ)/A2
0(φ))) 3n ≤ q ≤ 4n− 1

q odd

The module Sb(Hq(A1
0(φ)/A2

0(φ))) is non–trivial for all odd q, 3n ≤ q ≤ 4n− 1. Further-
more, J3n(H3n(1G(A))) ∼= H3n(1G(A)).

(2) If A2
0(φ) is trivial, but A1

0(φ) is non–trivial, i.e., if precisely one of the conditions
• Λ1 = Λ2 and µ1 = µ2 or
• Λ2 = 0 and µ2 = 1.

is satisfied, then there is the following isomorphism of G(Af )-modules

Hq(g∞,K∞,AJ (P0, φ)⊗ E) ∼=
{

0 0 ≤ q ≤ 3n− 1
Hq(A1

0(φ)/A2
0(φ)⊗ E) ∼= Hq(A1

0(φ)⊗E) 3n ≤ q ≤ 4n− 1

(3) If, however, even A1
0(φ) is trivial, then there is the following isomorphism of G(Af )-modules

in all degrees q:

Hq(g∞,K∞,AJ (P0, φ)⊗ E) ∼= Hq(A0
0(φ)/A1

0(φ)⊗ E) ∼= Hq(A0
0(φ)⊗ E).

Remark 5.5. (1) We recall that the spacesHq(A2
0(φ)),H

q(A1
0(φ)/A2

0(φ)⊗E) andHq(A0
0(φ)/A1

0(φ)⊗
E) are described explicitly in Propositions 4.6, 4.5 and 4.4 respectively.

(2) Unfortunately, in the case when A1
0(φ) ̸= 0 our approach does not give a good description of

Hq(g∞,K∞,AJ (P0, φ)⊗E) in the remaining possibly non–trivial degrees 4n ≤ q ≤ 6n−2.
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Proof of Theorem 5.4. Observe that by construction of the filtration, we have AJ (P0, φ) ∼= A0
0(φ).

Hence, it is enough to prove the above theorem for Hq(A0
0(φ)⊗E). In order to do so, we use as in

the case of the maximal parabolic subgroups the long exact sequences in (g∞,K∞)-cohomology

(5.3.1) ... → Hq(A2
0(φ)⊗ E) → Hq(A1

0(φ)⊗ E) → Hq(A1
0(φ)/A2

0(φ)⊗ E) → ...

and

(5.3.2) ... → Hq(A1
0(φ)⊗ E) → Hq(A0

0(φ)⊗ E) → Hq(A0
0(φ)/A1

0(φ)⊗ E) → ...

obtained from the short exact sequences

0 → A2
0(φ) → A1

0(φ) → A1
0(φ)/A2

0(φ) → 0

and

0 → A1
0(φ) → A0

0(φ) → A0
0(φ)/A1

0(φ) → 0.

By Proposition 4.5, Hq(A1
0(φ)/A2

0(φ) ⊗ E) = 0 for 0 ≤ q ≤ 3n − 1. Therefore the long exact
sequence 5.3.1 yields

Hq(A1
0(φ)⊗ E) ∼= Hq(A2

0(φ)⊗ E) for 0 ≤ q ≤ 3n− 1

and J3n(H3n(1G(A))) ∼= H3n(1G(A)). Moreover, by Proposition 4.4, Hq(A0
0(φ)/A1

0(φ)⊗ E) = 0 for
0 ≤ q ≤ 4n− 1. Hence, the long exact sequence 5.3.2 implies

Hq(A0
0(φ)⊗ E) ∼= Hq(A1

0(φ)⊗ E) for 0 ≤ q ≤ 4n− 1.

Keeping this in mind, the vanishing of Hq(A2
0(φ)⊗ E) = 0 in odd degrees also implies that

Hq(A1
0(φ)⊗ E) ∼=


Hq(A1

0(φ)/A2
0(φ)⊗ E) mod Jq(Hq(A2

0(φ)⊗ E)) 3n ≤ q ≤ 4n− 1
q even

Sb(Hq(A1
0(φ)/A2

0(φ)⊗ E)) 3n ≤ q ≤ 4n− 1
q odd

If A2
0(φ) is trivial, this simplifies to

Hq(A1
0(φ)⊗ E) ∼=

{
0 0 ≤ q ≤ 3n− 1
Hq(A1

0(φ)/A2
0(φ)⊗ E) 3n ≤ q ≤ 4n− 1

Putting the pieces together we obtain

Hq(g∞,K∞,AJ (P0, φ)) ∼=


Hq(1G(A)) 0 ≤ q ≤ 3n− 1
Hq(A1

0(φ)/A2
0(φ)) mod Jq(Hq(1G(A))) 3n ≤ q ≤ 4n− 1

q even
Sb(Hq(A1

0(φ)/A2
0(φ))) 3n ≤ q ≤ 4n− 1

q odd

if A2
0(φ) ̸= 0 and

Hq(g∞,K∞,AJ (P0, φ)⊗ E) ∼=
{

0 0 ≤ q ≤ 3n− 1
Hq(A1

0(φ)/A2
0(φ)⊗ E) ∼= Hq(A1

0(φ)⊗E) 3n ≤ q ≤ 4n− 1

if A1
0(φ) ̸= 0 but A2

0(φ) = 0. If even A1
0(φ) = 0, then A0

0(φ) = A0
0(φ)/A1

0(φ) and result follows
in this case. Hence, it remains to show that Sb(Hq(A1

0(φ)/A2
0(φ))) is non–trivial for all odd q,



32 NEVEN GRBAC AND HARALD GROBNER

3n ≤ q ≤ 4n − 1. This can be seen as follows. If 3n ≤ q ≤ 4n − 1 is odd, then the integer n2(q)
from Proposition 4.5 is non–zero. Therefore, again by Proposition 4.5

Hq(A1
0(φ)/A2

0(φ)) ⊇ I2(2,1L2(A))

and henceHq(A1
0(φ)/A2

0(φ)) is not finite–dimensional. But this implies that Sb(Hq(A1
0(φ)/A2

0(φ)))
being the kernel of the map Hq(A1

0(φ)/A2
0(φ)) → Hq+1(1G(A)) must be non–trivial, as Hq+1(1G(A))

is finite–dimensional. �
Corollary 5.6. If the highest weight Λ and a unitary character µ ∈ φP0 are such that A1

0(φ) ̸= 0,
then there are non–trivial Eisenstein cohomology classes in all degrees 3n ≤ q ≤ 4n − 1 which are
representable by the main values of derivatives of residual Eisenstein series obtained from a simple
pole of a cuspidal Eisenstein series attached to µ. Thus, their main values are residues of Eisenstein
series which are not square–integrable (and do not come from a pole of the highest possible order
2).

Proof. If the highest weight Λ and a unitary character µ ∈ φP0 are such that A1
0(φ) ̸= 0 then Thm.

5.4 shows that there are non–trivial Eisenstein cohomology classes in all degrees 3n ≤ q ≤ 4n − 1
which are elements of the cohomology spaces Hq(A1

0(φ)/A2
0(φ)⊗E). As the quotient A1

0(φ)/A2
0(φ)

is spanned by main values of derivatives of residual Eisenstein series which are obtained from a
simple pole of a cuspidal Eisenstein series attached to µ, the assertion follows. �

6. On the contribution of the trivial representation to automorphic cohomology

We would like to finish with a more detailed discussion of the actual contribution of the trivial
representation 1G(A) to Eisenstein cohomology of G = Sp4/k over a totally real number field k.
More precisely, we consider the G(Af )-morphism

Jq : Hq(1G(A)) → Hq
Eis(G,C)

induced by the inclusion 1G(A) ↪→ AJ (P0,1L0(A)) ↪→ AJ , usually called the Borel map.
The approach taken in this paper, more precisely the results of Section 5, only provides an

incomplete description of the image of the Borel map, which we summarize in Corollary 6.1 below.
As pointed out by the referee, the true approach to resolve this problem is the one of Kewenig and
Rieband in their Diplomarbeit [KR], following Franke [Fra08]. As we were not aware of their work
[KR], which is still unpublished and quite difficult to find (we found a copy in the library of the
Mathematisches Institut der Universität Bonn), following a suggestion by the referee, we decided
to include in Section 6.2 a complete summary of the results obtained by Kewenig and Rieband in
[KR], made explicit in the specific case Sp4 over a totally real number field.

6.1. We begin with a corollary that is a consequence of our computations in Section 5. It describes
the Borel map up to degree q = 3n, but fails in higher possible degrees. However, this is already
an improvement of a general result of Borel, cf. [Bor74, Thm. 7.5], in the case G = Sp4. For a
complete description of the image of the Borel map see Section 6.2, where a summary of [KR] in
the case G = Sp4 over a totally real number field is given.

Corollary 6.1. The full space of Eisenstein cohomology Hq
Eis(G,C), with respect to the trivial

coefficient system E = C, is entirely spanned by the cohomology of the trivial representation 1G(A)
in degrees 0 ≤ q ≤ 2n− 1, so

Hq
Eis(G,C) ∼= Hq(1G(A)) ∼= 1

n0(q)
G(Af )

, for 0 ≤ q ≤ 2n− 1
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in the notation of Proposition 4.6. Moreover, the morphism Jq determining the contribution of
Hq(1G(A)) to Eisenstein cohomology is injective (at least) up to degree q = 3n.

Proof. This is a direct consequence of Theorems 5.4 and 5.1. �

Remark 6.2. As mentioned above, the corollary – although a partial result – is already an im-
provement of Borel’s result on the contribution of the trivial representation to the cohomology of
arithmetic groups, cf. [Bor74, Thm. 7.5], in the case G = Sp4/k.

Indeed, denote by c(Rk/Q(G)) the maximum of all degrees q such that ρ0 − ν > 0 for all weights

ν of A0 in
∧qn0,∞, and by m(G∞) + 1 the smallest degree in which a non-trivial irreducible

unitary representation of G∞ may have cohomology, then Borel proved that Jq is injective for
q ≤ c(Rk/Q(G)) and an isomorphism for q ≤ min(c(Rk/Q(G)),m(G∞)). It is easy to make these
numbers explicit in the considered case G = Sp4/k: we obtain c(Rk/Q(G)) = n−1 and m(G∞) = 1.
Hence, the claim follows.

This is in analogy to the case SL2/k, k being any number field with more than one real place,
as it was observed by Harder in [Har75, Prop. 2.3.(iv)]. See also [Bor74, Example 7.7].

6.2. We now give a complete summary of the results of Kewenig and Rieband in their Diplomarbeit
[KR], made explicit for the case Sp4 over a totally real number field. Following the approach of
Franke, applied in [Fra08] to the special linear group, they determined the kernel of J∗ := ⊕q≥0J

q

very explicitly for the symplectic and odd special orthogonal groups of arbitrary rank over any
number field. This makes it possible to determine the image as well.

Their strategy is as follows. The cohomology H∗(g∞,K∞,1G∞) of the trivial representation

1G∞ of G∞ can be identified with the cohomology H∗(X
(c)
G ) of the connected compact dual X

(c)
G

of the symmetric space XG = G∞/K∞, attached to G∞ and its maximal compact subgroup K∞.
In particular,

H∗(1G(A)) ∼= H∗(X
(c)
G ).

We need some notation by Kewenig–Rieband. They denote by H∗(X
(c)
G )kernel the kernel of the

Borel map J∗ viewed as a subspace of H∗(X
(c)
G ),

H∗(X
(c)
G )kernel := kerJ∗ ⊆ H∗(X

(c)
G ).

The crucial fact, due to Franke [Fra08], is that this kernel can be computed as the Poincaré

orthogonal complement in H∗(X
(c)
G ) of another subspace, denoted by H∗(X

(c)
G )image,

H∗(X
(c)
G )kernel ∼=

(
H∗(X

(c)
G )image

)⊥
.

This latter subspace is the image of the Poincaré dual of the Borel map restricted to a cer-
tain subspace of H∗

c (G,C), defined by Franke in [Fra08]. In view of this latter interpretation

of H∗(X
(c)
G )kernel, Franke [Fra08, (7.2)], now provides an effective description of the kernel of the

Borel map.
The results for the symplectic group over a totally real number field are obtained, using the above

strategy, in Section 12.1 of [KR]. They first determine in Satz 12.1.1 the subspace H∗(X
(c)
G )image of

H∗(X
(c)
G ) ∼=

⊗
v∈S∞

H∗ (Sp(4)/U(2)) .
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(Here we used the Lie group theorists’ notation Sp(4) for the real compact from of Sp4(C), rather
than USp4(C) used in [KR].) It is the ideal spanned by the top Chern classes Xv, attached to the
factor H∗ (Sp(4)/U(2)) corresponding to v ∈ S∞. Since top Chern classes are self–orthogonal with
respect to the Poincaré pairing, see [KR, Korollar 10.1.5], one obtains an explicit description of the
kernel of the Borel map as well. This is done in [KR, Satz 12.1.2] and is summarized in the next
theorem.

Theorem 6.3 ([KR] Satz 12.1.2, Kor. 12.1.3). Let G = Sp4/k be the split symplectic group of k-

rank two over a totally real number field k of degree n over Q. Viewed as a subspace of H∗(X
(c)
G ) ∼=⊗

v∈S∞
H∗ (Sp(4)/U(2)), the kernel of the morphism J∗ = ⊕q≥0J

q is the ideal, which is spanned,
by the product

∏
v∈S∞

Xv ⊗ 1G(Af ), Xv being the top Chern class associated to H∗ (Sp(4)/U(2)) at
the place v. In particular, its dimension is dimKerJ∗ = 2n.

From the description of the kernel of J∗ one can determine its image. In this way, as a direct
consequence of Thm. 6.3, one obtains the following corollary, which shows that Jq is non–trivial
in even higher degrees than what could be determined using our approach in Corollary 6.1.

Corollary 6.4. The dimension of the image of the Borel map J∗ = ⊕q≥0J
q for G = Sp4/k is

given by

dim ImJ∗ = 2n(2n − 1).

Moreover, if n ≥ 2, then the trivial representation 1G(A) contributes non-trivially to Eisenstein

cohomology above the middle degree q = 3n = 1
2 dimG∞/K∞.

Proof. By induction on the degree n = [k : Q], one shows using the proof of Prop. 4.6 that
dimH∗(1G(A)) = 22n. Now, the first part of the corollary is a consequence of Thm. 6.3. For the
last assertion recall that the (g∞,K∞)-cohomology of 1∞ satisfies Poincaré duality and the fact that
for n ≥ 2, dim ImJ∗ = 2n(2n − 1) > 22n−1 = 1

2 dimH∗(1G(A)). This shows the last assertion in the

case of odd n. If n = 2ℓ ≥ 2 is even, we need to prove that dim ImJ∗ > 1
2 dimH∗(1G(A))+

1
2n0(3n).

An easy observation using again the proof of Prop. 4.6 and Poincaré duality shows that this is

equivalent to 2n <
∑3ℓ−1

j=0 aj , where aj is the coefficient of yj in the polynomial (1 + y + y2 + y3)n.
But this follows by induction on ℓ. �

Remark 6.5. The last assertion of Cor. 6.4 is in accordance to the case SL2/k considered by
Harder, cf. [Har75, Prop. 2.3.(iv)]. He proved that if k ̸= Q, then 1SL2(A) contributes non–trivially
to Eisenstein cohomology of SL2/k in some degrees greater than the middle one, i.e., greater than
half the dimension of the symmetric spaces associated to SL2,∞ and a maximal compact subgroup.

Example 6.6. For the convenience of the reader, and as an example, we make in Table 6.1 the
contribution of the trivial representation to Eisenstein cohomology, i.e., the behavior of the Borel
map Jq : Hq(1G(A)) → Hq

Eis(G,C), explicit for the group Sp4 over a real quadratic extension k/Q,
i.e., n = 2.

We use the notation “bij.” for bijective, “inj.” for injective but not surjective, the symbol × for
neither injective nor surjective, and ≡ 0 for the trivial map. The middle degree in this example is
q = 3n = 6. Hence, as predicted by Corollary 6.4, we see that there is a non–trivial contribution
in degree q = 8, which is above the middle degree.
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q 0 2 4 6 8 10 12

ImJq C C2 C3 C4 C2 0 0
KerJq 0 0 0 0 C C2 C
Jq is bij. bij. inj. inj. × ≡ 0 ≡ 0

Table 6.1. The behavior of the Borel map for the group Sp4 over a real quadratic
extension of Q
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