ON EISENSTEIN SERIES AND THE COHOMOLOGY OF ARITHMETIC GROUPS

NEVEN GRBAC AND JOACHIM SCHWERMER

ABSTRACT. The automorphic cohomology of a reductive \mathbb{Q} -group G captures essential analytic aspects of the arithmetic subgroups of G. The subspace spanned by all possible residues and principal values of derivatives of Eisenstein series, attached to cuspidal automorphic forms π on the Levi factor of proper parabolic \mathbb{Q} -subgroups of G, forms the Eisenstein cohomology. We show that non-trivial classes can only arise if the point of evaluation features a "half-integral" property. Consequently, only the analytic behavior of the automorphic L-functions at half-integral arguments matters whether an Eisenstein series attached to a globally generic π gives rise to a residual class or not.

RÉSUMÉ **Sur les séries d'Eisenstein et la cohomologie des groupes arithmétiques.** La cohomologie automorphe d'un \mathbb{Q} -groupe réductif G détecte des propriétés analytiques essentielles des sous-groupes arithmétiques de G. La cohomologie d'Eisenstein est le sous-espace engendré par tous les résidus ainsi que par les valeurs principales des dérivées des séries d'Eisenstein, attachées aux formes automorphes cuspidales π sur les facteurs de Levi des \mathbb{Q} -sous-groupes paraboliques propres de G. Nous montrons que les classes non triviales ne peuvent provenir que des évaluations aux points "demi-entiers". Ainsi, savoir si une série d'Eisenstein attachée à une forme π générique donne lieu à une classe résiduelle ou non, ne dépend que du comportement analytique de fonctions L automorphes en des points demi-entiers.

1. EISENSTEIN COHOMOLOGY OF ARITHMETIC GROUPS

Let G be a connected reductive algebraic group defined over \mathbb{Q} . Let \mathbb{Q}_v be the completion of \mathbb{Q} at a place v of \mathbb{Q} . Let \mathbb{A} be the ring of adèles of \mathbb{Q} , and \mathbb{A}_f the finite adèles. We fix a choice of a minimal parabolic \mathbb{Q} -subgroup P_0 of G with Levi decomposition $P_0 = L_0 N_0$, and a choice of a maximal compact subgroup $K = \prod_v K_v$ of $G(\mathbb{A})$ such that K is in good position with respect to P_0 (cf. [6, Sect. I.1.4]). Here K_v is a maximal compact subgroup of $G(\mathbb{Q}_v)$, and we write $K_{\mathbb{R}}$ for K_v at the archimedean place $v = \infty$ of \mathbb{Q} . Let M_G be the connected component of the intersection of the kernels of all \mathbb{Q} -rational characters of G, and \mathfrak{m}_G its Lie algebra. Let A_G be a maximal \mathbb{Q} -split torus in the center of G.

Let E be a finite-dimensional irreducible representation of $G(\mathbb{C})$ of highest weight Λ . Let J_E be the annihilator of the dual representation of E in the center of the universal enveloping algebra of \mathfrak{m}_G . Let \mathcal{A}_E be the space of automorphic forms on $A_G(\mathbb{R})^\circ G(\mathbb{Q}) \setminus G(\mathbb{A})$ (cf. [6], [1]) annihilated by a power of J_E . It carries the structure of a $(\mathfrak{m}_G, K_{\mathbb{R}}, G(\mathbb{A}_f))$ -module. The automorphic cohomology of G with coefficients in E is defined as the Lie algebra cohomology

$$H^*(G, E) = H^*(\mathfrak{m}_G, K_{\mathbb{R}}; \mathcal{A}_E \otimes E).$$

As proved in [2, Thm. 1.4, resp. 2.3], this cohomology decomposes according to the decomposition of the space of automorphic forms with respect to their cuspidal support. More precisely, let \mathcal{C} be the set of associate classes of parabolic Q-subgroups of G, and, given a class $\{P\} \in \mathcal{C}$, represented by a parabolic Q-subgroup P with Levi decomposition $P = L_P N_P$, let $\Phi_{E,\{P\}}$ be the set of associate

Second author's work supported in part by FWF Austrian Science Fund, grant number P 21090–N13.

classes $\phi = \{\phi_Q\}_{Q \in \{P\}}$ of cuspidal automorphic representations of the Levi factors of $Q \in \{P\}$ as in [2, Sect. 1.2]. Let $\mathcal{A}_{E,\{P\},\phi}$ be the subspace of \mathcal{A}_E consisting of automorphic forms whose constant term along a parabolic \mathbb{Q} -subgroup Q of G is orthogonal to the space of cuspidal automorphic forms on $L_Q(\mathbb{A})$ if $Q \notin \{P\}$, and belongs to the ϕ_Q -isotypic component of that space if $Q \in \{P\}$. Then

$$H^*(G, E) = \bigoplus_{\{P\} \in \mathcal{C}} \bigoplus_{\phi \in \Phi_{E, \{P\}}} H^*(\mathfrak{m}_G, K_{\mathbb{R}}; \mathcal{A}_{E, \{P\}, \phi} \otimes E).$$

For $\{P\} \neq \{G\}$, the cohomology classes in a summand $H^*(\mathfrak{m}_G, K_{\mathbb{R}}; \mathcal{A}_{E,\{P\},\phi} \otimes E)$ are constructed from the residues or principal values of the derivatives of Eisenstein series attached to a cuspidal automorphic representation π of $L_P(\mathbb{A})$ belonging to an associate class $\phi \in \Phi_{E,\{P\}}$. Thus, the family of these summands is called the Eisenstein cohomology. We assume, as we may, that π is normalized in such a way that the poles of the Eisenstein series attached to π are real.

As proved in [5, Sect. 3], from the representation theoretic point of view, the study of a summand in the above decomposition of the automorphic cohomology, reduces to the study of the induced representation

$$\mathrm{Ind}_{P(\mathbb{A}_f)}^{G(\mathbb{A}_f)}H^*\left(\mathfrak{p},K_{\mathbb{R}}\cap P(\mathbb{R});V_{\pi}\otimes H^*(\mathfrak{n}_P,E)\otimes S(\check{\mathfrak{a}}_P^G)\right)$$

where \mathfrak{p} , \mathfrak{n}_P are the Lie algebras of P and N_P , V_{π} is the π -isotypic subspace of the space of cuspidal automorphic forms on $L_P(\mathbb{A})$, and $S(\check{\mathfrak{a}}_P^G)$ is the symmetric algebra of $\check{\mathfrak{a}}_P^G$ endowed with the $(\mathfrak{m}_G, K_{\mathbb{R}})$ -module structure as in [1, p. 218]. Here $\check{\mathfrak{a}}_P^G$ is the dual of $\mathfrak{a}_P \cap \mathfrak{m}_G$, where \mathfrak{a}_P is the Lie algebra of the maximal split torus A_P in the center of L_P .

2. Necessary Conditions for Non-Vanishing

The necessary conditions for non-vanishing of cohomology classes are given in terms of the absolute root system of G. Hence, for simplicity of exposition, we assume from this point on that G is \mathbb{Q} -split. Let Ψ be the absolute root system of G with respect to L_0 , Ψ^+ and Δ the positive and simple roots determined by P_0 . Let ρ_{P_0} be the half-sum of positive roots. Let W be the absolute Weyl group of G. Let P be a standard (i.e. containing P_0) proper parabolic \mathbb{Q} -subgroup of G, with Levi decomposition $P = L_P N_P$. Let W^P be the set of minimal coset representatives for $W_{L_P} \setminus W$ (cf. [3]), where W_{L_P} is the absolute Weyl group of L_P . For $w \in W^P$, let F_{μ_w} be a representation of the Levi factor $L_P(\mathbb{C})$ of highest weight $\mu_w = w(\Lambda + \rho_{P_0}) - \rho_{P_0}$. Let $\check{\mathfrak{a}}_P = X^*(P) \otimes \mathbb{R}$, where $X^*(P)$ denotes the group of \mathbb{Q} -rational characters of P. Representation theoretical arguments show

Proposition 2.1. The space $H^*(\mathfrak{m}_G, K_{\mathbb{R}}; \mathcal{A}_{E,\{P\},\phi} \otimes_{\mathbb{C}} E)$ is trivial except possibly if there exists a representative $w \in W^P$ such that F_{μ_w} is isomorphic to its complex conjugate contragredient representation $F^*_{\mu_w}$, and so that for any $\pi \in \phi$ the infinitesimal characters of its infinite component π_{∞} and $F^*_{\mu_w}$ coincide.

Proposition 2.2 (Thm. 4.11 in [7]). If the two necessary conditions in Proposition 2.1 are satisfied for certain $w \in W^P$, then the only possibly non-trivial cohomology classes are those obtained from the residues or the principal values of the derivatives of the Eisenstein series attached to π as in [4] or [6, Sect. II.1.5] at the value $s_w = (-w(\Lambda + \rho_{P_0}))|_{\check{\mathfrak{g}}_P}$ of its complex parameter.

3. Evaluation Points and Automorphic L-functions at Half-integral Arguments

We retain the assumption that G is \mathbb{Q} -split, and restrict our attention to classical groups. More precisely, G is the \mathbb{Q} -split general linear group GL_n (n > 1), the symplectic group Sp_n , the odd special orthogonal group SO_{2n+1} , or the even special orthogonal group SO_{2n} (n > 1). Let $e_k \in \check{\mathfrak{a}}_{P_0}$, for $k = 1, \ldots, n$, be the projection of L_0 to its k^{th} component. The standard parabolic \mathbb{Q} -subgroups of G are in bijection with the subsets of the set Δ of simple roots. Let $1 \leq R_1 < \ldots < R_d \leq n$ be integers, and $R_d = n$ if $G = GL_n$. Let P be a standard parabolic Q-subgroup of G corresponding to $\Theta_P = \Delta \setminus \{\alpha_{R_1}, \ldots, \alpha_{R_d}\}$, where α_R is the R^{th} root in the standard ordering of simple roots, except in the case $G = GL_n$ where $\Theta_P = \Delta \setminus \{\alpha_{R_1}, \ldots, \alpha_{R_{d-1}}\}$. For simplicity of exposition, if $G = SO_{2n}$ we exclude the case $R_d = n - 1$. Let π be a cuspidal automorphic representation of $L_P(\mathbb{A})$ belonging to an associate class $\phi \in \Phi_{E,\{P\}}$.

Theorem 3.1. Let $s_w = -w(\Lambda + \rho_{P_0})|_{\check{\mathfrak{a}}_P}$ be the evaluation point written in the basis $\{e_1, \ldots, e_n\}$ for $\check{\mathfrak{a}}_{P_0}$ as

$$s_w = t_1 \sum_{l_1=1}^{R_1} e_{l_1} + t_2 \sum_{l_2=R_1+1}^{R_2} e_{l_2} + \ldots + t_d \sum_{l_d=R_{d-1}+1}^{R_d} e_{l_d},$$

where $t_1, \ldots, t_d \in \mathbb{R}$. Then the residue or a derivative of the Eisenstein series attached to π , evaluated at s_w , can possibly give rise to a non-trivial cohomology class in the space $H^*(\mathfrak{m}_G, K_{\mathbb{R}}; \mathcal{A}_{E, \{P\}, \phi} \otimes E)$ only if s_w has the property that $t_l \in \frac{1}{2}\mathbb{Z}$ for $l = 1, \ldots, d$, except in the case $G = GL_n$ where we have $t_k - t_l \in \frac{1}{2}\mathbb{Z}$ for $1 \leq k < l \leq d$.

The main technical tool in the proof is a combinatorial description of the sets W^P for classical groups which enables us to give explicit formulas for the action of $w \in W^P$ on $\check{\mathfrak{a}}_{P_0}$. The divisibility properties of the coefficients of the evaluation point $s_w = -w(\Lambda + \rho_{P_0})|_{\check{\mathfrak{a}}_P}$ can be controlled using the explicit formula for the action of $w \in W^P$ and the necessary condition $F^*_{\mu_w} \cong F_{\mu_w}$ in Proposition 2.1.

This theorem shows that for computing Eisenstein cohomology one only needs to consider the Eisenstein series at evaluation points of a very special form. In particular, if π is globally generic, the Langlands–Shahidi method relates the poles of the Eisenstein series attached to π to the analytic properties of certain automorphic L-functions. The point of evaluation s_w occurs in the arguments of those L-functions as $k_\beta \langle s_w, \beta^{\vee} \rangle$, where $\beta \in \Psi_{\rm red}^+(G, A_P)$ ranges over the positive roots in the reduced root system of G with respect to A_P , and either $k_\beta = 1$ or $k_\beta \in \{1, 2\}$ depending on β . Therefore, in all cases $\langle s_w, \beta^{\vee} \rangle \in \frac{1}{2}\mathbb{Z}$. Note that for different β , different L-functions appear. Moreover, if the symmetric or exterior square L-function appears with $k_\beta = 1$, then $R_d = n$, and either $G = SO_{2n+1}$ with β of the form $\beta = e_{R_k}$, or $G = SO_{2n}$ with β of the form $\beta = e_{R_k-1} + e_{R_k}$ and $R_k - R_{k-1} \geq 2$. Thus, in these two cases, in fact, $\langle s_w, \beta^{\vee} \rangle = 2t_k \in \mathbb{Z}$. Although the analytic properties of all the L-functions in the Langlands–Shahidi normalizing factors are not completely understood (e.g. the poles inside 0 < s < 1 for the symmetric and exterior square L-functions), it turns out, due to Theorem 3.1, that they are known at the evaluation points which are relevant for cohomology. We discuss an example in the next section.

4. AN EXAMPLE: MAXIMAL PARABOLIC SUBGROUPS OF THE SYMPLECTIC GROUP

We consider the Q-split symplectic group Sp_n of Q-rank $n \ge 2$. The highest weight Λ of the representation E of $Sp_n(\mathbb{C})$ is of the form $\Lambda = \sum_{k=1}^n \lambda_k e_k$, where all $\lambda_k \in \mathbb{Z}$ and $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n \ge 0$. Let $P_n = L_n N_n$ be the standard maximal proper parabolic Q-subgroup of Sp_n with the Levi factor $L_n \cong GL_n$. Let π be a cuspidal automorphic representation of $L_n(\mathbb{A})$ in an associate class $\phi \in \Phi_{E,\{P_n\}}$.

Theorem 4.1. Let $\mathcal{L}_{E,\{P_n\},\phi}$ be the subspace of $\mathcal{A}_{E,\{P_n\},\phi}$ consisting of square-integrable automorphic forms. The cohomology space $H^*(\mathfrak{sp}_n, K_{\mathbb{R}}; \mathcal{L}_{E,\{P_n\},\phi} \otimes E)$ is trivial except possibly in the case where the following conditions are satisfied:

- (1) the representation π is selfdual, $L(s, \pi, \wedge^2)$ has a pole at s = 1, and $L(1/2, \pi) \neq 0$,
- (2) the \mathbb{Q} -rank n of the algebraic group Sp_n/\mathbb{Q} is even,
- (3) the highest weight Λ of E satisfies $\lambda_{2l-1} = \lambda_{2l}$ for all l = 1, 2, ..., n/2,

(4) the infinite component π_{∞} of π is a tempered representation of $GL_n(\mathbb{R})$ fully induced from n/2 unitary discrete series representations of $GL_2(\mathbb{R})$ having the lowest O(2)-types $2\mu_l + 2n - 4l + 4$ for l = 1, ..., n/2, where $\mu_l = \lambda_{2l-1} = \lambda_{2l}$.

Square-integrable automorphic forms in $\mathcal{L}_{E,\{P_n\},\phi}$ are obtained as residues of Eisenstein series attached to π at the poles inside the open positive Weyl chamber in $\check{\mathfrak{a}}_{P_n}$. Since all cuspidal automorphic representations of $GL_n(\mathbb{A})$ are globally generic, the Langlands–Shahidi method implies that those poles coincide with the poles of the normalizing factor

$$\frac{L(s,\pi)}{L(1+s,\pi)\varepsilon(s,\pi)}\frac{L(2s,\pi,\wedge^2)}{L(1+2s,\pi,\wedge^2)\varepsilon(2s,\pi,\wedge^2)},$$

where s > 0 is identified with the character det^s $\in \check{\mathfrak{a}}_{P_n}$. The poles of that ratio at s > 0 are among the poles of $L(2s, \pi, \wedge^2)$. However, this L-function has no poles for 2s > 1, it has a simple pole at 2s = 1 for π as in Theorem 4.1.(i), but its analytic behavior inside the critical strip 0 < 2s < 1 is not known. At this point the strength of Theorem 3.1 reveals, because it shows that possible poles inside 0 < 2s < 1 play no role in understanding the cohomology space $H^*(\mathfrak{sp}_n, K_{\mathbb{R}}; \mathcal{A}_{E, \{P_n\}, \phi} \otimes E)$. The rest of the theorem follows from the explicit formulas for the action of $w \in W^{P_n}$, Propositions 2.1 and 2.2, and $s_w = 1/2$.

A treatment of the other maximal proper parabolic subgroups P_r , with the Levi factor $L_r \cong GL_r \times Sp_{n-r}$ where r < n, is also carried through. In that case, given a globally generic $\pi \cong \tau \otimes \sigma$, the analytic behavior of the exterior square L-function $L(2s, \tau, \wedge^2)$ at s = 1/2, and the Rankin–Selberg L-function $L(s, \tau \times \sigma)$ at s = 1, plays a decisive role.

References

- [1] J. Franke, Harmonic analysis in weighted L₂-spaces, Ann. Sci. École Norm. Sup. 31 (2) (1998), 181–279.
- [2] J. Franke, J. Schwermer, A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups, Math. Ann. 311 (4) (1998), 765–790.
- [3] B. Kostant, Lie algebra cohomology and the generalized Borel–Weil theorem, Ann. of Math. 74 (1961), 329–387.
- [4] R.P. Langlands, On the Functional Equations Satisfied by Eisenstein Series, Lect. Notes in Math. 544, Springer, Berlin–Heidelberg–New York, 1976.
- [5] J.S. Li, J. Schwermer, On the Eisenstein cohomology of arithmetic groups, Duke Math. J. 123 (2004), 141–169.
- [6] C. Mœglin, J–L. Waldspurger, Décomposition spectrale et séries d'Eisenstein, Progress in Math. 113, Birkhäuser, Boston, Basel, Berlin, 1994.
- J. Schwermer, Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen, Lect. Notes in Math. 988, Springer, Berlin-Heidelberg-New York, 1983.

NEVEN GRBAC, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF RIJEKA, OMLADINSKA 14, 51000 RIJEKA, CROATIA

E-mail address: neven.grbac@math.uniri.hr

JOACHIM SCHWERMER, FACULTY OF MATHEMATICS, UNIVERSITY OF VIENNA, NORDBERGSTRASSE 15, A-1090 VIENNA, AUSTRIA, AND ERWIN SCHRÖDINGER INTERNATIONAL INSTITUTE FOR MATHEMATICAL PHYSICS, BOLTZ-MANNGASSE 9, A-1090 VIENNA, AUSTRIA

E-mail address: Joachim.Schwermer@univie.ac.at

4