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Introduction

0.1. Automorphic cohomology. Let G be a connected reductive algebraic Q-group. The case of interest
for us will be the group Resk/QH obtained from a connected reductive algebraic group H defined over an
algebraic number field k by restriction of scalars. The automorphic cohomology H∗(G, E) of G, is usually
defined as the relative Lie algebra cohomology group

H∗(G,E) = H∗(mG,KR;AE ⊗C E),

of G where AE denotes the space of automorphic forms on G(k)\G(A) with respect to coefficient system
originating with a finite-dimensional algebraic representation of G. We refer to Sect. 1 in Chapter I for
unexplained notation mG and KR. This cohomology reflects a deep relation between the cohomology of
arithmetic subgroups of G and the corresponding theory of automorphic forms.

By use of the notion of cuspidal support for an automorphic form one obtains a finer decomposition of the
automorphic cohomology. Let C be the set of classes of associate parabolic Q–subgroups of G. Given {P} a
class of associate parabolic Q-subgroups of G, let φ = {φR}R∈{P} be a class of associate irreducible cuspidal
automorphic representations of the Levi components of elements of {P} as defined in [10, Section 1.2.]. The
set of all such collections φ = {φR}R∈{P} is denoted by ΦE,{P}. Given a class {P} of associate parabolic
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Q-subgroups of G, we denote by VG({P}) the space of smooth functions on G(A) of uniform moderate growth
which are negligible along every parabolic Q-subgroups Q 6∈ {P}. Then, given any φ ∈ ΦE,{P}, we let

AE,{P},φ =



f ∈ VG({P}) | fR ∈

⊕

π∈φR

L2
cusp,π(LR, ωπ)⊗ S(ǎG

R) for all R ∈ {P}




be the space of functions in VG({P}) whose constant term along each R ∈ {P} belongs to the isotypic
components attached to the elements π ∈ φR of the space of cuspidal automorphic forms on the Levi
components LR. Then, by [10, Thm 1.4 resp. 2.3] or [24, Thm in III, 2.6], the automorphic cohomology
H∗(G,E) has a direct sum decomposition

H∗(G, E) =
⊕

{P}∈C

⊕

φ∈ΦE,{P}

H∗(mG,KR,AE,{P},φ ⊗C E)

where, given {P} ∈ C, the second sum ranges over the set ΦE,{P} of classes of associate irreducible cuspidal
automorphic representations of the Levi components of elements of {P}.

The summand in the direct sum decomposition of the cohomology H∗(G, E) that is indexed by the full
group {G} is called the cuspidal cohomology of G with coefficients in E, and denoted by H∗

cusp(G,E). Due to
the results in [8], the cohomology classes in the remaining summands can be described by suitable derivatives
of Eisenstein series or residues of these. These classes span the so called Eisenstein cohomology, to be denoted
H∗

Eis(G, E).

0.2. The case GL(2) and inner forms. We now suppose that the semi–simple rank rkQG = 1. This is the
case for G = Resk/QH if rkkH = 1. Then there is exactly one G(Q)-conjugacy class P of proper parabolic
Q-subgroups of G, and the associate class {P} of such a parabolic Q-subgroup P coincides with P. Thus
the decomposition above reduces to direct sum decomposition

H∗(G,E) = H∗
cusp(G,E)⊕

⊕

φ∈ΦE,{P}

H∗(mG,KR;AE,{P},φ ⊗C E).

In the case of the general linear group H = GL(2)/k, Harder describes in [17] in detail which types (in
the sense of [26]) of Eisenstein cohomology classes occur and how their actual construction is related to the
analytic properties of certain Euler products (or automorphic L–functions) attached to π. In the general case
of a k-rank one group H, the results in [16] present a premature form of the decomposition above. However,
the internal structure of the Eisenstein cohomology, in particular, the very existence of residual Eisenstein
cohomology classes are still open questions in this generality.

By use of the twisted trace formula one can detect cuspidal automorphic representations for the group
GL(2)/k (or variants thereof) which give rise to non–vanishing cuspidal cohomology classes. Then one can
use the Jacquet–Langlands correspondence [18] between cuspidal automorphic representations for GL(2)
and automorphic representations for its inner forms to construct non–vanishing cohomology classes for these
inner forms. This had, for example, interesting applications in the study of arithmetically defined compact
hyperbolic 3-manifolds in [20], resp. [28].

0.3. The case GL(2) over a central division algebra. In this paper our object of concern is the following
case: Let D be a central division k-algebra of degree d defined over an algebraic number field k. Then the
connected reductive k-group GL(2, D) is of semi–simple k-rank 1; it is a k-form of the general linear k-group
GL(2d). Up to conjugacy, a minimal parabolic k-subgroup Q of GL(2, D) has the form Q = LN with Levi
component L ∼= GL(1, D)×GL(1, D), and N the unipotent radical of Q. In recent work, Badulescu [1] and
Badulescu–Renard [2] established a generalization of the global Jacquet–Langlands correspondence to the
case GL(n)/k and its inner forms. It is based on the local Jacquet–Langlands correspondence for unitary
representations which they define. Unlike the local Jacquet–Langlands correspondence of Deligne–Kazhdan–
Vignéras [7] for square–integrable representations which is a bijection, this generalization is neither injective
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nor surjective, and there are unitary representations on both sides not involved in the correspondence.
Nevertheless, it suffices for defining the global Jacquet–Langlands correspondence. For more details see
Sect. 2 and Sect. 3 in Chapter II.

However, it is our objective to understand what the implications of the general Jacquet–Langlands corre-
spondence are for the investigation of the automorphic cohomology of the group Resk/QGL(2, D) obtained
from GL(2, D) by restriction of scalars. Of course, a detailed understanding of the automorphic cohomology
of the group Resk/QGL(2d)/k obtained from the split k-group GL(2d) by restriction of scalars is fundamental
for such an analysis.

Being modest in our aim we focus on the case of a quaternion division algebra D over k. Then the group
H ′ = GL(2, D) is an inner form of the general linear group H = GL(4)/k of semi–simple k-rank 3. We
are interested in the automorphic cohomology of the Q-groups G = Resk/QH and G′ = Resk/QH ′ obtained
from H and H ′, respectively, by restriction of scalars. Starting from the decomposition of the automorphic
cohomology along the cuspidal support as described in Sect. 0.1 in both cases, namely G and G′, we make
a comparison of the internal structure of the individual summands involved in this description. The general
Jacquet–Langlands correspondence, made explicit in the case of the group H and its inner form H ′, provides
a relation between the automorphic representations on both sides. However, due to some subtle issues, this
relation is not at all carried over to the cohomological frame work. This investigation has to be seen as a first
attempt to understand where the obstacles for a direct “cohomological comparison” are. Some of them, for
example, originate in the still not well understood cohomological contribution of automorphic representations
which occur in the discrete spectrum of the underlying algebraic k-group but are non–cuspidal.

Our work includes

- a structural description of the automorphic cohomology of G = Resk/QGL(4)/k, in particular, of
the Eisenstein cohomology

- an explicit description (up to infinitesimal equivalence) of the irreducible unitary representations of
GL4(R) with non-zero cohomology

- making explicit the local and the global Jacquet–Langlands correspondence in the case GL(4)/k
- a structural description of the automorphic cohomology of G′ = Resk/QGL(2, D), in particular, of

the Eisenstein cohomology
- a non-vanishing result for the cuspidal cohomology H∗

cusp(G′,C) of G′ = Resk/QGL(2, D)
- understanding in which way residues of Eisenstein series may give rise to non–trivial classes in the

automorphic cohomology of G′ = Resk/QGL(2, D) and G = Resk/QGL(4)/k respectively, and how
their very existence may be understood in terms of the global Jacquet–Langlands correspondence.

These results are contained in Part III of this paper. In Part I, we define the automorphic cohomology,
and recall its decomposition along the cuspidal support. We also discuss some background material in the
theory of Eisenstein series. Part II deals with the general Jacquet–Langlands correspondence. Although
the local Jacquet–Langlands correspondence for unitary representations seems quite complicated, it gives
the crucial local ingredients for the definition of the global Jacquet–Langlands correspondence. This global
correspondence between discrete spectra of a general linear group and its inner form is defined and proved
in Badulescu [1] and Badulescu–Renard [2]. It seems much more natural than the local correspondences
required for its definition. We precisely describe the local and global correspondence in the case GL(4)/k.
This amounts to an explicit enumeration of the unitary representations involved in this correspondence.

Notation

(1) Let k be an arbitrary finite extension of the field Q of rational numbers. The set of places of k will
be denoted by V , while V∞ (resp. Vf ) will refer to the set of archimedean (resp. non–archimedean)
places of k. The completion of k at a place v ∈ V is denoted by kv, and its ring of integers by Ov,
v ∈ Vf . In the case k = Q, the ring of integers of Qv will be denoted by Zv, v ∈ Vf .
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Let Ak (resp. Ik) be the ring of adèles (resp. the group of idèles) of k. We denote by Ak,f the
finite adèles of k. For k = Q we suppress the subscript from the notation.

Let D be a division algebra central over k. Let d be the degree of D over k. We denote by
VD a finite set of places v ∈ V of k such that D does not split at v ∈ VD, and splits at v 6∈ VD.
In other words, D ⊗k kv is isomorphic to the matrix algebra Md(kv) of d × d matrices over kv at
places v 6∈ VD, while it is isomorphic to a matrix algebra of smaller square matrices with entries in
a division algebra Dv over kv at places v ∈ VD.

(2) The algebraic groups we consider will be linear groups, i.e., such a group H defined over a field k is
affine viewed as an algebraic variety. We fix an embedding ρ : H −→ GLn (defined over k) of G into
some general linear group.

If H is an algebraic group defined over a field k, and k′ is a commutative k–algebra containing k,
we denote by H(k′) the group of k′–valued points of H. When k′ is a field containing k we denote
by H/k′ the k′ algebraic group H ×k k′ obtained from H by extending the ground field from k to k′.

On the other hand, if H is an algebraic group defined over a field k, and k′ a field contained in k,
we denote by Resk/k′H the algebraic group defined over k′ obtained from H by restriction of scalars
from k to k′.

(3) Let G be a connected reductive algebraic group defined over Q. Suppose that a minimal parabolic Q–
subgroup P0 of G and a Levi decomposition P0 = L0N0 of P0 over Q have been fixed. By definition,
a standard parabolic Q–subgroup of G is a parabolic Q–subgroup P of G with P0 ⊂ P . Then P has
a unique Levi decomposition P = LP NP over Q such that LP ⊃ L0. When the dependency on the
parabolic subgroup is clear from the context, we suppress the subscript P from the notation.

Let AP be the maximal Q–split torus in the center of LP . In the case of the minimal parabolic
Q–subgroup P0 we write A0 = AP0 . Then there is a unique Langlands decomposition P = MP AP NP

with MP ⊃ M0 and AP ⊂ A0.
Let g, p, ... denote the Lie algebras of G(R), P (R), . . . , respectively. The Lie algebras of the factors

in the Langlands decomposition of P will be denoted by mP , aP , nP , and lP = mP + aP . We put
ǎ0 = X∗(P0) ⊗ R, where X∗ denotes the group of Q–rational characters, and similarly for a given
standard parabolic Q–subgroup P ⊃ P0, ǎP = X∗(P ) ⊗ R. Then aP = X∗(AP ) ⊗ R, where X∗
denotes the group of Q–rational cocharacters, and a0 = X∗(A0)⊗ R are in a natural way in duality
with ǎP and ǎ0; the pairing is denoted by 〈 , 〉. In particular, aP and a0 are independent of the
Langlands decomposition up to canonical isomorphism. The inclusion AP ⊂ A0 defines aP → a0, and
the restriction of characters of P to P0 defines ǎP → ǎ0 which is inverse to the dual of the previous
map. Thus, one has direct sum decompositions a0 = aP ⊕ aP

0 and ǎ0 = ǎP ⊕ ǎP
0 respectively. Let

aQ
P be the intersection of aP and aQ

0 in a0. Similar notation is used for ǎ. By mG we denote the
intersection ∩ker(dχ) of the kernels of the differentials of all rational characters χ ∈ X∗(G). Then
we put aG

P := aP ∩mG; its dimension is called the rank of P . We use ǎG
P for its dual. We denote by

Φ ⊂ X∗(A0) ⊂ ǎ0 the set of roots of A0 in g; it is a root system in the vector space ǎ0. The ordering
on Φ is fixed so that Φ+ coincides with the set of roots of A0 in P0. Let ∆ ⊂ Φ be the set of simple
positive roots. Let aG+

0 ⊂ aG
0 and ǎG+

0 ⊂ ǎG
0 be the open positive Weyl chambers determined by

the choice of P0. Similarly, we denote the corresponding positive Weyl chambers by aG+
P ⊂ aG

P and
ǎG+

P ⊂ ǎG
P . If P is a standard parabolic Q–subgroup of G the Weyl group of A0 in LP is denoted by

WP . In particular, we write W = WG for the Weyl group of the root system Φ. Note that WP is a
subgroup of W .

I. Automorphic Forms, Eisenstein Series, and Cohomology

In this chapter we recall the definitions and review important properties of automorphic forms, auto-
morphic cohomology, and Eisenstein series on a connected reductive linear algebraic group defined over Q.
Although in the rest of the paper we also consider reductive groups defined over an arbitrary algebraic
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number field k, this will suffice because it can be considered as an algebraic group over Q via the restriction
of scalars from k to Q. Then the Ak–points of a k–group coincide with A–points of the restriction of scalars
viewed as a Q–group.

1. Spaces of Automorphic Forms

1.1. Parabolic subgroups. Let G be a connected reductive linear algebraic group defined over Q. Fix a
minimal parabolic subgroup P0 of G defined over Q and a Levi subgroup L0 of P0 defined over Q. One has
the Levi decomposition P0 = L0N0 with unipotent radical N0. By definition, a standard parabolic subgroup
P of G is a parabolic subgroup P of G defined over Q that contains P0. Analogously, a standard Levi
subgroup LP of G is a Levi subgroup of any standard parabolic subgroup P of G such that LP contains
L0. A given standard parabolic subgroup P of G has a unique standard Levi subgroup LP . We denote by
P = LP NP the corresponding Levi decomposition of P over Q.

1.2. Iwasawa decomposition. By definition, the adèle group G(A) of the group G is the direct product
of the group G(R) of real points of G and the restricted product

∏′
v∈Vf

G(Qv) =: G(Af ) with respect to
the maximal compact subgroups G(Zv) ⊂ G(Qv), v ∈ Vf . We fix a maximal compact subgroup K of G(A)
subject to the following condition. Since it is of the form K =

∏
v∈V Kv where Kv is a maximal compact

subgroup of G(Qv), v ∈ V , we suppose (as we may) that Kv = G(Zv) for almost all finite places v ∈ Vf . If v
is archimedean we write KR instead of Kv, and we write Kf =

∏
v∈Vf

Kv. We may assume that the group
K is in “good position” relative to P0 (cf. [24, I, 1.6]).

For a given standard parabolic subgroup P = LP NP of G one has the Iwasawa decomposition G(A) =
LP (A)NP (A)K. Then we can define the standard height function HP : G(A) → aP on G(A) by

∏
v∈V |χ(l)|v =

e<χ,HP (lnk)> for any character χ ∈ X∗(LP ) ⊂ ǎP .

1.3. Lie algebras. We denote by MG the connected component of the intersection of the kernels of all
Q-rational characters of G, and by mG = Lie(MG(R)) the corresponding Lie algebra. Note that the maximal
Q-split torus AG in the center of G reduces to the identity if G is a semi-simple group. In such a case,
mG = Lie(G(R)). In general, the Lie algebra g = Lie(G(R)) decomposes as a direct sum g = aG ⊕mG of Lie
algebras where aG denotes the Lie algebra of AG(R). In particular, mG coincides with Lie(AG(R)◦ \G(R)).
The maximal compact subgroup KR of G(R) may be viewed as a subgroup of AG(R)◦ \G(R). A character
χ ∈ X∗(G) defines a homomorphism G(A) → I of G(A) into the group of idèles, also denoted by χ. We
denote by G(A)1 the subgroup

G(A)1 = {g ∈ G(A) | |χ(g)|A = 1, χ ∈ X∗(G)}
of G(A). One has a decomposition G(A) = AG(R)◦ × G(A)1 as a direct product, and the group G(A)1

can be identified with AG(R)◦\G(A). In an analogous way, mG can be identified with the Lie algebra
Lie(AG(R)◦ \ (G(A) ∩G(R))).

1.4. Functions of uniform moderate growth. We fix a height ‖ ‖ on the adèle group G(A). Let U(g)
be the universal enveloping algebra of the complexification of the real Lie algebra g. By definition, a C∞–
function f : G(A) → C is of uniform moderate growth on G(Q)\G(A) if

- f is K–finite (i.e., the set {fk, k ∈ K}, where fk(g) = f(gk), spans a finite–dimensional space)
- there exists a constant r > 0, r ∈ R, such that for all elements D ∈ U(g) there is cD ∈ R with
|Df(g)| ≤ cD‖g‖r for all g ∈ G(A).

- f is invariant under left translation by elements of G(Q).
We denote the space of such functions of uniform moderate growth by Vumg(G). We write

VG = C∞umg(G(Q)AG(R)◦\G(A))
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for the space of smooth complex-valued functions of uniform moderate growth on G(Q)AG(R)◦\G(A). The
space VG carries in a natural way the structure of a (g,KR; G(Af ))–module.

1.5. Automorphic forms. Let Z(g) be the center of the universal enveloping algebra U(g). We call a
function f ∈ Vumg(G) an automorphic form on G(A) if there exists an ideal J ⊂ Z(g) of finite codimension
that annihilates f . We denote the space of automorphic forms on G(A) by A(G).

For a given character of AG(R)◦, that is, a continuous homomorphism χ : AG(R)◦ → C×, let V (G,χ)
(resp. A(G,χ)) denote the subspace of functions f in Vumg(G) (resp. A(G)) so that f(ag) = χ(a)f(g) for
all a ∈ AG(R)◦ and each g ∈ G(A). In the case of the trivial character χ = 1, we have VG = V (G, 1), and
we write AG = A(G, 1).

1.6. Constant term. Let P = LP NP be a standard parabolic Q-subgroup of G. For a measurable locally
integrable function f on G(Q)\G(A), the constant term of f along P is the function fP on NP (A)LP (Q)\G(A)
defined by

fP : g 7−→
∫

NP (Q)\NP (A)

f(ng)dn , g ∈ G(A),

where the Haar measure dn on NP (A) is normalized in such a way that one has voldn (NP (Q)\NP (A)) = 1.
The assignment f 7−→ fP is compatible with the actions of g,KR and G(Af ) on these functions (if they are
defined). If f is smooth (or has moderate growth) then fP is smooth (or has moderate growth).

1.7. Cuspidal automorphic forms. For an automorphic form f ∈ A(G) we say that f is cuspidal if
fP ≡ 0 for all proper standard parabolic Q-subgroups of G. We denote the space of all cuspidal automorphic
forms on G(Q)\G(A) by Acusp(G). The space Acusp(G) is equipped with a natural (g,KR, G(Af )) - module
structure.

1.8. L2 automorphic forms. Let Z be the center of G, and ω a unitary character of Z(Q)\Z(A). We
consider the space of L2 automorphic forms with central character ω. It is the Hilbert space consisting of
classes of measurable functions f : G(A) → C such that

- f(γg) = f(g) for γ ∈ G(Q) and g ∈ G(A),
- f(zg) = ω(z)f(g) for z ∈ Z(A) and g ∈ G(A),
- f is square–integrable modulo center, i.e.,

∫
Z(A)G(Q)\G(A)

|f(g)|2 dg < ∞.

We denote this space by L2(G,ω). The group G(A) acts on L2(G, ω) by right translations. Let L2
disc(G,ω)

be the subspace of L2(G, ω) which is the sum of all irreducible subrepresentations. It is called the discrete
spectrum of G. Its orthogonal complement is the continuous spectrum of G denoted by L2

cont(G,ω).
Let L2

cusp(G, ω) be the subspace of the space L2(G, ω) consisting of cuspidal square–integrable automorphic
forms, i.e., those classes in L2(G, ω) represented by a measurable function f on G(A) whose constant term
fP (g) = 0 for almost all g ∈ G(A) along all proper parabolic Q–subgroups P . It is a closed G(A)–invariant
subspace of L2(G,ω) called the cuspidal spectrum of G. Gelfand, Graev and Piatetski–Shapiro proved in
[11] that it is semi–simple, and each irreducible subrepresentation appears with finite multiplicity. Hence,
L2

cusp(G, ω) is a subspace of L2
disc(G,ω). The orthogonal complement of L2

cusp(G, ω) in L2
disc(G, ω) is the

residual spectrum of G, denoted by L2
res(G, ω).

Any cuspidal automorphic form in Acusp(G), with a given central character ω, is square–integrable modulo
center, since it is of rapid decay. On the other hand, the smooth K-finite functions in an irreducible sub-
representation of L2

cusp(G,ω) belong to Acusp(G). Such space of smooth K–finite functions in an irreducible
subrepresentation of L2

cusp(G,ω) is not a representation of G(A), because the KR–finiteness is not preserved.
However, it is a (g,KR; G(Af ))-submodule of Acusp(G), and, by abuse of language, we call it a cuspidal
automorphic representation of G(A). Similarly, the space of smooth KR–finite functions in an irreducible
subrepresentation of L2

disc(G,ω) is only a (g,KR; G(Af ))-submodule of the space A(G). Nevertheless, we
call it an automorphic representation of G(A) belonging to the discrete spectrum. See [5] for more details.
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1.9. Decomposition along associate classes of parabolic subgroups. Two parabolic Q-subgroups P
and Q of G are said to be associate if their reductive components are conjugate by an element in G(Q).
This is equivalent to the condition that their split components are G(Q)-conjugate. This notion induces
an equivalence relation on the set P(G) of parabolic Q-subgroups of G. Given P ∈ P(G), we denote its
equivalence class by {P}, to be called the associate class of P . Let C be the set of classes of associate
parabolic Q–subgroups of G. For {P} ∈ C denote by VG({P}) the space of elements in VG that are negligible
along Q for every parabolic Q–subgroup Q in G, Q /∈ {P}, that is, given Q = LQNQ, for all g ∈ G(A) the
function l 7→ fQ(lg) is orthogonal to the space of cuspidal functions on AG(R)◦LQ(Q) \ LQ(A).

The space VG({P}), {P} ∈ C, is a submodule in VG with respect to its natural structure as (g,KR;G(Af ))-
module. It is known that the

∑
VG({P}), {P} ∈ C, forms a direct sum. Finally, one has a decomposition as

a direct sum of (g,KR; G(Af ))–modules

VG =
⊕

{P}∈C
VG({P}).

This was first proved in [22], see [6, Theorem 2.4], for a variant of the original proof. This decomposition
gives rise to a decomposition on the subspace AG of VG.

2. Automorphic Cohomology

2.1. Definition of automorphic cohomology. Let (ν, E) be an irreducible finite-dimensional algebraic
representation of G(C) in a complex vector space. We suppose that AG(R)◦ acts by a character on E, to be
denoted by χ−1. Let JE ⊂ Z(g) be the annihilator of the dual representation of E in Z(g). Let AE ⊂ VG

be the subspace of functions f ∈ VG which are annihilated by a power of JE . Then the spaces AE ⊗C E and
VG⊗CE both are naturally equipped with a (mG,KR) - module structure. By [8, Theorem 18], the inclusion

AE ⊗C E −→ VG ⊗C E

of the space of automorphic forms on G (with respect to (ν, E)) in the space of functions of uniform moderate
growth induces an isomorphism on the level of (mG,KR) - cohomology, that is,

(2.1) H∗(mG,KR;AE ⊗C E)−̃→H∗(mG,KR;VG ⊗C E).

Both cohomology spaces carry a G(Af )-module structure induced by the one on AE and VG respectively,
and the isomorphism is compatible with this G(Af )-module structure.

By Borel’s regularization theorem, the latter group can be identified with the group

H∗(mG,KR;C∞(G(Q)AG(R)◦\G(A))⊗C E)

as a G(Af )-module up to a twist. In fact, as explained in [10] we keep in mind that these cohomology groups
have an interpretation as the inductive limit of the deRham cohomology groups H∗(XC , E) of the orbit
space

XC := G(Q)AG(R)◦ \G(A)/KRC

with coefficients in the local system given by the representation (ν, E), where C ranges over the open compact
subgroups of G(Af ). Thus, it is a natural framework to study the cohomology of congruence subgroups of
G(Q).

2.2. Decomposition along the cuspidal support. Let {P} be a class of associate parabolic Q-subgroups
of G, and let φ = {φR}R∈{P} be a class of associate irreducible cuspidal automorphic representations of the
Levi components of elements of {P} as defined in [10, Section 1.2].
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The set of all such collections φ = {φR}R∈{P} is denoted by ΦE,{P}. Given a class {P} of associate
parabolic Q-subgroups of G, and any φ ∈ ΦE,{P}, we let

AE,{P},φ =



f ∈ VG({P}) | fR ∈

⊕

π∈φR

L2
cusp,π(LR, ωπ)⊗ S(ǎG

R) for all R ∈ {P}




be the space of functions of uniform moderate growth whose constant term along each R ∈ {P} belongs to
the isotypic components attached to the elements π ∈ φR, where ωπ is the central character of π. Then we
have the following result ([10, Thm 1.4 resp. 2.3], or [24, Thm in III, 2.6])

Theorem. The automorphic cohomology H∗(G,E) has a direct sum decomposition

H∗(G, E) =
⊕

{P}∈C

⊕

φ∈ΦE,{P}

H∗(mG,KR;AE,{P},φ ⊗C E)

where, given {P} ∈ C, the second sum ranges over the set ΦE,{P} of classes of associate irreducible cuspidal
automorphic representations of the Levi components of elements of {P}.

The summand in the direct sum decomposition of the cohomology H∗(G, E) that is indexed by the full
group {G} will be called the cuspidal cohomology of G with coefficients in E, to be denoted H∗

cusp(G,E). The
decompostion of H∗(G, E) according to the set C of classes of associate parabolic Q - subgroups of G exhibits
a natural complement to the cuspidal cohomology, namely the summands indexed by {P} ∈ C, {P} 6= {G}.
Due to the results in [8] that these cohomology classes can be described by suitable derivatives of Eisenstein
series or residues of these, one calls this complement

H∗
Eis(G,E) :=

⊕

{P}∈C,P 6=G

H∗(mG, KR;AE,{P} ⊗C E)

the Eisenstein cohomology of G with coefficients in E.

3. Eisenstein Series

In this section, following [21] and [24], we recall some facts regarding the analytic properties of Eisenstein
series attached to cuspidal automorphic representations on the Levi components of proper parabolic Q–
subgroups of a connected reductive algebraic Q-group G. Special attention is given to the case of maximal
proper parabolic Q–subgroup. We use these results to study the spaces AE,{P},φ, φ ∈ ΦE,{P}, which are of
importance in the study of automorphic cohomology. We retain the notation of previous sections.

3.1. Definition of Eisenstein series. Let P be a standard parabolic Q–subgroup of G. We write P =
LP NP for its Levi decomposition. Let π be a cuspidal automorphic representation of LP (A). More pre-
cisely, this is an irreducible (l,KR; LP (Af ))-module realized on the space of K–finite smooth functions in an
irreducible subrepresentation of L2

cusp(LP , ω) for some central character ω. We denote by Vπ the π–isotypic
subspace of the space L2

cusp(LP , ω).
We suppose that π is normalized in such a way that the differential of the restriction of the central

character of π to AP (R)+ is trivial. This assumption is just a convenient choice of coordinates, which makes
the poles of the Eisenstein series attached to π real. As explained in [10, Section 1.3], it can be achieved by
replacing π by an appropriate unitary twist. The twist just moves the poles of the Eisenstein series along
the imaginary axis.

As in [10, Section 1.3], consider the space Wπ of right K–finite smooth functions

f : NP (A)LP (Q)\G(A) → C

such that for every g ∈ G(A) the function
fg(l) = f(lg)
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on LP (Q)\LP (A) belongs to the π-isotypic subspace Vπ of the space of cuspidal automorphic forms on LP (A).
Then, for f ∈ Wπ, and λ ∈ ǎP,C, and for each g ∈ G(A), one defines (at least formally) the Eisenstein series
as

EG
P (f, λ)(g) =

∑

γ∈P (Q)\G(Q)

e〈HP (γg),λ+ρP 〉f(γg) =
∑

γ∈P (Q)\G(Q)

fλ(γg),

where fλ(g) = f(g)e〈HP (g),λ+ρP 〉, and ρP is the half–sum of positive roots with respect to P0 in the root
system Φ of G which are not positive roots of LP . The pairing 〈·, ·〉 is the natural pairing of ǎP0,C and aP0,C.

This Eisenstein series converges absolutely and uniformly in g if the real part Re(λ) is sufficiently regular,
i.e., lies deep enough inside the positive Weyl chamber ǎG+

P defined by P . The assignment λ 7−→ EG
P (f, λ)(g)

defines a map that is holomorphic in the region of absolute convergence of the defining series and has a
meromorphic continuation to all of ǎP,C. We refer to [24, Section IV.1] for proofs of these facts.

3.2. Filtration of AE,{P},φ. In the case of the given parabolic Q-subgroup P , and the given associate class
φ ∈ ΦE,{P} containing π, the space AE,{P},φ introduced in Section 2 can be described using Eisenstein series
attached to π as in [10, Section 1.3]. More precisely, there is a unique λ0 ∈ ǎP such that the Eisenstein
series E(f, λ0) attached to π (or its residue if there is a pole at λ = λ0) is annihilated by JE . There exists a
polynomial q(λ) on ǎP such that q(λ)E(f, λ) is holomorphic at λ = λ0. Then, the space AE,{P},φ is spanned
by all coefficients in the Taylor expansion of q(λ)E(f, λ) around λ = λ0. This definition is independent on
the choice of q, as well as the choice of a representative P for the associate class {P} and a representative
π ∈ φP for φ. These coefficients are in fact all possible residues and main values of derivatives of the
Eisenstein series E(f, λ) attached to π.

The (mG,KR; G(Af ))–module AE,{P} has a filtration defined in [8, Section 6]. However, we use a slight
modification as in [10, Section 5.2], where the filtration is given along the cuspidal support. According to
the decomposition of AE,{P} along the cuspidal support as in Section 1.8, it suffices to give the filtration
of the (mG,KR;G(Af ))–modules AE,{P},φ, where φ ∈ ΦE,{P} is the associate class of π. In this paper we
consider only the (possibly trivial) lowest filtration step

LE,{P},φ ⊂ AE,{P},φ,

given as the (mG,KR; G(Af ))–module LE,{P},φ consisting of square–integrable automorphic forms on G
supported in {P} and the associate class of π. It is non–trivial if and only if the Eisenstein series E(f, λ)
has a square–integrable residue at λ = λ0 for some choice of f ∈ Wπ. In that case, it is isomorphic to the
space of these residues when f ranges over Wπ.

We remark that the fact that the space LE,{P},φ is a filtration step in the filtration defined in [8, Section 6]
follows from the fact that JE is the annihilator of a finite–dimensional representation. Indeed, the infinitesi-
mal character of any finite–dimensional representation of G(C) is represented by an element inside the open
positive Weyl chamber ǎG+

0 , and thus, the restrictions of the elements in its Weyl group orbit to any ǎP with
P 6= G are non–zero. This shows that the function T used for defining the filtration in [8, Section 6] obtains
its minimal value if and only if we form the residual Eisenstein series from a residual representation of G(A)
itself, since only then the evaluation point is zero. This means that we obtain the residual representations of
G(A) supported in π alone in the lowest filtration step. These form LE,{P},φ. However, this argument does
not hold in general for any ideal of finite–codimension in Z(g) because the infinitesimal characters which are
annihilated by such ideal might be on the boundaries of the Weyl chambers. In that case there really exist
non–square–integrable automorphic forms in the lowest filtration step.

3.3. Eisenstein series of relative rank one. Let P = Pα, denote the standard maximal parabolic Q–
subgroup of G which corresponds to the subset ∆ \ {α} ⊂ ∆, where α is a simple root in Φ. In this special
case there is a convenient choice of an isomorphism ǎG

P,C
∼= C. Let ρP be the half–sum of positive roots in Φ

which are not positive roots of LP . We choose

ρ̃P = 〈ρP , α∨〉−1ρP
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as a basis for ǎG
P,C following Shahidi’s convention in [31]. Here α∨ is the coroot dual to α, and 〈·, ·〉 the

natural pairing. We always identify accordingly s ∈ C with λs = ρ̃P ⊗ s ∈ ǎG
P,C.

As in the general case, for a cuspidal automorphic representation π of LP (A), which is normalized as above,
one defines the space Wπ, and then, for f ∈ Wπ, and λs ∈ ǎG

P,C, and for each g ∈ G(A), one defines (at least
formally) the Eisenstein series by the same series as above. This Eisenstein series converges absolutely and
uniformly in g if the real part Re(s) is sufficiently regular, i.e., lies deep enough inside the positive Weyl
chamber defined by P . The assignment s 7−→ EG

P (f, λs)(g) defines a map that is holomorphic in the region
of absolute convergence of the defining series and has a meromorphic continuation to all of ǎG

P,C. It has a
finite number of simple poles in the real interval 0 < λs ≤ ρP , i.e., all the remaining poles lie in the region
Re(s) < 0. We refer to [24, Section IV.1] for proofs of these facts.

In this case the filtration of the space AE,{P},φ defined in [8, Section 6] is a two–step filtration

LE,{P},φ ⊂ AE,{P},φ,

as in [10, Section 5.2]. The space LE,{P},φ is spanned by the residues at s > 0 of the Eisenstein series attached
to a function f such that for every g ∈ G(A) the functions fg defined above belong to the π–isotypic subspace
of the space of cuspidal automorphic forms on LP (A). Those residues are square–integrable automorphic
forms by [24, Section I.4.11]. The quotient AE,{P},φ/LE,{P},φ is spanned by the principal values of the
derivatives of such Eisenstein series at Re(s) ≥ 0.

3.4. Square–integrable cohomology. Having defined the space of square–integrable automorphic forms
LE,{P},φ, it is natural to consider its contribution to automorphic cohomology. Let

H∗(mG,KR;LE,{P},φ ⊗C E)

be the relative Lie algebra cohomology of LE,{P},φ. The inclusion LE,{P},φ ⊂ AE,{P},φ induces a map in
the cohomology

H∗(mG,KR;LE,{P},φ ⊗C E) → H∗(mG,KR;AE,{P},φ ⊗C E).
We are interested in the image of that map which we denote by

H∗
(sq)(mG,KR;AE,{P},φ ⊗C E).

Let
HEis,(sq)(G,E) =

⊕

{P}6={G}

⊕

φ∈ΦE,{P}

H∗
(sq)(mG, KR;AE,{P},φ ⊗C E).

Since every cuspidal automorphic form in Acusp(G) is square–integrable, we have LE,{G},φ = AE,{G},φ, and
the cuspidal cohomology coincides with

H∗
cusp(G,E) =

⊕

φ∈ΦE,{G}

H∗
(sq)(mG, KR;LE,{G},φ ⊗C E).

Thus we define square–integrable automorphic cohomology of G with respect to E as

H∗
(sq)(G,E) = H∗

cusp(G, E)⊕HEis,(sq)(G,E).

II. Jacquet–Langlands Correspondence

In this chapter, k denotes an algebraic number field, and D a division algebra central over k of degree
d. We would like to compare the automorphic cohomology of the k-split general linear group defined over a
number field k with the automorphic cohomology of its inner form – the general linear group over a division
algebra D. In particular, we are interested in the case GL(2, D), where D is a quaternion division algebra
central over k. The correspondence between automorphic representations belonging to the discrete spectrum
of GL4(Ak) and its inner form is given by the global Jacquet–Langlands correspondence between general
linear groups and their inner forms defined in Badulescu [1] and Badulescu and Renard [2]. The former
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paper deals with the case where D splits at all v ∈ V∞. The latter paper removes this assumption. We begin
with a precise definition of considered groups.

1. A k-rank one form of the general linear group: GL(2, D)

1.1. The general linear group. Let GL(n) be the general linear group defined over k. It is a connected
reductive algebraic k-group of semi–simple k–rank n − 1, where n ≥ 2. Let Q0 be the minimal parabolic
k–subgroup consisting of upper triangular non–singular matrices, let S be the maximal torus of diagonal
matrices, and let Q0 = LQ0NQ0 be its Levi decomposition where LQ0 := S and NQ0 denotes the unipotent
radical of Q0. Let Φ, Φ+, ∆ denote the corresponding sets of roots, positive roots, simple roots, respectively.
The set ∆ is given as ∆ = {α1, α2, . . . , αn−1} where αi denotes the usual projection S → k× given by the
assignment diag(t1, . . . , tn) 7→ ti/ti+1. Let W be the Weyl group of GL(n) with respect to S.

The conjugacy classes with respect to GL(n, k) in the set P(GL(n)) of parabolic k-subgroups are in one-
to-one correspondence with the subsets of ∆. Corresponding to J ⊂ ∆ there is the class represented by
the standard parabolic subgroup QJ . We let SJ = (∩α∈Jkerα)◦, and we denote the centralizer of SJ by
LQJ

:= ZGL(n)(SJ). Then QJ is the semidirect product of its unipotent radical NQJ
by LQJ

, a so called
Levi decomposition of QJ . The group LQJ

is reductive, a Levi subgroup of QJ . Notice that the characters
of S in NQJ are exactly the positive roots which contain at least one simple root not in J . Since any Q in
P(GL(n)) is GL(n, k)–conjugate to a unique QJ the corresponding subset J ⊂ ∆ is called the type of Q,
to be denoted J(Q). The groups QJ are the standard parabolic Q-subgroups of GL(n) determined by the
choice of S and the set ∆ of simple roots.

One has the following description: Let ρ = (r1, ...., rl) be an ordered partition of n into positive integers,
i.e., an ordered sequence of positive integers so that r1 + .... + rl = n. The corresponding standard parabolic
subgroup Qρ consists of all matrices in GL(n, k) admitting a block decomposition in the form (pi,j) with pi,j

a (ri × rj)–matrix, and pi,j = 0 for i > j. Every parabolic subgroup of GL(n) is conjugate to a subgroup of
this type. More precisely, Qρ is of type Jρ = ∆ \ {αr1+...+ri : i = 1, . . . , n− 1}, and the assignment ρ 7→ Jρ

defines a bijection between partitions of n and subsets of ∆. The standard Levi subgroup LQρ of Qρ is the
subgroup of matrices in Qρ where each block above the block diagonal is zero, i.e., pi,j = 0 for i < j. Thus,
there is an isomorphism LQρ

∼= GL(r1)× .....×GL(rl). A so called cuspidal parabolic subgroup corresponds
up to conjugacy to the case where ri = 1 or 2 for i = 1, ...., l.

In particular, if R is a maximal parabolic k-subgroup of GL(n) of type ∆ \ {αj} then it is conjugate to
the standard maximal parabolic k-subgroup

Qj := Q∆\{αj} = {(aik) ∈ GL(n) | aik = 0 for k ≤ j < i} , j = 1, . . . , n− 1.

We say that R is of type j. Note that in this case the Levi subgroup is isomorphic to GL(j) × GL(n − j).
The associate class {Qj} of maximal parabolic k-subgroups R associated to Qj consists of the groups R
of type j and n − j. If n = 2m is even the elements R in {Qm} are conjugate to its opposite parabolic
k-subgroup Ropp, that is, the conjugacy class of Qm is self-opposite. Otherwise, for general n, the group Qj

is not conjugate to Qopp
j . We note that there are [n

2 ] associate classes of maximal parabolic k-subgroups in
GL(n).

In terms of ordered partitions of n, the parabolic k–subgroups Qρ and Qρ′ of GL(n), corresponding to
ρ = (r1, . . . , rl) and ρ′ = (r′1, . . . , r

′
m), are associate if and only if l = m and there is a permutation p of l

letters such that r′i = rp(i) for all i = 1, . . . , l. Thus, associate classes of parabolic k–subgroups of GL(n) are
parameterized by unordered partitions of n into positive integers.

Example – the case H = GL(4). In the case of the general linear group H = GL(4) there are three conjugacy
classes of maximal parabolic k-subgroups; they are represented by the standard parabolic groups Q1, Q2,
and Q3. Since Q1 and Q3 are associate, one has the two associate classes {Q1} and {Q2}. The minimal
parabolic k-subgroups of H form one associate class {Q0} represented by the standard parabolic subgroup
Q0 := Qρ with ρ = (1, 1, 1, 1). Finally, the three conjugacy classes of the standard parabolic k-subgroups
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of H corresponding to the ordered sequences (2, 1, 1), (1, 2, 1) and (1, 1, 2) respectively form one associate
class, to be denoted

{
Q{α1}

}
, where Q{α1} is a parabolic k-subgroup of H of parabolic rank 2 and of type

J = {α1}.
1.2. GL2 over a central division algebra. Let A be a central simple algebra of degree d over an algebraic
number field k. Given a positive integer q, let GL(q,A) be the connected reductive algebraic k-group whose
group GL(q, A)(l) of rational points over a commutative k-algebra l containing k equals the group

GLq(Al) =
{
x ∈ Mq(Al) | nrdMq(Al)(x) 6= 0

}
,

where Al = A⊗k l, and nrdMq(Al) is the reduced norm on the q×q matrix algebra with entries in Al. If q = 1
then GL1(Al) is the group of invertible elements in the l-algebra Al. The reduced norm defines a surjective
k-morphism GL(q,A) −→ Gm of k-groups, whose kernel is a connected semi-simple algebraic k-group, to be
denoted SL(q, A). We have

SL(q, A)(l) = SLq(Al) =
{
x ∈ Mq(Al) | nrdMq(Al)(x) = 1

}
.

Let D be a central division k-algebra of degree d. Then the connected reductive k-group GL(2, D) is of
semi-simple k–rank 1. The group Z ′(k) of k-rational points of its center Z ′ is given by

Z ′(k) =
{
g =

(
λ 0
0 λ

) | λ ∈ k×1D

}
.

We fix a maximal k-split torus S′ ⊂ GL(2, D) subject to

S′(k) =
{
g =

(
λ 0
0 µ

) | λ, µ ∈ k×1D

}
.

For the centralizer L′ := ZGL(2,D)(S′) of S′ we have

L′(k) =
{
g =

(
x 0
0 y

) | x, y ∈ D×}
.

We may (and will) identify L′ with the k-group GL(1, D)×GL(1, D).
Let Φk = Φ(GL(2, D), S′) ⊂ X∗(S′) be the set of roots of GL(2, D) with respect to S′. The set {α}

is a basis for Φk where α denotes the non-trivial character S′/k → Gm/k defined by
(

λ 0
0 µ

) 7→ λµ−1. The
corresponding minimal parabolic k-subgroup determined by {α} is denoted by Q′. Its Levi factor is LQ′ = L′,
and we have a Levi decomposition of Q′ into the semidirect product LQ′NQ′ of its unipotent radical NQ′ by
LQ′ .

Let l be a splitting field of D, thus, there is an isomorphism ψ : D ⊗k l → Md(l) of l-algebras, where
Md(l) is the d× d matrix algebra with entries in l. We fix this isomorphism ψ once and for all. We denote
by the same letter the isomorphism

ψ : GL(2, D)×k l −→ GL(n)/l, with n = 2d

of algebraic l-groups induced by ψ. The group GL(2, D) is a k-form of the general linear k-group GL(2d).
The image of the l -group Q′×k l under ψ is the standard parabolic l-subgroup Qd = Q∆\{αd} in the notation
introduced in the previous subsection for the general linear group. Its Levi subgroup LQd

/l is isomorphic to
GL(d)/l ×GL(d)/l.

Example – the case H ′ = GL(2, D), D a quaternion division algebra. We include this example to fix the
notation for the rest of the paper. Let D be a quaternion division algebra central over k. Let VD be the
finite set of places of k at which D does not split. Thus, VD is the set of places v of k at which D⊗k kv

∼= Dv,
where Dv is the unique (up to isomorphism) quaternion division algebra over kv. For v 6∈ VD we have
D ⊗k kv

∼= M2(kv), where M2(kv) is the 2× 2 matrix algebra over kv. Let H ′ denote the algebraic k–group
GL(2, D). It is an inner form of the algebraic k–group H = GL(4). The only conjugacy class of parabolic
subgroups of H ′ is represented by Q′ = LQ′NQ′ , where LQ′ ∼= GL(1, D)×GL(1, D) is the Levi factor. It is
an inner form of the parabolic subgroup Q2 of H, with the Levi factor LQ2

∼= GL(2)×GL(2).
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We write H ′(Ak) for the adèlic points of H ′. Also we have H ′(kv) ∼= GL2(Dv) for v ∈ VD, and H ′(kv) ∼=
GL4(kv) for v 6∈ VD. The adèlic points of GL(1, D) are denoted by D×

Ak
. Also GL(1, D)(kv) ∼= D×

v for
v ∈ VD, and GL(1, D)(kv) ∼= GL2(kv) for v 6∈ VD.

2. Local Jacquet–Langlands Correspondence

We retain the notation of the previous section. Classical local Jacquet–Langlands correspondence is
a bijection between the set of isomorphism classes of square–integrable representations of GLn(kv) and
GLn/dv

(Dv), where kv is the completion of k at a non–archimedean place v, and Dv is a central simple
division algebra of degree dv over kv, where dv divides n. This generalization of original local Jacquet–
Langlands correspondence between GL2(kv) and the multiplicative group of the quaternion division algebra
over kv (cf. [18]) is obtained by Deligne, Kazhdan and Vignéras in [7]. It is defined by a certain character
relation.

For finite places v ∈ Vf this correspondence is generalized to unitary representations by Badulescu in
[1], and for infinite places v ∈ V∞, which means real places since there is no division algebra over C, by
Badulescu and Renard in [2]. Although we use the term unitary representation at all places, one should have
in mind that at infinite places these are in fact Harish–Chandra modules. The correspondence for unitary
representations is no longer injective nor surjective, and there exist on both sides unitary representations
which are not involved in the correspondence. However, it is again defined using the same character relation,
and the reason for missing representations is that, in some cases, this relation does not respect unitarity.

Since we are mainly interested in the infinite places, where the representations should be cohomological,
we recall here in detail the local correspondence between GL4(R) and GL2(H) of Badulescu and Renard [2],
where H denotes the Hamilton quaternions. The latter group is isomorphic to H ′(kv) for places v ∈ V∞ at
which D does not split, i.e., v ∈ V∞ ∩ VD. For finite places we also recall the correspondence at the level of
detail needed later on when dealing with the global correspondence.

2.1. Unitary dual of GL4(R) and GL2(H). The unitary dual of GL(n) over R, C, and H is classified by
Vogan [37]. However, as in [2], we use the description and notation of [35], which is in analogy with the one
introduced by Tadić when describing the unitary dual of GL(n) over a p–adic field in [33] and discussing the
unitary dual of GL(n) over a p–adic division algebra in [34].

For a unitary character χ of R×, let χ ◦ detn denote the corresponding character of GLn(R) where detn

is the determinant on GLn(R), and let χ ◦ nrdn denote the corresponding character of GLn(H), where nrdn

is the reduced norm on GLn(H).
For a unitary character χ of R×, let π(χ, α), where 0 < α < 1/2, denote the complementary series

representation of GL2(R), i.e., the induced representation of GL2(R) from the character χ| · |α ⊗ χ| · |−α of
R× × R×. It is irreducible and unitary.

Similarly, if ρ is either a unitary square–integrable representation δ, or a unitary character χ ◦ det2, of
GL2(R), and 0 < α < 1/2, let π(ρ, α) be the induced representation of GL4(R) from the representation
ρ| det2 |α ⊗ ρ| det2 |−α of GL2(R)×GL2(R). It is also irreducible and unitary.

Finally, for a unitary square–integrable representation δ of GL2(R) we denote by u(δ, 2) the unique
irreducible quotient of the induced representation of GL4(R) from the representation δ| det |1/2⊗ δ| det |−1/2

of GL2(R)×GL2(R). Then u(δ, 2) is a unitary representation.
We introduce the following sets of (isomorphism classes of) unitary representations (cf. [35] and [2])

U1 = {χ} ,

U2 = {χ ◦ det2, π(χ, α), δ : 0 < α < 1/2} ,

U3 = {χ ◦ det3} ,

U4 = {χ ◦ det4, π(χ ◦ det2, α), π(δ, α), u(δ, 2) : 0 < α < 1/2} ,
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where χ ranges over all unitary characters of R×, and δ over all unitary square–integrable representations of
GL2(R). The representations in Ui are representations of GLi(R).

We introduce the same notation for GL2(H). If χ ◦ nrd1 is a character of H×, let π(χ ◦ nrd1, β) with
0 < β < 1 denote the corresponding complementary series representation of GL2(H). It is irreducible and
unitary. Note that in this case the complementary series is “longer” and goes all the way to 1.

If δ′ is an irreducible unitary representation of H× which is not one–dimensional (it is certainly finite–
dimensional), then π(δ′, α), where 0 < α < 1/2, denotes the corresponding complementary series represen-
tation of GL2(H). It is irreducible and unitary. For such δ′, we let u(δ′, 2) denote the unique irreducible
quotient of the induced representation of GL2(H) from the representation δ′nrd1/2

1 ⊗ δ′nrd−1/2
1 of H××H×.

It is a unitary representation.
Then we define the following sets of (isomorphism classes of) unitary representations (cf. [2])

U ′1 = {χ ◦ nrd1, δ′} ,

U ′2 = {χ ◦ nrd2, π(χ ◦ nrd1, β), π(δ′, α), u(δ′, 2) : 0 < α < 1/2, 0 < β < 1} ,

where χ ranges over all unitary characters of R×, and δ′ over all irreducible unitary representations of H×
which are not one–dimensional. The representations in U ′i are representations of GLi(H).

Now the unitary duals of GL4(R) and GL2(H) are given in the following Theorem.

Theorem. The sets Ui for i = 1, 2, 3, 4, and U ′j for j = 1, 2, consist of irreducible unitary representations.
Every representation induced from a tensor product of representations either in sets Ui, or sets U ′j, to the ap-
propriate general linear group is irreducible and unitary. Every irreducible unitary representation of GL4(R)
and GL2(H) is obtained in a unique way, up to the order of factors, as such an induced representation.

2.2. Jacquet–Langlands correspondence for GL4(R) and GL2(H). Now we follow [2] to define the
archimedean local Jacquet–Langlands correspondence for unitary representations in our case. It is more
convenient to define a map from representations of GL4(R) to those of GL2(H). However, this map is not
defined on all irreducible unitary representations of GL4(R). Those (irreducible) unitary representations for
which the map is defined are called locally compatible.

By Theorem 2.1, every irreducible unitary representation of GL4(R) is induced from a tensor product of
unique (up to permutation) elements of Ui, i = 1, 2, 3, 4. The Jacquet–Langlands correspondence respects
this induction process in a sense that the Jacquet–Langlands of such an induced representation is the induced
representation of the Jacquet–Langlands of the elements of Ui from which we induce. Therefore, it suffices to
define the correspondence for representations in Ui. We call these the basic unitary representations. Also, if
just one of the basic unitary representations from which we induce is not compatible, then the whole induced
representation is not compatible.

In the description of the local Jacquet–Langlands correspondence at a real place we use the notation
Dm for square–integrable representations of GL2(R), where m ≥ 2 is an integer. The square–integrable
representation Dm is characterized by the fact that its restriction to the maximal compact subgroup O(2)
of GL2(R) is of the form

Dm

∣∣
O(2)

∼=
⊕

j≡m mod 2
j≥m

Wj ,

where Wj , for j ≥ 2, is the irreducible representation of O(2) obtained as the representation fully induced
from the character z 7→ zj of the index two subgroup U(1) in O(2). Hence, m is called the lowest O(2)–type of
Dm, even though O(2) is not commutative. Another characterization of Dm is that it is the unique irreducible
subrepresentation of the representation of GL2(R) induced from the character | · |m−1

2 sgnm⊗| · |−m−1
2 of the

maximal split torus.
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Set Repn J.–L. corr.

U1 χ −
χ ◦ det2 χ ◦ nrd1

U2 π(χ, α) −
δ ∼= D2(χ ◦ det2) χ ◦ nrd1

δ ∼= Dm(χ ◦ det2), m > 2 D′
m(χ ◦ nrd1)

U3 χ ◦ det3 −
χ ◦ det4 χ ◦ nrd2

π(χ ◦ det2, α) π(χ ◦ nrd1, α)
U4 π(δ, α), δ ∼= D2(χ ◦ det2) π(χ ◦ nrd1, α)

π(δ, α), δ ∼= Dm(χ ◦ det2), m > 2 π(δ′, α), δ′ ∼= D′
m(χ ◦ nrd1)

u(δ, 2), δ ∼= D2(χ ◦ det2) π(χ ◦ nrd1, 1/2)
u(δ, 2), δ ∼= Dm(χ ◦ det2), m > 2 u(δ′, 2), δ′ ∼= D′m(χ ◦ nrd1)

Table 1. Local Jacquet–Langlands correspondence at an infinite (real) place

The elements of U1 and U3 are not compatible. Also the complementary series representation π(χ, α) ∈ U2

is not compatible. The characters χ ◦det2 ∈ U2 and χ ◦det4 ∈ U4 correspond to the characters χ ◦nrd1 ∈ U ′1
and χ ◦ nrd2 ∈ U ′2, respectively. The complementary series representation π(χ ◦ det2, α) ∈ U4 corresponds to
π(χ ◦ nrd1, α).

It remains to define the correspondence for representations involving a unitary square–integrable repre-
sentation δ. In that case the correspondence depends on δ in the following way. If δ = D2(χ◦det2) ∈ U2 is of
lowest O(2)–type 2, then by the classical Jacquet–Langlands correspondence it corresponds to the character
χ ◦ nrd1 ∈ U ′1 of H×, where χ is a unitary character of R×. Observe that D2 corresponds to the trivial
character of H×. In this case we also have π(δ, α) ∈ U4 corresponds to π(χ ◦nrd1, α) ∈ U2, while u(δ, 2) ∈ U4

corresponds to π(χ ◦ nrd1, 1/2) ∈ U2.
On the other hand, if δ = Dm(χ ◦ det2) ∈ U2 is of lowest O(2)–type m > 2, then it corresponds to

δ′ = D′
m(χ ◦ nrd1) ∈ U ′1, which is not a one–dimensional representation of H×. In this case π(δ, α) ∈ U4 and

u(δ, 2) ∈ U4 correspond to π(δ′, α) ∈ U ′2 and u(δ′, 2) ∈ U ′2.
For the convenience of the reader, we summarize the correspondence for representations in Ui, i=1,2,3,4,

in Table 1. The definition shows that, even restricted to the set of compatible unitary representations
of GL4(R), the Jacquet–Langlands correspondence is neither injective, nor surjective. Injectivity fails, for
example, for the trivial and the sign character of GL4(R) which are both mapped to the trivial character of
GL2(H). Surjectivity fails since the complementary series representation of GL2(H) attached to a character
of H× and 1/2 < β < 1 are not in the image.

2.3. Unitary dual of GL4(kv) and GL2(Dv) at v ∈ Vf . The unitary dual of the general linear group
over a p–adic field is obtained by Tadić in [33], while over a p–adic division algebra he described in [34] the
unitary dual depending on certain conjectures, which were finally proved by Sécherre in [30] and Badulescu
and Renard in [3]. However, in our small rank case, the description follows directly from [7]. We consider
the case of Dv the unique (up to isomorphism) quaternion division algebra over kv.

As in the archimedean case, the unitary dual of GL4(kv) consists of representations fully induced from
certain basic unitary representations of appropriate general linear groups. These basic unitary representations
are again divided into four sets Vi, i = 1, 2, 3, 4, where Vi contains the basic unitary representations of
GLi(kv), as follows.

V1 = {χ}
V2 = {χ ◦ det2, π(χ, α), δ2 : 0 < α < 1/2}
V3 = {χ ◦ det3, δ3}
V4 = {χ ◦ det4, π(χ ◦ det2, α), π(δ2, α), u(δ2, 2), δ4 : 0 < α < 1/2} ,
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Set Repn J.–L. corr.

U1 χ −
χ ◦ det2 χ ◦ nrd1

U2 π(χ, α) −
δ2 ∼= St2(χ ◦ det2) χ ◦ nrd1
δ2 supercuspidal ρ′

U3 χ ◦ det3 −
δ3 −

χ ◦ det4 χ ◦ nrd2
π(χ ◦ det2, α) π(χ ◦ nrd1, α)

π(δ2, α), δ2 ∼= St2(χ ◦ det2) π(χ ◦ nrd1, α)
U4 π(δ2, α), δ2 supercuspidal π(ρ′, α)

u(δ2, 2), δ2 ∼= St2(χ ◦ det2) π(χ ◦ nrd1, 1/2)
u(δ2, 2), δ2 supercuspidal u(ρ′, 2)

δ4 δ′

Table 2. Local Jacquet–Langlands correspondence at a finite place

where χ ranges over all unitary characters of k×v , while δi ranges over all unitary square–integrable repre-
sentations of GLi(kv). Note that at a finite place there are square–integrable representation of GLi(kv) for
any i, and supercuspidal representations are also square–integrable. Since the notation here is in obvious
analogy to the case kv = R in Sect. 2.1, we do not repeat the explanation.

Similarly, we define sets V ′i, for i = 1, 2, of basic unitary representation involved in the unitary dual of
GL2(Dv). We have

V ′1 = {χ ◦ nrd1, ρ′}
V2 = {χ ◦ nrd2, π(χ ◦ nrd1, β), π(ρ′, α), u(ρ′, 2), δ′ : 0 < α < 1/2, 0 < β < 1} ,

where χ ranges over all unitary characters of k×v , ρ′ over all irreducible unitary representations of D×
v

which are not one–dimensional, and δ′ over all unitary square–integrable representations of GL2(Dv). The
representations in V ′i are representations of GLi(Dv).

2.4. Jacquet–Langlands correspondence for GL4(kv) and GL2(Dv) at v ∈ Vf . In the description of
the global Jacquet–Langlands correspondence in Sect. 3 below, we also need some information at non–split
finite places v ∈ Vf ∩ VD. For such places H ′(kv) ∼= GL2(Dv), where Dv is the unique (up to isomorphism)
quaternion division algebra over kv, and the correspondence is a special case of the local result in [1].

Just as in the archimedean case, the correspondence respects induction from unitary representations of
smaller general linear groups. Hence, it suffices to define it on the sets Vi, for i = 1, 2, 3, 4, of basic unitary
representations given in Sect. 2.3. The correspondence is summarized in Table 2.

Let us explain the unexplained notation used in Table 2. The square–integrable representation St2 of
GL2(kv) is the Steinberg representation, which is the unique irreducible subrepresentation of the induced
representation from the character | · |1/2⊗|· |−1/2 of k×v ×k×v . Every unitary square–integrable representation
which is not supercuspidal is a twist of St2 by a unitary character χ of k×v , i.e., it is of the form St2(χ ◦
det2). For a supercuspidal representation δ2 of GL2(kv) we denote by ρ′ the corresponding representation
of D×

v . It is not one–dimensional by the original Jacquet–Langlands correspondence as in [18]. Finally, the
correspondence between δ4 and δ′ is just the bijection on square–integrable representations as defined in [7].
In [7] the correspondence is made more precise using the Bernstein–Zelevinsky classification (cf. [40], [4]).
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3. Global Jacquet–Langlands correspondence

Although the local Jacquet–Langlands correspondence for unitary representations seems quite compli-
cated, it gives the crucial local ingredients for the definition of the global Jacquet–Langlands correspon-
dence. This global correspondence between discrete spectra of a general linear group and its inner form is
defined and proved in Badulescu [1] and Badulescu–Renard [2]. It seems much more natural than the local
correspondences required for its definition.

In what follows we define the global Jacquet–Langlands correspondence for the irreducible constituents
of the discrete spectrum of H(Ak) and H ′(Ak). The definition uses the local correspondence of Section 2,
which is defined for Harish–Chandra modules at infinite places v ∈ V∞, and smooth representations at finite
places v ∈ Vf . Hence, one should have in mind, when dealing with irreducible constituents of the discrete
spectrum, that we actually pass to the underlying (g,KR;G(Af ))-module without mentioning that explicitly.

3.1. Jacquet–Langlands correspondence between GL2(Ak) and D×
Ak

. We first recall the original global
correspondence of Jacquet and Langlands [18]. Note that all irreducible automorphic representations of D×

Ak

are cuspidal. Originally the correspondence is a bijection between (cuspidal) automorphic representations
of D×

Ak
which are not one–dimensional and so–called compatible cuspidal automorphic representations of

GL2(Ak). This is extended in [1] and [2] to one–dimensional automorphic representations of D×
Ak

. These
correspond to the residual representations of GL2(Ak), which are all one–dimensional as well.

Theorem. (1) There is a unique bijection between (cuspidal) automorphic representations of D×
Ak

which
are not one–dimensional, and cuspidal automorphic representations of GL2(Ak) with square–inte-
grable local component at each place where D does not split, such that if π′ ∼= ⊗vπ′v corresponds
to π ∼= ⊗vπv, then π′v ∼= πv at v 6∈ VD, and π′v corresponds to πv by the local Jacquet–Langlands
correspondence at v ∈ VD.

(2) There is a unique extension of the bijection in (1) to an injection of all (cuspidal) automorphic rep-
resentations of D×

Ak
into automorphic representations of GL2(Ak) belonging to the discrete spectrum

such that if π′ corresponds to π, then π is compatible, and the two local conditions of (1) are satisfied.
More precisely, this extension maps one–dimensional representation χ ◦ nrd to χ ◦ det, where χ is a
unitary character of k×\Ik.

3.2. Global correspondence. Again we restrict our attention to the case of the global Jacquet–Langlands
correspondence between H ′(Ak) and H(Ak). The center of both groups is isomorphic to the group of idèles
Ik via the isomorphism that assigns to an element x ∈ Ik the scalar matrix of the appropriate size with x on
the diagonal. Hence, we may view the central characters of discrete spectrum automorphic representations
of both groups as unitary characters of k×\Ik. We fix such a central character ω. It is preserved under global
Jacquet–Langlands correspondence.

We say that an irreducible constituent of L2
disc(H, ω) is (globally) compatible with respect to D if every

local component πv of π at a place v ∈ VD is locally compatible as a unitary representation of H(kv) ∼=
GL4(kv), i.e., there is a unitary representation π′v of H ′(kv) ∼= GL2(Dv) corresponding to πv by the local
Jacquet–Langlands correspondence. In our case at hand, the main result of [1] regarding Jacquet–Langlands
correspondence is as follows.

Theorem. There is a unique map Ξ from the set of irreducible constituents of L2
disc(H

′, ω) to the set of
irreducible constituents of L2

disc(H, ω), such that if π = Ξ(π′) then
• π is compatible (with respect to D),
• πv

∼= π′v for v 6∈ VD,
• πv corresponds to π′v by the local Jacquet–Langlands correspondence at v ∈ VD.

The map Ξ is injective, and the image consists of all compatible constituents of L2
disc(H,ω) with respect to

D.
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The following more precise description of the global correspondence is also proved in [1]. For a positive
integer l let Rl be the standard parabolic k–subgroup of GL(ln)/k corresponding to the partition ρ =
(n, n, . . . , n) of ln. Its Levi factor LRl

is isomorphic to the direct product of l copies of GL(n)/k. Let π be
a cuspidal automorphic representation of GLn(Ak). Let

tl =
(

l − 1
2

,
l − 3

2
, . . . ,− l − 1

2

)
∈ ǎRl

.

Then, we denote by I(l, π) the representation of GLln(Ak) induced from the representation

π| det | l−1
2 ⊗ π|det | l−3

2 ⊗ . . .⊗ π| det |− l−1
2

of the Levi factor LRl
(Ak). This representation has a unique irreducible quotient which we denote by J(l, π).

It is a residual representation of GLln(Ak) if l > 1. For l = 1, we have by definition I(1, π) = J(1, π) = π.
All residual representations of GLN (Ak), for N > 1, are obtained in this way for some divisor l > 1 of N .

Theorem. Let π be an irreducible cuspidal automorphic representation of GLn(Ak). There is a unique
positive integer sπ,D, depending only on π and the division algebra D, which is defined by the condition that
J(l, π) is globally compatible (with respect to D) if and only if sπ,D divides l. Moreover, sπ,D divides the
degree d of the division algebra.

A representation of the form J(sπ,D, π) of GLnsπ,D
(Ak) corresponds to a cuspidal automorphic repre-

sentation π′ of the inner form. A representation of the form J(msπ,D, π), with m > 1, corresponds to
a residual representation J ′(m,π′) of the inner form, where m stands in this case for the point t′m =(
sπ,D

m−1
2 , sπ,D

m−3
2 , . . . ,−sπ,D

m−1
2

)
, and the notation J ′(m,π′) for inner forms is in an obvious analogy

with the split case.

3.3. Discrete spectrum of GL4(Ak). In order to describe the global Jacquet–Langlands correspondence
more precisely, we require the description of the discrete spectrum L2

disc(H,ω) of H(Ak). In [23], Mœglin
and Waldspurger describe the residual part of the discrete spectrum for GLn(Ak). The decomposition into
irreducibles of the cuspidal part was first proved by Gelfand, Graev and Piatetski–Shapiro in [11]. In [32]
Shalika proved that each representation appears with multiplicity one.

Theorem. The discrete spectrum L2
disc(H, ω) of H(Ak) decomposes into

L2
disc(H,ω) ∼= L2

cusp(H, ω)⊕ L2
res(H,ω),

where L2
cusp(H,ω) is the cuspidal spectrum consisting of cuspidal elements, and L2

res(H, ω) is its orthogonal
complement called the residual spectrum. The cuspidal part L2

cusp(H,ω) decomposes into a Hilbert space
direct sum of all irreducible cuspidal automorphic representations of H(Ak) with central character ω, each
appearing with multiplicity one. The residual part L2

res(H, ω) decomposes along the cuspidal support into

L2
res(H, ω) ∼= L2

res,{Q0}(H, ω)⊕ L2
res,{Q2}(H, ω),

where
L2

res,{Q0}(H, ω) ∼=
⊕

µ

µ ◦ det,

and the sum ranges over all unitary characters µ of k×\Ik such that µ4 = ω, while

L2
res,{Q2}(H, ω) ∼=

⊕
σ

J(2, σ),

and the sum ranges over all irreducible cuspidal automorphic representations σ of GL2(Ak) with central
character ωσ such that ω2

σ = ω.
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3.4. Jacquet–Langlands correspondence for H ′(Ak) and H(Ak). In our case at hand, we can make the
correspondence Ξ described in the two theorems of Section 3.2 more explicit. Namely, we have the following
explicit description of the global Jacquet–Langlands correspondence.

Proposition. Let π be an irreducible constituent of L2
disc(H, ω). In view of Theorem 3.3 we have the

following possibilities.

(1) If π is cuspidal, then π is compatible with respect to D if and only if at all non–split places v ∈ VD

the local component πv is one of the following:
• v ∈ Vf and πv is a unitary square integrable representation of H(kv) ∼= GL4(kv),
• πv is a tempered representation of H(kv) ∼= GL4(kv) fully induced from two unitary square–

integrable representations of GL2(kv),
• πv is a complementary series representation of H(kv) ∼= GL4(kv) attached to a unitary square–

integrable representation of GL2(kv) and a real number 0 < α < 1/2.
Assume that π is compatible, and π = Ξ(π′). The local component π′v of π′ at v ∈ VD is according
to the form of πv one of the following
• a unitary square integrable representation of H ′(kv) ∼= GL2(Dv) (this can be explicitly described

in terms of Zelevinsky segments),
• a tempered representation of H ′(kv) ∼= GL2(Dv) fully induced from a tensor product of two

unitary representations of D×
v ,

• a complementary series representation of H ′(kv) ∼= GL2(Dv) attached to a unitary representa-
tion of D×

v and a real number 0 < α < 1/2.
(2) If π ∼= J(2, σ), where σ is a cuspidal automorphic representation of GL2(Ak), then π is always

compatible with respect to D.
(a) If σv is square–integrable at all non–split places v ∈ VD, let σ′ be the cuspidal automorphic

representation of D×
Ak

corresponding to σ by the classical Jacquet–Langlands correspondence.
Note that σ′ is not one–dimensional. Then π corresponds to the residual representation J ′(2, σ′)
of H ′(Ak).

(b) If there is a non–split place v ∈ VD such that σv is not square–integrable, then π corresponds to
a cuspidal automorphic representation π′ of H ′(Ak). The local component π′v of π′ at v ∈ VD

such that σv is not square–integrable is
• either a tempered representation of H ′(kv) ∼= GL2(Dv), which is fully induced from a

tensor product of two unitary characters of D×
v ,

• or a complementary series representation of H ′(kv) ∼= GL2(Dv), attached to a unitary
character of D×

v and a real number 0 < α < 1/2.
(3) If π ∼= µ ◦ det, where µ is a unitary character of k×\Ik, then π is always compatible with respect to

D. It corresponds by the global Jacquet–Langlands correspondence to the one–dimensional residual
representation µ ◦ nrd of H ′(Ak).

Proof. We prove each part of the proposition separately.

(1) Any cuspidal automorphic representation π of GL4(Ak) is generic (cf. [32]). Hence, its local compo-
nents are generic as well. The generic unitary dual, obtained in [33] over a p–adic field and [37] over
an archimedean field, is of the same form. More precisely, for any v ∈ V the local component πv is
a fully induced representation from certain basic unitary representations of the form χ, δi, π(χ, α),
π(δ2, α), where i = 2, 3, 4 if v ∈ Vf , and i = 2 if v ∈ V∞ (since at the real place only δ2 exist).

Compatibility of π is determined by the local compatibility at v ∈ VD. A local component πv at
v ∈ VD is compatible if and only if the basic unitary representation involved are compatible. This
rules out the possibility of χ and π(χ, α). Hence, in order to obtain a representation of GL4(kv),
there are only the three possibilities given in the theorem (the first one can occur only for v ∈ VD∩Vf

since there is no δ4 at a real place).
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If π is compatible, then the second Theorem in Sect. 3.2 shows that π′ is cuspidal, because
π = J(1, π). The description of local components π′v at v ∈ VD follows directly from Sect. 2.2 and
Sect. 2.4.

(2) The fact that J(2, σ) is always compatible follows from the second Theorem in Sect. 3.2. Indeed, it
shows that sσ,D divides the degree of D. Thus, in the case of a quaternion division algebra, either
sσ,D = 1 or sσ,D = 2, and in both cases J(2, σ) is compatible.
(a) If sσ,D = 1, then σ itself is compatible. This is the situation of the original Jacquet–Langlands

correspondence (cf. [18]). The condition of compatibility is precisely the condition on σv given
in (2a). The rest of the claim directly follows from the second Theorem in Sect. 3.2.

(b) If sσ,D = 2, then σ is not compatible, which is exactly the opposite of the previous case, as
claimed. Again the second Theorem in Sect. 3.2 shows that in this case π′ is cuspidal.
For describing the local components π′v we consider only places v ∈ VD at which σv is not
square–integrable, because the other possibility is covered by the original Jacquet–Langlands
correspondence as in part (2a). Then σv is either a tempered representation fully induced from
two unitary characters χ1 and χ2 of k×v , or a complementary series representation π(χ, α), where
χ is a unitary character of k×v and 0 < α < 1/2.
Now πv, for v ∈ VD, can be written either as a fully induced representation from χ1 ◦ det2 and
χ2 ◦ det2, or as π(χ ◦ det2, α). The claim follows from Sect. 2.2 and Sect. 2.4.

(3) Finally, the unitary characters µ ◦ det of H(Ak) are compatible, because their local components are
also characters of H(kv) ∼= GL4(kv), and they correspond to characters of H ′(kv) ∼= GL2(Dv) at all
v ∈ VD. Note that sµ,D = 2 for every unitary character µ of k×\Ik. Therefore, characters of H ′(Ak)
are not cuspidal.

¤
3.5. Discrete spectrum of H ′(Ak). As a consequence of the global Jacquet–Langlands correspondence
explicitly described in Proposition 3.4, we obtain the decomposition of the discrete spectrum of H ′(Ak). In
[1] it is also proved that it is multiplicity one.

Theorem. The discrete spectrum L2
disc(H

′, ω) of H ′(Ak) decomposes into

L2
disc(H

′, ω) ∼= L2
cusp(H ′, ω)⊕ L2

res(H
′, ω),

where L2
cusp(H ′, ω) is the cuspidal spectrum consisting of cuspidal elements, and L2

res(H ′, ω) is its orthog-
onal complement called the residual spectrum. The cuspidal part L2

cusp(H ′, ω) decomposes into a Hilbert
space direct sum of irreducible cuspidal automorphic representations with central character ω, each appearing
with multiplicity one, and obtained by the global Jacquet–Langlands correspondence either from a cuspidal
automorphic representation of H(Ak) as in part (1) of Proposition 3.4, or from a residual automorphic
representation J(2, σ) of H(Ak) with σ as in part (2b) of Proposition 3.4. The residual part L2

res(H
′, ω)

decomposes into a Hilbert space direct sum

L2
res(H

′, ω) ∼=
(⊕

µ

µ ◦ nrd

)
⊕

(⊕

σ′
J ′(2, σ′)

)
,

where the first sum ranges over all unitary characters µ of k×\Ik such that µ4 = ω, and µ◦nrd is obtained by
the Jacquet–Langlands correspondence from µ◦det, while the second sum ranges over all cuspidal automorphic
representations σ′ of D×

Ak
which are not one–dimensional, and J ′(2, σ′) is obtained by the Jacquet–Langlands

correspondence from J(2, σ), where σ is as in part (2a) of Proposition 3.4, with central character ωσ = ωσ′

such that ω2
σ = ω.

3.6. Remark. We describe here the discrete spectrum of algebraic k–groups, although the definition in
Chapter I, Sect. 1.8 refers only to Q–groups. However, this generalization is straightforward, and can be
obtained via the restriction of scalars from k to Q.
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III. Automorphic Cohomology of General Linear Groups – a Comparison

Since the automorphic cohomology was defined in Chapter I for connected reductive linear algebraic groups
defined over Q, we need to consider the restriction of scalars from k to Q when dealing with k–groups. Thus,
except in Sect. 1, in this chapter we retain the notation of the previous one, namely H = GL(4)/k and
H ′ = GL(2, D)/k, where D is a quaternion division algebra central over a number field k. However, we
let G = Resk/QH and G′ = Resk/QH ′ be the Q–groups obtained from H and H ′ by restriction of scalars,
respectively. The goal of this chapter is to compare the automorphic cohomology H∗(G,E) and H∗(G′, E),
with respect to the trivial representation E = C, and in particular, relate the possible non–trivial cohomology
classes via the Jacquet–Langlands correspondence.

1. Cohomological Representations at Archimedean Places

We briefly discuss the constructive approach to the classification [39] of irreducible unitary representations
of a connected real reductive Lie group with non-vanishing relative Lie algebra cohomology. This general
result allows us to enumerate (up to infinitesimal equivalence) the irreducible unitary (mH(R), O(4))–modules
with non–vanishing Lie algebra cohomology in an explicit way, where O(4) is the maximal compact subgroup
of H(R) ∼= GL4(R). We have to start off by determining the irreducible unitary (mSL4(R), SO(4))-modules
with non-vanishing Lie algebra cohomology using the results in [39].

In this section we use a different notation then in the rest of the paper. Namely, G denotes a connected
real reductive Lie group, K ⊂ G a maximal compact subgroup. Write g for the Lie algebra of G, and
write gC for its complexification. Given an irreducible unitary representation (π, Hπ) of G we denote the
Harish–Chandra module of Hπ (i.e., the set of K–finite vectors in the space of C∞–vectors of Hπ) by the
same letter or by Hπ,K . We denote by WG (resp. WK) the Weyl group of G (resp. K).

1.1. The classification up to infinitesimal equivalence. Let G be a connected real reductive Lie group
(of Harish-Chandra’s class), K ⊂ G a maximal compact subgroup. Let θK be the Cartan involution cor-
responding to the maximal compact subgroup K ⊂ G, and let g = k ⊕ p be the corresponding Cartan
decomposition. By definition a θK-stable parabolic subalgebra q of g is a parabolic subalgebra of gC such
that θKq = q, and q ∩ q = lC is a Levi subalgebra of q where q refers to the image of q under complex
conjugation with respect to the real form g of gC. Write u for the nilradical of q. Then lC is the complexi-
fication of a real subalgebra l of g. The normalizer of q in G is connected since G is, and it coincides with
the connected Lie subgroup L of G with Lie algebra l. The Levi subgroup L has the same rank as G, is
preserved by the Cartan involution θK , and the restriction of θK to L is a Cartan involution. Moreover, the
group L contains a maximal torus T ⊂ K. We will indicate below a construction of all possible θK-stable
parabolic subalgebras q in g up to conjugation by K. There are only finitely many K-conjugacy classes of
θK-stable parabolic subalgebras q in g.

A θK-stable parabolic subalgebra q gives rise to an irreducible unitary representation Aq of G. It is
constructed via cohomological induction as RS

q (see [39, Thm. 2.5]) and it is uniquely determined up to
infinitesimal equivalence by the K-conjugacy class of q. In the case that the θK-stable parabolic subalgebra
coincides with the full algebra, that is, q0 := gC, we take Aq = C. We denote the Harish-Chandra module of
Aq by the same letter or by Aq,K . One has

(1.1) Hj(g,K, Aq,K) = HomL∩K(∧j−R(l ∩ p),C)

where R = R(q) := dim(u∩pC). Consequently, the Lie algebra cohomology with respect to the representation
Aq vanishes in degrees below dim(u∩pC) and above dim(u∩pC)+dim(l∩pC). Suppose (π, Hπ) is an irreducible
unitary representation (π,Hπ) of G with

H∗(g,K, Hπ,K) 6= 0.
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Then there is a θK-stable parabolic subalgebra q of g so that π ∼= Aq. One finds the construction of the
representations Aq in [25], a proof of their unitarity in [36] and the classification of the irreducible unitary
representations of G with non-vanishing cohomology in [39].

Following [39] and [38, Sect. 4] we outline a construction of all θK-stable parabolic subalgebras q of g up to
conjugation by K. Fix a maximal torus T in K. The centralizer H of T in G is a Cartan subgroup. According
to the Cartan decomposition of g we may write H = TA with A = H ∩ (exp p). We denote the Lie algebra
of T by tc. Let Φ(k, tc) =: Φc be the system of roots for tc in kC, and fix a system Φ+

c := Φ+(k, tc) ⊂ Φ(k, tc)
of positive roots. Similiarly, we write Φn for the set of non-zero weights of tc on pC.

Fix an element x ∈ i(tc)R that is dominant for K, that is, γ(x) ≥ 0 for all γ ∈ Φ+(k, tc). Then the
θK-stable parabolic subalgebra associated to x is defined by

qx = hC ⊕
∑

γ∈Φ,γ(x)≥0

gC,γ

with Φ := Φn ∪ Φc. The corresponding Levi subalgebra qx ∩ qx = (lx)C is

(lx)C = hC ⊕
∑

γ∈Φ,γ(x)=0

gC,γ .

The Levi subgroup is then described by Lx = {g ∈ G | Ad(g)(x) = x}.

1.2. The case GL4(R). This general construction allows us to enumerate (up to infinitesimal equivalence)
the irreducible unitary (mGL4(R), O(4)) - modules with non-vanishing Lie algebra cohomology in an explicit
way, where O(4) is a maximal compact subgroup of GL4(R). The final result also appears in the thesis [19,
Sect. 2].

First we have to deal with the pair consisting of the semi-simple real Lie group G = SL(4,R) and the
maximal compact subgroup K = SO(4). The Lie algebra so4 is semi-simple of rank 2. Fix the maximal
torus T = SO(2)× SO(2) in K. The centralizer H of T in G is a Cartan subgroup. Let {γ1, γ2} be a basis
for the system Φ(k, tc) of positive roots for tc in kC. Given an element x ∈ i(tc)R that is dominant for K,
that is, γ(x) ≥ 0 for all γ ∈ Φ(k, tc), the θK-stable parabolic subalgebra associated to x is defined by

qx = hC ⊕
∑

γ∈Φ,γ(x)≥0

gC,γ

with Φ := Φ(g, tc). The corresponding Levi subalgebra qx ∩ qx = (lx)C is

(lx)C = hC ⊕
∑

γ∈Φ,γ(x)=0

gC,γ .

Following this construction one obtains as in [19, Sect. 2.1] the following list of θK-stable parabolic subalge-
bras q of g (up to conjugation by K = SO(4)), enumerated as qj , j = 1, . . . , 6, with

(l1)C = gC u1 = {0}
(l2)C = hC ⊕ gC,γ1 ⊕ gC,−γ1 u2 = gC,γ2 ⊕ gC,γ2−γ1 ⊕ gC,γ2+γ1

(l3)C = hC ⊕ gC,γ2 ⊕ gC,−γ2 u3 = gC,γ1 ⊕ gC,γ1−γ2 ⊕ gC,γ1+γ2

(l4)C = hC ⊕ gC,γ2−γ1 ⊕ gC,γ1−γ2 u4 = gC,γ1 ⊕ gC,γ2 ⊕ gC,γ1+γ2

(l5)C = hC u5 = gC,γ1 ⊕ gC,γ2 ⊕ gC,γ2−γ1 ⊕ gC,γ2+γ1

(l6)C = hC u6 = gC,γ1 ⊕ gC,γ2 ⊕ gC,γ1−γ2 ⊕ gC,γ2+γ1 .

We denote by Aqj the corresponding (mG, SO(4))–module. Second, by taking into account the induction
functor Ind from the category of (mG, SO(4)) - modules to the category of (mG, O(4)) - modules, we now are
in the position to determine (up to infinitesimal equivalence) the irreducible unitary (mG, O(4)) - modules
with non-vanishing relative Lie algebra cohomology. Note that mG = mGL4(R)
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Representation Langlands data Basic unitary representations Hq(mG, O(4); · ⊗ C) 6= 0

Yq1 (Q0(R), 1⊗ . . .⊗ 1, (3/2, 1/2,−1/2,−3/2)) 1 ◦ det4 q = 0, 5

Y det
q1

(Q0(R), sgn⊗ . . .⊗ sgn, (3/2, 1/2,−1/2,−3/2)) sgn ◦det4 q = 4, 9

Yq2 (Q2(R), D3 ⊗D3, (1/2,−1/2)) u(D3, 2) q = 3, 6
Yq5 (Q2(R), D2 ⊗D4, (0, 0)) D2, D4 q = 4, 5

R2
q4

(C) (Q{α2}(R), 1⊗D4 ⊗ 1, (1/2, 0,−1/2)) 1 ◦ det2, D4 q = 3, 4

R2
q4

(Cdet) (Q{α2}(R), sgn⊗D4 ⊗ sgn, (1/2, 0,−1/2)) sgn ◦det2, D4 q = 5, 6

Table 3. Unitary Harish–Chandra modules for GL4(R) with non–zero cohomology

Representation Langlands data Basic unitary representations Hq(mG′ , K′; · ⊗ C) 6= 0

Xq′1
(Q′(R), 1⊗ 1, (1,−1)) 1 ◦ nrd2 q = 0, 5

Xq′2
(Q′(R), D′

3 ⊗D′3, (1/2,−1/2)) u(D′
3, 2) q = 1, 4

Xq′3
(Q′(R), 1H× ⊗D′4, (0, 0)) 1H× , D′4 q = 2, 3

Table 4. Unitary Harish–Chandra modules for GL2(H) with non–zero cohomology

Proposition. (1) The (mG, O(4)) - modules Ind(Aqj ), j = 2, 3 and j = 5, 6 are irreducible, to be denoted
by Yqj . One has Yq2

∼= Yq3 and Yq5
∼= Yq6 respectively.

(2) The (mG, O(4)) - module Ind(Aq1) splits into the two irreducible summands Yq1 := C and Y det
q1

:=
Cdet.

(3) The (mG, O(4)) - module Ind(Aq4) splits into two irreducible (mG, O(4)) - modules, more precisely
one has Ind(Aqj ) = R2

q4
(C)⊕R2

q4
(Cdet).

Proof. The first assertion follows from the fact that Lj ∩ O(4) = Lj ∩ SO(4) for j = 2, 3 and j = 5, 6 and
that q2 is conjugate under O(4) to q3 respectively q5 is conjugate under O(4) to q6. With regard to the
other two assertions we observe that the Lj ∩ O(4) -module Ind(C) obtained from the trivial Lj ∩ SO(4) -
module C splits into the two irreducibles C and Cdet if j = 1 and 4. ¤

Having determined the unitary Harish–Chandra modules with non–zero cohomology for GL4(R), it is
convenient to have their description in terms of the Langlands classification and in terms of the classification
of unitary representations used in Chapter II. We summarize these results in Table 3. The first column is the
notation used in the proposition above. The second column gives the data defining the Langlands quotient
of the representation, i.e., the standard parabolic subgroup Q, a square–integrable representation δ of its
Levi factor LQ(R), and an element ν ∈ ǎ+

Q given in the basis consisting of the determinants on each general
linear group appearing in the Levi factor LQ. The third column lists the basic unitary representations, see
Sect. 2.1 in Chapter II, appearing in the classification of the unitary representation. We also give in the
last column the degrees in which the cohomology is non–zero. In all these degrees the cohomology space is
isomorphic to C.

1.3. The case GL2(H). The same general classification of unitary representations with non–zero cohomology
can be applied to the real Lie group G′ = GL2(H), and its maximal compact subgroup K ′. It turns out
that there are up to infinitesimal equivalence three such representations which we denote by Xq′j , j = 1, 2, 3.
We describe these representations in terms of the Langlands classification, and the classification of unitary
representations given in Sect. 2.1 in Chapter II. Note that here the elements of ǎQ′ are given in the basis
consisting of the reduced norm on each copy of H×. We also give the degrees in which the cohomology
is non–vanishing. In those degrees the cohomology space is isomorphic to C. As in the case GL4(R), we
summarize the final result in Table 4, and leave the details to the reader.
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Comparing the description in terms of basic unitary representations for GL4(R) and GL2(H), given in the
third column of Table 3 and Table 4, it is clear that the representations with non–zero cohomology are related
by the local Jacquet–Langlands correspondence described in Sect. 2.2 in Chapter II. More precisely, the first
two representations in Table 3 correspond to Xq′1 , the third one correspond to Xq′2 , and the remaining three
to Xq′3 . However, the degrees in which their cohomology is non–vanishing varies. Even if two representations
of GL4(R) correspond to the same representation of GL2(H), the degrees in which the cohomology is non–
vanishing are not the same.

2. The Automorphic Cohomology of the General Linear Group G = Resk/QGL4/k

Let H = GL(4)/k be the general linear group defined over k. We consider in this section the automorphic
cohomology of the Q–group G = Resk/QH obtained by restriction of scalars. The standard parabolic Q–
subgroups of G are obtained from the standard parabolic k–subgroups of H by restriction of scalars. In
particular, we denote by Pi = Resk/QQi, for i = 1, 2, 3, the three maximal proper standard parabolic Q–
subgroups of G, by P0 = Resk/QQ0 the minimal one, and by P{αi} = Resk/QQ{αi}, for i = 1, 2, 3, the
three intermediate ones. As for H, among maximal parabolic subgroups P1 and P3 are associate, while
the intermediate ones P{αi} are all associate. Thus, there are four associate classes of proper parabolic
Q–subgroups of G, namely the class of minimal parabolic subgroups {P0}, two classes of maximal ones {P1}
and {P2}, and one class of intermediate ones {P{α1}}.

The automorphic cohomology H∗(G, E) has a direct sum decomposition H∗(G,E) = H∗
cusp(G,E) ⊕

H∗
Eis(G, E) where

H∗
Eis(G,E) :=

⊕

{P}∈C,P 6=G

H∗(mG, KR;AE,{P} ⊗C E)

is the Eisenstein cohomology of G with coefficients in E. The sum ranges over associate classes of proper
parabolic Q–subgroups of G. In this section, we discuss the internal structure of each of the corresponding
summands in this decomposition of the automorphic cohomology.

2.1. Cuspidal cohomology. The cuspidal cohomology H∗
cusp(G,E) decomposes as a direct sum as

H∗
cusp(G,E) =

⊕

φ∈ΦE,{G}

H∗(mG,KR;AE,{G},φ ⊗C E)

where the sum ranges over the set ΦE,{G} of classes of associate irreducible cuspidal automorphic represen-
tations of G.

We define certain constants required to state a vanishing result for cuspidal cohomology of the general
linear group. For a given real Lie group M with finitely many connected components and reductive Lie algebra
2q(M) = dim M−dim KM where KM is a maximal compact subgroup of M . Set `0(M) := rk(M)−rk(KM ),
where rk denotes the absolute rank, and write q0(M) := 1

2 (2q(M)− `0(M)). In the case of the real Lie group
GLn(R) these values can be made explicit; we refer to [27, Sect. 3.5]. The interval [q0(M), q0(M) + `0(M)]
is centered around the middle dimension of the symmetric space associated to the Lie group M . For the
group H(R) ∼= GL4(R) of interest to us, one obtains the interval [4, 5].

Theorem. Let k/Q be an algebraic number field, and let G/Q be the algebraic Q–group Resk/QGL(n)
obtained from the general linear group GL(n) defined over k by restriction of scalars. Let (ν, E) be an
irreducible finite dimensional algebraic representation of G(C). Then

Hj
cusp(G,E) = 0 if j /∈ [q0(G(R)), q0(G(R)) + `0(G(R))] ∩ Z.

In particular, if k is totally real, and G = Resk/QH with H = GL(4)/k, then

Hj
cusp(G, E) = 0 if j /∈ [4[k : Q], 5[k : Q]] ∩ Z,

where [k : Q] is the degree of extension k/Q.
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Proof. We consider a summand H∗(mG,KR;AE,{G},φ) ⊗C E corresponding to the associate class φ of a
cuspidal automorphic representation π of G(A). We may view π as a cuspidal automorphic representation
of GLn(Ak). By the Künneth rule, since G(R) ∼= ∏

v∈V∞ GLn(kv) with kv = R or kv = C, the corresponding
representation πv must have non–trivial cohomology for all v ∈ V∞.

On the other hand, π is cuspidal automorphic representation of GLn(Ak), and hence generic. Thus,
the local components πv are generic as well. As they are also unitary, comparing the classification of
generic unitary dual for GLn(R) and GLn(C) of Vogan [37] to the classification of cohomological unitary
representations as in [39], it is not too difficult to see that πv is necessarily tempered. For a detailed discussion
of this fact see [27, Sect. 3.5] or [29, Chap. 6]. The degrees where these specific tempered representations
have non–vanishing cohomology give the required bounds. If k is totally real, and G = Resk/QH with
H = GL(4)/k, the vanishing result follows by the Künneth rule from the vanishing outside [4, 5] ∩ Z for
GL4(R) mentioned before the statement of the Theorem. ¤

By the construction of cuspidal cohomology classes for congruence subgroups of GLn/k with respect to
suitable coefficient systems (ν,E) as pursued in [20] this bound q0(G(R)) is sharp (at least if we vary the
choice of the base field k).

In the case of the trivial representation E = C, there is up to equivalence exactly one unitary representation
of GLn(R) which is generic and has non–trivial cohomology with respect to E = C. It is tempered, and
given as the fully induced representation from a square–integrable representation of the Levi factor LQρ of
the parabolic subgroup Qρ with ρ = (r1, . . . , rm), where m =

[
n
2

]
if n is even, and m =

[
n
2

]
+ 1 if n is

odd, and ri = 2 for i = 1, . . . ,
[

n
2

]
, and if n is odd rm = 1. The square–integrable representation of LQρ is

the tensor product of discrete series representations Dn−2i+2 of GL2(R) of lowest O(2)–type n− 2i + 2 for
i = 1, . . . ,

[
n
2

]
(see Section 2.2 in Chapter II), and if n is odd a trivial character of R×.

In particular, if n = 4, we obtain that this representation is fully induced from the tensor product D4⊗D2,
where Di is the discrete series representation of lowest O(2)-type i (see Section 2.2 in Chapter II), of the
Levi factor LQ2(R) ∼= GL2(R)×GL2(R).

2.2. The summands H∗(mG,KR;AE,{P} ⊗C E), P maximal parabolic. Let {P} be one of the two
associate classes {P1} and {P2} of maximal parabolic Q-subgroups of the reductive Q-group G. As explained
in Sect. 3.2 in Chapter I, given φ ∈ ΦE,{P}, there is a natural two step filtration

LE,{P},φ ⊂ AE,{P},φ,

of the space AE,{P},φ of automorphic forms, where LE,{P},φ is the subspace of AE,{P},φ consisting of square
integrable automorphic forms. The space LE,{P},φ is spanned by the residues at s > 0 of the Eisenstein series
attached to functions f ∈ Wπ, where π ∼= σ ⊗ σ′ ∈ φP with σ and σ′ cuspidal automorphic representations
of the general linear groups appearing in the Levi factor LP of P (see Sect. 3.3 in Chapter I). Those residues
are square–integrable automorphic forms [24, Section I.4.11]. The quotient AE,{P},φ/LE,{P},φ is in both
cases spanned by the principal value of the derivatives of such Eisenstein series at Re(s) ≥ 0.

By the description of the residual spectrum of H(Ak) ∼= GL4(Ak) (cf. [23], recalled in Sect. 3.3 in Chapter
II), which is the same as G(A), the space LE,{P1},φ = (0) for every associate class φ. In the other case,
LE,{P2},φ 6= (0) if and only if φ is the associate class of a cuspidal representation π ∼= σ ⊗ σ, i.e., σ′ ∼= σ.
Then we have the following result in our case of interest which is the main theorem obtained in the case
Resk/QGLn in [10, Sect. 5.6].

Theorem. Let {P} be an associate class of maximal parabolic Q-subgroups of the group G, and let φ ∈
ΦE,{P} be an associate class of irreducible cuspidal automorphic representations of the Levi components of
elements in {P}.

(1) If {P} = {P1}, that is, the elements in {P} are not conjugate to their opposite P−, then

H∗(mG,KR;LE,{P1} ⊗C E) = (0).
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Consequently, H∗
(sq)(mG,KR;AE,{P1} ⊗C E) = (0), and H∗(mG,KR;AE,{P1} ⊗C E) is generated by

so called regular Eisenstein cohomology classes.
(2) If {P} = {P2}, that is, the elements in {P} are conjugate to their opposite P−, then

(a) if φ is the associate class of π ∼= σ ⊗ σ′ with σ 6∼= σ′, then

H∗(mG,KR;LE,{P2},φ ⊗C E) = (0)

Consequently, H∗
(sq)(mG,KR;AE,{P2},φ ⊗C E) = (0), and H∗(mG,KR;AE,{P1},φ ⊗C E) is gen-

erated by so called regular Eisenstein cohomology classes.
(b) Otherwise, i.e., in the case π ∼= σ ⊗ σ, the space H∗(mG,KR;LE,{P2},φ ⊗C E) is non-trivial. It

consists of square integrable cohomology classes represented by residues of suitable Eisenstein
series attached to π. In particular, if k/Q is totally real of degree [k : Q], then

Hq(mG,KR;LE,{P2},φ ⊗C E) =




C[k:Q],

if q ∈ [
3[k : Q], 6[k : Q]

] ∩ (3Z) and
Πv

∼= Jv(P2(R), D3 ⊗D3, (1/2, 1/2)) for v ∈ V∞,

0, otherwise,

where Πv is the local component at the place v of LE,{P2},φ, and Jv stands for the Langlands
quotient.

Observe that in the case (2b) of the Theorem, the square–integrable cohomology space

H∗
(sq)(mG, KR;AE,{P2},φ ⊗C E)

is not given. It is still an open problem to determine this space. However, it is proved in [10] that the
square–integrable cohomology classes are separated from the regular ones by the degree in which they may
occur.

2.3. The summand H∗(mG,KR;AE,{P0} ⊗C E). Let {P0} be the associate class of the fixed minimal
parabolic Q-subgroup P0 of the reductive Q-group Resk/QGL(n) obtained from the k–group GL(n)/k by
the restriction of scalars. Let φ ∈ ΦE,{P0} be an associate class of cuspidal automorphic representations of
L0(A). By the description of the residual spectrum of GLn(Ak) by Mœglin and Waldspurger [23], the space
of square–integrable automorphic forms LE,{P0},φ inside AE,{P0},φ is trivial unless φP0 contains a character
of L0(A) of the form χ⊗ χ⊗ . . .⊗ χ, where χ is a unitary character of k×\Ik. If this necessary condition is
satisfied, then LE,{P0},φ is one–dimensional and isomorphic to χ ◦ det.

In any case, by Franke’s filtration [8, Thm. 14, Sect. 6], the quotient AE,{P0},φ/LE,{P0},φ is spanned
by principal values of the derivatives of all the Eisenstein series, attached to either residual automorphic
representation, supported in χ⊗ χ⊗ . . .⊗ χ, of the Levi factor of a proper parabolic subgroup which is not
minimal, or a cuspidal automorphic representation χ⊗χ⊗ . . .⊗χ of L0(A). Then, in the case of interest of
this paper, we have the following result in cohomology. The proof follows directly from the above discussion,
except for the degrees of non–vanishing cohomology which is a consequence of the Künneth rule and Sect. 1.2.

Theorem. Let {P0} be the associate class of the minimal parabolic Q-subgroup P0 of the group G, and let
φ ∈ ΦE,{P0} be an associate class of irreducible cuspidal automorphic representations of the Levi components
of elements in {P0}. Let χ1 ⊗ χ2 ⊗ χ3 ⊗ χ4 ∈ φP0 be a unitary character of L0(A), where χi is a unitary
character of k×\Ik for i = 1, 2, 3, 4.

(1) If there are i 6= j such that χi 6= χj, then

H∗(mG,KR;LE,{P0},φ ⊗C E) = (0).

Consequently, H∗
sq(mG,KR;AE,{P0},φ ⊗C E) = (0).
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(2) Otherwise, i.e., in the case χ1 = χ2 = χ3 = χ4, we denote this character by χ. Then, the space
H∗(mG, KR;LE,{P0},φ⊗CE) is non-trivial. It consists of square integrable cohomology classes repre-
sented by residues of suitable Eisenstein series. In particular, if k/Q is totally real of degree [k : Q],
and t0 the number of places v ∈ V∞ such that χv = sgn, then

Hq(mG, KR;LE,{P0},φ ⊗C E) =




C[k:Q],

if q ∈ [
4t0, 5[k : Q] + 4t0

] ∩ (5Z+ 4t0) and
χv = 1 or χv = sgn at all places v ∈ V∞,

0, otherwise.

The problem of determining the image H∗
(sq)(mG,KR;LE,{P0},φ ⊗C E) was studied for the minimal para-

bolic subgroup in the case SL(n)/Q by Franke in [9].

2.4. The summand H∗(mG, KR;AE,{P{α1}}⊗CE). Let {P{α1}} be the associate class of intermediate par-
abolic Q-subgroups of the reductive Q-group G, i.e., the class consisting of proper parabolic Q-subgroups
which are neither minimal, nor maximal. By Sect. 1.1 in Chapter II, there is only one such associate class.
Again, the results of Mœglin and Waldspurger [23], show that there are no square–integrable automorphic
forms in the space AE,{P{α1}}. Thus in this case the space LE,{P{α1}},φ of square–integrable automorphic
forms inside AE,{P{α1}},φ is trivial for any associate class φ ∈ ΦE,{P{α1}}. Thus, the same holds in cohomol-
ogy, i.e.,

H∗(mG,KR;LE,{P{α1}} ⊗C E) = (0).

Consequently, the space H∗
(sq)(mG,KR;AE,{P{α1}} ⊗C E) = (0).

By Franke [8, Thm. 14, Sect. 6], the space AE,{P{α1}} itself is spanned by the principal values of the
derivatives of all the Eisenstein series attached to residual automorphic representations, supported in {P{α1}},
of the Levi factor LP2(A) of the parabolic subgroup P2, and the cuspidal Eisenstein series supported in
{P{α1}}. More precisely, if φ is the associate class of a cuspidal automorphic representation π ∼= σ⊗χ1⊗χ2

of LP{α1}
(A), with χ1 = χ2 denoted by χ, then the Franke filtration of AE,{P{α1}},φ is a two–step filtration

A′E,{P{α1}},φ ⊂ AE,{P{α1}},φ,

whereA′E,{P{α1}},φ
is spanned by the holomorphic values of all the derivatives of the Eisenstein series attached

to the representation σ⊗χ ◦ det2 of LP2(A) at an appropriate evaluation point. The quotient is spanned by
main values of the derivatives of the Eisenstein series attached to π itself at an appropriate evaluation point.
Otherwise, if χ1 6= χ2, then A′E,{P{α1}},φ

= (0).

3. The Automorphic Cohomology of G′ = Resk/QGL(2, D)

We consider now the automorphic cohomology of the Q–group G′ which is obtained from the k–group
H ′ = GL(2, D) by restriction of scalars, where D is a quaternion division algebra central over k. Since there
is a unique conjugacy (and associate) class of proper Q–parabolic subgroups of G′, given by P ′ = Resk/QQ′,
the decomposition of the automorphic cohomology H∗(G′, E) with respect to associate classes of parabolic
subgroups consists of two summands

H∗(G′, E) = H∗
cusp(G′, E)

⊕
H∗

Eis(G
′, E),

where
H∗

Eis(G
′, E) = H∗(mG′ ,K

′
R;AE,{P ′} ⊗C E).

We are primarily interested into square–integrable cohomology, namely

H∗
(sq)(G

′, E) = H∗
cusp(G′, E)

⊕
H∗

Eis,(sq)(G
′, E)

We study each summand separately using the global Jacquet–Langlands correspondence (see Chapter II,
Sect. 3) to make a comparison with the case of G = Resk/QH, where H = GL(4)/k, considered in Sect. 2.
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3.1. Global Jacquet–Langlands correspondence in cohomology. The injective map Ξ of the global
Jacquet–Langlands correspondence between H ′(Ak) and H(Ak), defined in Section 3.2 in Chapter II, is in
fact also an injective map from the discrete spectrum representations of G′(A) into the discrete spectrum
representations of G(A). This map gives rise to a map, also denoted by Ξ, between the cohomology spaces

Ξ : H∗(mG′ , K
′
R;LE,{R′},φ′ ⊗C E) → H∗(mG,KR; Ξ(LE,{R′},φ′)⊗C E),

where either R′ = P ′ or R′ = G′, and Ξ(LE,{R′},φ′) is defined as follows. Let π′ ∈ φ′R′ be a cuspidal
automorphic representation of the Levi factor LR′(A). Observe that we allow here R′ = G′, and thus LR′ =
G′. Then, by the global Jacquet–Langlands correspondence, there is a discrete spectrum representation Ξ(π′)
of the corresponding Levi factor in G. Hence, Ξ(π′) belongs to LE,{P},φ for uniquely determined parabolic
Q-subgroup P of G, and an associate class φ of a cuspidal automorphic representation of its Levi factor
which is the support of Ξ(π′). Then we define

Ξ(LE,{R′},φ′) = LE,{P},φ.

In accordance to the terminology regarding the global Jacquet–Langlands correspondence, introduced in
Sect. 3.2 in Chapter II, we say that a cohomology space

H∗ (
mG,KR;LE,{P},φ ⊗C E

)

for G is D-compatible if it is among the spaces in the range of Ξ. This is equivalent to D–compatibility of
LE,{P},φ. The properties of the map Ξ in cohomology are given in the following theorem.

Theorem. In the notation as above, the cohomology space

H∗(mG′ ,K
′
R;LE,{R′},φ′ ⊗C E)

is non–trivial if and only if
H∗(mG,KR; Ξ(LE,{R′},φ′)⊗C E)

is non–trivial.

The proof follows directly from the description of the local Jacquet–Langlands correspondence at a real
place in Sect. 2.2 in Chapter II. Namely, it shows that the representations with non–zero cohomology of
GL4(R) correspond to such representations for GL2(H). In what follows, we refine the map Ξ by the degrees
of cohomology. However, this will be done considering case by case below.

Although we have now defined a map Ξ between the cohomology of the spaces of square–integrable
automorphic forms, it is not clear how is this related to the summands in the decomposition along the cuspidal
support of the square–integrable automorphic cohomology. More precisely, we would like to understand the
following diagram

H∗(mG′ ,K
′
R;LE,{R′},φ′ ⊗C E) Ξ−−−−→ H∗(mG,KR;LE,{P},φ ⊗C E)

↓ ↓(3.1)

H∗
(sq)(mG′ , K

′
R;AE,{R′},φ′ ⊗C E)

Ξ(sq)−−−−−−−→ H∗
(sq)(mG, KR;AE,{P},φ ⊗C E)

where LE,{P},φ = Ξ(LE,{R′},φ′), the vertical maps are induced from the inclusion of the space of square–
integrable ones into the space of automorphic forms. The map Ξ(sq) is to be considered case by case below.

3.2. Cuspidal cohomology. The cuspidal cohomology decomposes into

H∗
cusp(G′, E) =

⊕

φ′∈ΦE,{G′}

H∗(mG′ ,K
′
R;LE,{G′},φ′ ⊗C E),

where the sum ranges over all associate classes of cuspidal automorphic representations of G′(A) which
are represented by a representation π′ ∈ φG′ with non–trivial cohomology with respect to E. Hence, any
cuspidal automorphic representation π′ of G′(A) whose infinite component is cohomological has non–trivial
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automorphic cohomology in the same degrees as its infinite component as a Harish–Chandra module. We
have thus the following result.

Theorem. Assume k is a totally real number field of degree [k : Q]. Let t denote the number of archimedean
places of k at which D does not split. Then, Hq

cusp(G′, E) vanishes if

q 6∈
([

4[k : Q]− 2t, 5[k : Q]− 2t
] ∩ Z

)
∪

([
3[k : Q]− 2t, 6[k : Q]− 2t

] ∩ (3Z+ t)
)
.

In particular, if k = Q and D is non–split at the real place of Q, then Hq
cusp(G′, E) vanishes in the degrees

q = 0 and q ≥ 5.
More precisely, let φ′ be the associate class of a cuspidal automorphic representation π′ of G′(A). If π′ is

such that Ξ(π′) is cuspidal (see Sect. 3.4 in Chapter II), then

Hq(mG′ ,K
′
R;LE,{G′},φ′ ⊗C E) =





C[k:Q],

if q ∈ [
4[k : Q]− 2t, 5[k : Q]− 2t

] ∩ Z and

π′v ∼=
{

Ind
GL4(R)
P2(R) (D2 ⊗D4), v ∈ V∞ \ VD,

Ind
GL2(kv)(H)
P ′(H) (1H× ⊗D′

4), v ∈ V∞ ∩ VD.

0, otherwise.

If π′ is such that Ξ(π′) is residual (see Sect. 3.4 in Chapter II), then

Hq(mG′ , K
′
R;LE,{G′},φ′ ⊗C E) =




C[k:Q],

if q ∈ [
3[k : Q]− 2t, 6[k : Q]− 2t

] ∩ (3Z+ t) and

π′v ∼=
{

Jv(P2(R), D3 ⊗D3, (1/2, 1/2)), v ∈ V∞ \ VD,
J ′v(P ′(H), D′

3 ⊗D′
3, (1/2,−1/2)), v ∈ V∞ ∩ VD.

0, otherwise,

where Jv and J ′v denote the Langlands quotients in GL4(R) and GL2(H), respectively.

Proof. It suffices to show the second claim of the theorem, since it implies the vanishing result for the cuspidal
cohomology H∗

cusp(G′, E). Viewing π′ as a cuspidal automorphic representation of H ′(Ak), and applying the
Künneth rule, the theorem reduces to the consideration of local components at archimedean places. These
were studied in Sect. 1.3. ¤

Note that the non–vanishing of Hq
cusp(G′, E) in the degrees where the theorem does not give a vanishing

result depends only on the existence of cuspidal automorphic π′ with the required archimedean components.
In the case where Ξ(π′) is residual, the non–vanishing reduces to the existence of a cuspidal automorphic
representation of GL2(Ak) with given square–integrable representations at archimedean places, and at least
one non–split non–archimedean place where the local component is not square–integrable. In the other
case where Ξ(π′) is cuspidal, the non–vanishing is equivalent to the existence of a cuspidal automorphic
representation of GL4(Ak) with the given tempered representation at all archimedean places, and the local
components at non–split non–archimedean places as in part (1) of Proposition 3.4 in Chapter II.

We consider finally the diagram (3.1). If Ξ(π′) is cuspidal, both vertical maps are isomorphisms because
the target space is a part of cuspidal cohomology. Thus, in this case Ξ(sq) can be identified with Ξ. In the
other case, i.e., Ξ(π′) is residual, only the left hand side vertical map is an isomorphism. Thus, Ξ(sq) is not
determined by Ξ, although Ξ gives the possible range of Ξ(sq). Finally note that when applying Ξ there is a
shift in the degrees in which the cohomology space is non–zero. In the case of a totally real number field k
this shift equals 2t, where t is the number of non–split places of D.

3.3. Eisenstein cohomology. In the case of Eisenstein cohomology, the space of square–integrable auto-
morphic forms LE,{P ′},φ′ is a proper subspace of AE,{P ′},φ′ . Hence, the cohomology space

H∗(mG′ ,K
′
R;LE,{P ′},φ′ ⊗C E)
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just gives possible non–trivial classes in the corresponding square–integrable cohomology space

H∗
(sq)(mG′ ,K

′
R;AE,{P ′},φ′ ⊗C E)

The problem of determining which classes are indeed non–trivial in the latter space is subtle and out of
the scope of our consideration in this paper. However, the former space can be described via the global
Jacquet–Langlands correspondence.

Theorem. Assume k is a totally real number field of degree [k : Q]. Let t denote the number of archimedean
places of k at which D does not split. Let φ′ be the associate class of a cuspidal automorphic representation
π′1 ⊗ π′2 of the Levi factor L′(A) of P ′. If π′1 6= π′2, then H∗

Eis,(sq)(G
′, E) is trivial.

Suppose that π′1 = π′2 = π′. If π′ is not one–dimensional, then

Hq(mG′ ,K
′
R;LE,{P ′},φ′ ⊗C E) =




C[k:Q],

if q ∈ [
3[k : Q]− 2t, 6[k : Q]− 2t

] ∩ (3Z+ t) and

Π′v ∼=
{

Jv(P2(R), D3 ⊗D3, (1/2, 1/2)), v ∈ V∞ \ VD,
J ′v(P ′(H), D′

3 ⊗D′
3, (1/2,−1/2)), v ∈ V∞ ∩ VD.

0, otherwise,

where Π′v is the local component at the place v of LE,{P ′},φ′ , and Jv and J ′v denote the Langlands quotient
in GL4(R) and GL2(H), respectively. If π′ ∼= χ ◦ nrd, where χ is a unitary character of k×\Ik, let t′0 denote
the number of split archimedean places where χv = sgn. Then

Hq(mG′ ,K
′
R;LE,{P ′},φ′ ⊗C E) =




C[k:Q],

if q ∈ [
4t′0, 5[k : Q] + 4t′0

] ∩ (5Z+ 4t′0) and
χv = 1 or χv = sgn at all places v ∈ V∞,

0, otherwise.

Proof. As in the proof of Theorem 3.2, the Künneth rule reduces the proof to local considerations of Sect. 1.2
and Sect. 1.3. ¤

For the Eisenstein cohomology spaces the diagram (3.1) is out of reach of the methods of this paper. The
vertical arrows both may not be isomorphisms. Thus, the relation between Ξ and Ξ(sq) is not clear at all.
The shift in the degrees when applying Ξ for the case of totally real number field depends on whether the
cuspidal support π′ is one–dimensional or not. If not the shift is again 2t, where t is the number of non–split
archimedean places of D. If π′ = χ ◦ nrd is one–dimensional, the shift in degrees is 4(t0 − t′0), where t0 − t′0
equals the number of archimedean places at which D does not split and χv = sgn.

We remark at the end that one could try to follow the original approach of Langlands to determine the
spaces of residues of the Eisenstein series for G′(A), instead of using the Jacquet–Langlands correspondence
of Badulescu resp. Badulescu and Renard which relies on the trace formula. The difficulty in applying
that approach is in the fact that the Langlands–Shahidi method for normalization of intertwining operators
(cf. [31]) is not available for groups which are not quasi–split. To overcome this difficulty one should find
a way to compare the normalizing factors between the inner and split form of the group. This can not be
done in general. Nevertheless, this approach was used in the thesis [19], as well as in the Appendix of [1]
where a substantial ingredient was already established by the trace formula in the body of the paper. For
inner forms of some split classical groups the same approach is pursued in [12], [13], [14], [15].
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[30] V. Sécherre, Proof of the Tadić conjecture U0 on the unitary dual of GL(m, D), J. reine angew. Math. 626 (2009),
187–204.

[31] F. Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series of p–adic groups, Ann. of
Math. 132 (1990), 273–330.

[32] J.A. Shalika, The multipilicity one theorem for Gln, Ann. of Maths. (2) 100 (1974), 171–193.
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