CORRESPONDENCE BETWEEN THE RESIDUAL SPECTRA OF RANK TWO SPLIT CLASSICAL GROUPS AND THEIR INNER FORMS

NEVEN GRBAC

Introduction

In this paper the correspondence between the residual spectra of the classical rank two split groups $S O_{4}$ and $S p_{4}$ and their inner forms G_{1}^{\prime} and H_{1}^{\prime} is obtained. As algebraic groups over an algebraic number field, hermitian quaternionic groups G_{1}^{\prime} and H_{1}^{\prime} are defined in Section 1. They are non-quasi split. The problem of comparing the residual spectra of split groups and their inner forms is still open even for the general linear group as mentioned in [3] and Section 25 of [2]. In this paper, the correspondence is obtained for the low rank case by the explicit decomposition of the residual spectra of all the groups involved.

For quasi-split groups the residual spectrum has been considered by several authors. Among others Moggin and Walspurger in [21], Moglin in [18], [19] and [20], Kim in [11], [12] and [15], Žampera in [29], Kon-No in [16]. All those papers use Langland-Shahidi method described in [25] and [26] for normalization of standard intertwining operators.

For the split group $S p_{4}$ the residual spectrum is decomposed into irreducible constituents by Kim in [11] and in this paper we use his result recalled in Theorem 3.4. Decomposition of the residual spectrum for the split group SO_{4} is obtained by the same method in Theorem 3.3 of this paper.

However, groups G_{1}^{\prime} and H_{1}^{\prime} are out of scope of Langlands-Shahidi method since they are nonquasi split. For non-quasi split groups the residual spectrum was considered in author's papers [6] and [7]. In those papers we developed a new technique for normalization of standard intertwining operators which is applied in this paper. It is based on Jacquet-Langlands correspondence explained in [5] and comparison of Plancherel measures as in [24].

Although, in principle, the residual spectra of G_{1}^{\prime} and H_{1}^{\prime} could be decomposed using Arthur's trace formula explained in [2], we use more direct approach of Langlands spectral theory explained in [17] and [22]. Decompositions of the residual spectra for groups G_{1}^{\prime} and H_{1}^{\prime} are obtained in Theorems 3.1 and 3.2. Already for these low rank cases, the results show certain ambiguities of hermitian quaternionic groups such as condition on non-triviality of local components at all non-split places in Theorem 3.2.

Finally, as a consequence of decomposition Theorems, we obtain correspondences between the residual spectra of G_{1}^{\prime} and $S O_{4}$ in Corollary 3.5 and between the residual spectra of H_{1}^{\prime} and $S p_{4}$ in Corollary 3.6.

The paper is divided into three Sections. In the first Section we introduce notation and recall basic structural facts for the groups involved. In the second Section we collect global normalizing factors required in calculation and obtained in [6] and [7]. Finally, in the third Section we decompose the residual spectra and give the correspondences.

This paper is prepared for the proceedings of the conference Functional Analysis IX held in June, 2005 in Dubrovnik, Croatia. I would like to thank the organizers for the opportunity to
give a lecture there. I would like to thank G. Muić for many useful discussions and constant help during preparation of this paper. I would like to thank M. Tadić for supporting my research and his interest in my work. The conversations with H. Kim and E. Lapid were useful in clarifying several issues in automorphic forms and with I. Badulescu in representation theory of $G L_{n}$ over division algebras. Also I would like to thank my friend M. Hanzer for many useful conversations on the local representation theory of hermitian quaternionic groups. And finally, I would like to thank my wife Tiki for being the best wife in the world.

1. Group Structure and Notation

In this Section we define groups considered in this paper, review their structure and introduce notation. Let k be an algebraic number field, k_{v} its completion at place v and \mathbb{A} its ring of adeles. Let D be a quaternion algebra central over k and τ the usual involution fixing the center of D. Then D splits at all but finitely many places v of k, i.e. at those places the completion $D \otimes_{k} k_{v}$ is isomorphic to the additive group $M\left(2, k_{v}\right)$ of 2×2 matrices with coefficients in k_{v}. At finitely many places v of k where D is non-split the completion $D \otimes_{k} k_{v}$ is isomorphic to the quaternion algebra D_{v} central over k_{v}. The finite set of places of k where D is non-split is denoted by S. The cardinality of S, denoted by $|S|$, is even for every D.

The algebraic group over k of invertible elements of D is denoted $G L_{1}^{\prime}$. At a split place $v \notin S$ it is isomorphic to $G L_{1}^{\prime}\left(k_{v}\right) \cong G L_{2}\left(k_{v}\right)$, where $G L_{2}$ is a split group over k of invertible 2×2 matrices. At a non-split place $v \in S$ it is isomorphic to $G L_{1}^{\prime}\left(k_{v}\right) \cong D_{v}^{\times}$.

Let $\operatorname{det}^{\prime}$ denote the reduced norm of the simple algebra $D \otimes_{k} \mathbb{A}$ and $\operatorname{det}_{v}^{\prime}$ the corresponding reduced norm at place v. If $v \notin S$ is split, then $\operatorname{det}_{v}^{\prime}=\operatorname{det}_{v}$ is just the determinant for 2×2 matrices, while if $v \in S$ is non-split, then $\operatorname{det}_{v}^{\prime}$ is the reduced norm of the quaternion algebra D_{v}. The absolute value of the reduced norm $\operatorname{det}^{\prime}$ and $\operatorname{det}_{v}^{\prime}$ is denoted by ν.

Let V be a hyperbolic plane over D, i.e. a two-dimensional right vector space over D equipped with a hermitian form (\cdot, \cdot) defined in the basis $\left\{e_{1}, e_{2}\right\}$ of V by

$$
\left(e_{1} x_{1}+e_{2} x_{2}, e_{1} x_{1}^{\prime}+e_{2} x_{2}^{\prime}\right)=\tau\left(x_{1}\right) x_{2}^{\prime}+\epsilon \tau\left(x_{2}\right) x_{1}^{\prime}
$$

for all $x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime} \in D$, where $\epsilon \in\{ \pm 1\}$. The group of isometries of the form (\cdot, \cdot) regarded as a reductive algebraic group defined over k will be denoted by G_{1}^{\prime} if $\epsilon=-1$ and by H_{1}^{\prime} if $\epsilon=1$. Then, G_{1}^{\prime} is an inner form of the split group $S O_{4}$, while H_{1}^{\prime} is an inner form of the split group $S p_{4}$. Hence $G_{1}^{\prime}\left(k_{v}\right) \cong S O_{4}\left(k_{v}\right)$ and $H_{1}^{\prime}\left(k_{v}\right) \cong S p_{4}\left(k_{v}\right)$ for every place $v \notin S$.

Both, G_{1}^{\prime} and H_{1}^{\prime}, have only one standard proper parabolic subgroup defined over k. Abusing the notation, we let P_{0}^{\prime} denote that subgroup for both groups. The Levi factor M_{0}^{\prime} of P_{0}^{\prime} is isomorphic to $G L_{1}^{\prime}$. For the split groups $S O_{4}$ and $S p_{4}$, let P_{0} denote the standard parabolic subgroup with Levi factor $M_{0} \cong G L_{2}$ such that P_{0}^{\prime} is an inner form of P_{0}. The maximal split torus isomorphic to $G L_{1} \times G L_{1}$ for those split groups is denoted by T.

The Weyl groups for G_{1}^{\prime} and H_{1}^{\prime} with respect to the maximal split torus are $W^{\prime}=\{1, w\}$, where w is the unique nontrivial element. For the corresponding split case Levi factor $M_{0} \cong G L_{2}$ in $S O_{4}$ or $S p_{4}$ let $W\left(M_{0}\right)$ denote the subgroup of the Weyl group W consisting of elements fixing the Levi factor M_{0}. Then $W^{\prime} \cong W\left(M_{0}\right)$ and again by w we denote the nontrivial element of $W\left(M_{0}\right)$.

Let Δ be the set of simple roots of split group $S O_{4}$ or $S p_{4}$. If e_{i} is the character of T defined by $e_{i}\left(t_{1}, t_{2}\right)=t_{i}$ for $\left(t_{1}, t_{2}\right) \in T \cong G L_{1} \times G L_{1}$, then

$$
\Delta= \begin{cases}\left\{e_{1}-e_{2}, e_{1}+e_{2}\right\}, & \text { for the group } S O_{4}, \\ \left\{e_{1}-e_{2}, 2 e_{2}\right\}, & \text { for the group } S p_{4} .\end{cases}
$$

Let w_{1} in both cases be the simple reflection with respect to the root $e_{1}-e_{2}$ and w_{2} the simple reflection with respect to $e_{1}+e_{2}$ for $S O_{4}$ and $2 e_{2}$ for $S p_{4}$. Then the Weyl group equals

$$
W= \begin{cases}\left\{1, w_{1}, w_{2}, w_{1} w_{2}\right\}, & \text { for the group } S O_{4}, \\ \left\{1, w_{1}, w_{2}, w_{1} w_{2}, w_{2} w_{1}, w_{1} w_{2} w_{1}, w_{2} w_{1} w_{2}, w_{1} w_{2} w_{1} w_{2}\right\}, & \text { for the group } S p_{4} .\end{cases}
$$

Let $\mathfrak{a}_{M_{0}, \mathbb{C}}^{*} \cong X\left(M_{0}^{\prime}\right) \otimes_{\mathbb{Z}} \mathbb{C}$ denote the complexification of the \mathbb{Z}-module $X\left(M_{0}^{\prime}\right)$ of k-rational characters of M_{0}^{\prime}. It is one-dimensional and we identify it with \mathbb{C} taking for the basis the reduced norm on $G L_{1}^{\prime}$. In the split case of M_{0} in $S O_{4}$ and $S p_{4}$ the complexification of the \mathbb{Z}-module $X\left(M_{0}\right)$ of k-rational characters of M_{0} is again $\mathfrak{a}_{M_{0}, \mathbb{C}}^{*}$. For the torus T in $S O_{4}$ and $S p_{4}$ the complexification of the \mathbb{Z}-module $X(T)$ of k-rational characters of T is denoted by $\mathfrak{a}_{T, \mathbb{C}}^{*}$. It is two-dimensional and we identify it with \mathbb{C}^{2} taking for the basis reduced norms on every copy of $G L_{1}$ inside T.

We should remark that in this paper the usual parabolic induction from standard parabolic subgroup P of G with the Levi factor M will be denoted by $\operatorname{Ind}_{M}^{G}$ instead of $\operatorname{Ind}_{P}^{G}$. This will not cause any confusion since all the parabolic subgroups appearing in the paper are standard.

2. NORMALIZING FACTORS FOR INTERTWINING OPERATORS

In this Section we recall results on normalization of intertwining operators obtained in [6] and [7]. The global normalizing factors are given for standard global intertwining operators in all maximal parabolic subgroup cases needed in the sequel. These factors are scalar valued meromorphic functions with the property that the normalized intertwining operator becomes holomorphic and non-vanishing in the closure of the positive Weyl chamber, except at the origin in some cases. We do not repeat the proof of holomorphy and non-vanishing in the cases needed in this paper since it can be found in [6] and [7]. The strategy of the proof is local. At split places the normalization is obtained using Langlands-Shahidi method explained in [25] and [26]. Non-split places for nonquasi split groups are out of scope of Langlands-Shahidi method and the normalization is obtained using a new technique developed in [6] and [7] which is based on transfer of Plancherel measures between split groups and their inner forms as in [24].

The normalizing factors are defined using Jacquet-Langlands correspondence explained in Section 8 of [5]. More precisely, let $\pi^{\prime} \cong \otimes_{v} \pi_{v}^{\prime}$ be a higher-dimensional cuspidal automorphic representation of $G L_{1}^{\prime}(\mathbb{A})$. Then, at non-split places $v \in S$, by the local Jacquet-Langlands correspondence of Theorem (8.1) in [5], π_{v}^{\prime} corresponds to a square-integrable representation π_{v} of $G L_{2}\left(k_{v}\right)$. At the split places $v \notin S$ we have $G L_{1}^{\prime}\left(k_{v}\right) \cong G L_{2}\left(k_{v}\right)$ and we take $\pi_{v} \cong \pi_{v}^{\prime}$. Then, by the global Jacquet-Langlands correspondence, π^{\prime} corresponds to a representation $\pi \cong \otimes_{v} \pi_{v}$ of $G L_{2}(\mathbb{A})$. By Theorem (8.3) of [5], π is isomorphic to a cuspidal automorphic representation of $G L_{2}(\mathbb{A})$.

Otherwise, a cuspidal automorphic representation π^{\prime} of $G L_{1}^{\prime}(\mathbb{A})$ is one-dimensional. Then, there exists a unitary character χ of $\mathbb{A}^{\times} / k^{\times}$such that $\pi^{\prime} \cong \chi \circ \operatorname{det}^{\prime}$.

Now, we are ready to give global normalizing factors for standard intertwining operators in maximal proper parabolic cases needed in the sequel. Those cases have Levi factors $G L_{1}^{\prime} \subset G_{1}^{\prime}$, $G L_{1}^{\prime} \subset H_{1}^{\prime}$ for non-quasi split groups and $G L_{2} \subset S O_{4}, G L_{2} \subset S p_{4}, G L_{1} \times G L_{1} \subset G L_{2}$ and $G L_{1} \subset S p_{2} \cong S L_{2}$ for split groups. Furthermore, for non-quasi split groups the normalizing
factors depend on dimension of a cuspidal automorphic representation of $G L_{1}^{\prime}(\mathbb{A})$, i.e. factors are different for higher-dimensional and one-dimensional representations. The normalizing factor in general proper parabolic case is just a product of normalizing factors in maximal cases appearing in decomposition of standard intertwining operator given in Section 2.1 of [25].

For a cuspidal automorphic representation σ of one of the Levi factors $M(\mathbb{A}), \underline{s} \in \mathfrak{a}_{M, \mathbb{C}}^{*}$ and the unique nontrivial Weyl group element w_{0} corresponding to M, the standard intertwining operator, denoted by $A\left(\underline{s}, \sigma, w_{0}\right)$, acts on the induced representation $I(\underline{s}, \sigma)$ where I denotes normalized induction for the corresponding maximal proper parabolic case. Observe that $\underline{s}=s \in \mathbb{C}$ in all cases except $G L_{1} \times G L_{1} \subset G L_{2}$ when $\underline{s}=\left(s_{1}, s_{2}\right) \in \mathbb{C}^{2}$. The normalizing factor for the standard intertwining operator $A\left(\underline{s}, \sigma, w_{0}\right)$ is denoted by $r\left(\underline{s}, \sigma, w_{0}\right)$. Then, the normalized intertwining operator $N\left(\underline{s}, \sigma, w_{0}\right)$ is given by

$$
A\left(\underline{s}, \sigma, w_{0}\right)=r\left(\underline{s}, \sigma, w_{0}\right) N\left(\underline{s}, \sigma, w_{0}\right)
$$

It is proved in Section 1 of [6] and Section 1 of [7] that the normalized operators obtained in this way are holomorphic and non-vanishing in the region required in this paper. Thus, calculation of poles of standard intertwining operators is reduced to poles of normalizing factors.

When defining global normalizing factors in [6] and [7], the first step is to define local normalizing factors and local normalized intertwining operators at all places. In this paper we use local normalized intertwining operators when studying images of global ones. However, for precise definition one should consult [6] and [7].

In the case $G L_{1}^{\prime} \subset G_{1}^{\prime}$, the normalizing factor for the intertwining operator $A\left(s, \pi^{\prime}, w\right)$ acting on the induced representation

$$
\operatorname{Ind}_{G L_{1}^{\prime}(\mathbb{A})}^{G_{1}^{\prime}(\mathbb{A})} \pi^{\prime} \nu^{s}
$$

where π^{\prime} is a higher-dimensional cuspidal automorphic representation of $G L_{1}^{\prime}(\mathbb{A})$, is given by

$$
\begin{equation*}
r\left(s, \pi^{\prime}, w\right)=\frac{L\left(2 s, \omega_{\pi}\right)}{L\left(1+2 s, \omega_{\pi}\right) \varepsilon\left(2 s, \omega_{\pi}\right)} \tag{1}
\end{equation*}
$$

where L-function and ε-factor are the ones of Hecke for the central character ω_{π} of a cuspidal automorphic representation π of $G L_{2}(\mathbb{A})$ corresponding to π^{\prime} by the global Jacquet-Langlands correspondence.

In the case $G L_{1}^{\prime} \subset G_{1}^{\prime}$, the normalizing factor for the intertwining operator $A\left(s, \chi \circ \operatorname{det}^{\prime}, w\right)$ acting on the induced representation

$$
\operatorname{Ind}_{G L_{1}^{\prime}(\mathbb{A})}^{G_{1}^{\prime}(\mathbb{A})}\left(\chi \circ \operatorname{det}^{\prime}\right) \nu^{s}
$$

where $\chi \circ \operatorname{det}^{\prime}$ is a one-dimensional cuspidal automorphic representation of $G L_{1}^{\prime}(\mathbb{A})$, is given by

$$
\begin{equation*}
r\left(s, \chi \circ \operatorname{det}^{\prime}, w\right)=\frac{L\left(2 s, \chi^{2}\right)}{L\left(1+2 s, \chi^{2}\right) \varepsilon\left(2 s, \chi^{2}\right)} \tag{2}
\end{equation*}
$$

where L -function and ε-factor are the ones of Hecke.
In the case $G L_{1}^{\prime} \subset H_{1}^{\prime}$, the normalizing factor for the intertwining operator $A\left(s, \pi^{\prime}, w\right)$ acting on the induced representation

$$
\operatorname{Ind}_{G L_{1}^{\prime}(\mathbb{A})}^{H_{1}^{\prime}(\mathbb{A})} \pi^{\prime} \nu^{s}
$$

where π^{\prime} is a higher-dimensional cuspidal automorphic representation of $G L_{1}^{\prime}(\mathbb{A})$, is given by

$$
\begin{equation*}
r\left(s, \pi^{\prime}, w\right)=\frac{L(s, \pi)}{L(1+s, \pi) \varepsilon(s, \pi)} \cdot \frac{L\left(2 s, \omega_{\pi}\right)}{L\left(1+2 s, \omega_{\pi}\right) \varepsilon\left(2 s, \omega_{\pi}\right)} \tag{3}
\end{equation*}
$$

where L-functions and ε-factors are principal Jacquet L-functions and ε-factors for π and the ones of Hecke for the central character ω_{π} of π. Here π is a cuspidal automorphic representation of $G L_{2}(\mathbb{A})$ corresponding to π^{\prime} by the global Jacquet-Langlands correspondence.

In the case $G L_{1}^{\prime} \subset H_{1}^{\prime}$, the normalizing factor for the intertwining operator $A\left(s, \chi \circ \operatorname{det}^{\prime}, w\right)$ acting on the induced representation

$$
\operatorname{Ind}_{G L_{1}^{\prime}(\mathbb{A})}^{H_{1}^{\prime}(\mathbb{A})}\left(\chi \circ \operatorname{det}^{\prime}\right) \nu^{s},
$$

where $\chi \circ \operatorname{det}^{\prime}$ is a one-dimensional cuspidal automorphic representation of $G L_{1}^{\prime}(\mathbb{A})$, is given by

$$
\begin{align*}
& r\left(s, \chi \circ \operatorname{det}^{\prime}, w\right)= \tag{4}\\
& \quad=\frac{L\left(2 s, \chi^{2}\right)}{L\left(1+2 s, \chi^{2}\right) \varepsilon\left(2 s, \chi^{2}\right)} \cdot \frac{L(s-1 / 2, \chi)}{L(s+3 / 2, \chi) \varepsilon(s+1 / 2, \chi) \varepsilon(s-1 / 2, \chi)} \prod_{v \in S} \frac{L\left(s+1 / 2, \chi_{v}\right)}{L\left(1 / 2-s, \chi_{v}^{-1}\right)},
\end{align*}
$$

where L-functions and ε-factors are the global and the local ones of Hecke.
In the case $G L_{2} \subset S O_{4}$, the normalizing factor for the intertwining operator $A(s, \pi, w)$ acting on the induced representation

$$
\operatorname{Ind}_{G L_{2}(\mathbb{A})}^{S O_{4}(\mathbb{A})} \pi \nu^{s},
$$

where π is a cuspidal automorphic representation of $G L_{2}(\mathbb{A})$, is given by

$$
\begin{equation*}
r(s, \pi, w)=\frac{L\left(2 s, \omega_{\pi}\right)}{L\left(1+2 s, \omega_{\pi}\right) \varepsilon\left(2 s, \omega_{\pi}\right)}, \tag{5}
\end{equation*}
$$

where L-function and ε-factor are the ones of Hecke for the central character ω_{π} of π.
In the case $G L_{2} \subset S p_{4}$, the normalizing factor for the intertwining operator $A(s, \pi, w)$ acting on the induced representation

$$
\operatorname{Ind}_{G L_{2}(\mathbb{A})}^{S p_{4}(\mathbb{A})} \pi \nu^{s},
$$

where π is a cuspidal automorphic representation of $G L_{2}(\mathbb{A})$, is given by

$$
\begin{equation*}
r(s, \pi, w)=\frac{L(s, \pi)}{L(1+s, \pi) \varepsilon(s, \pi)} \cdot \frac{L\left(2 s, \omega_{\pi}\right)}{L\left(1+2 s, \omega_{\pi}\right) \varepsilon\left(2 s, \omega_{\pi}\right)}, \tag{6}
\end{equation*}
$$

where L -functions and ε-factors are principal Jacquet L -functions and ε-factors for π and the ones of Hecke for the central character ω_{π} of π.

In the case $G L_{1} \times G L_{1} \subset G L_{2}$, the normalizing factor for the standard intertwining operator $A\left(\left(s_{1}, s_{2}\right), \chi_{1} \otimes \chi_{2}, w_{1}\right)$ acting on the induced representation

$$
\operatorname{Ind}_{G L_{1}(\mathbb{A}) \times G L_{1}(\mathbb{A})}^{G L_{2}(\mathbb{A})}\left(\left.\chi_{1}|\cdot|\right|^{s_{1}} \otimes \chi_{2}|\cdot|^{s_{2}}\right)
$$

where χ_{1} and χ_{2} are unitary characters of $\mathbb{A}^{\times} / k^{\times}$, is given by

$$
\begin{equation*}
r\left(\left(s_{1}, s_{2}\right), \chi_{1} \otimes \chi_{2}, w_{1}\right)=\frac{L\left(s_{1}-s_{2}, \chi_{1} \chi_{2}^{-1}\right)}{L\left(1+s_{1}-s_{2}, \chi_{1} \chi_{2}^{-1}\right) \varepsilon\left(s_{1}-s_{2}, \chi_{1} \chi_{2}^{-1}\right)}, \tag{7}
\end{equation*}
$$

where L -functions and ε-factors are the ones of Hecke.
In the case $G L_{1} \subset S L_{2}$, the normalizing factor for the intertwining operator $A\left(s, \chi, w_{2}\right)$ acting on the induced representation

$$
\operatorname{Ind}_{G L_{1}(\mathbb{A})}^{S L_{2}(\mathbb{A})} \chi|\cdot|^{s},
$$

where χ is a unitary character of $\mathbb{A}^{\times} / k^{\times}$, is given by

$$
\begin{equation*}
r\left(s, \chi, w_{2}\right)=\frac{L(s, \chi)}{L(1+s, \chi) \varepsilon(s, \chi)} \tag{8}
\end{equation*}
$$

where L -functions and ε-factors are the ones of Hecke.
Observe that for $S O_{4}$ the intertwining operator $A\left(\left(s_{1}, s_{2}\right), \chi_{1} \otimes \chi_{2}, w_{2}\right)$, where χ_{1} and χ_{2} are unitary characters of $\mathbb{A}^{\times} / k^{\times}$, is in fact intertwining operator for $G L_{1} \times G L_{1} \subset G L_{2}$ case since the Levi factor of the parabolic subgroup corresponding to the simple root $e_{1}+e_{2}$ is isomorphic to $G L_{2}$. However,

$$
\begin{equation*}
r\left(\left(s_{1}, s_{2}\right), \chi_{1} \otimes \chi_{2}, w_{2}\right)=r\left(\left(s_{1},-s_{2}\right), \chi_{1} \otimes \chi_{2}^{-1}, w_{1}\right)=\frac{L\left(s_{1}+s_{2}, \chi_{1} \chi_{2}\right)}{L\left(1+s_{1}+s_{2}, \chi_{1} \chi_{2}\right) \varepsilon\left(s_{1}+s_{2}, \chi_{1} \chi_{2}\right)} \tag{9}
\end{equation*}
$$

Finally, we recall well-known analytic properties of local and global L-functions appearing in the normalizing factors above. The proofs for Hecke L -functions can be found in $[28]$ and for principal Jacquet L-functions for $G L_{2}$ in [10]. Observe that the global Hecke L-function $L(s, \mathbf{1})$ for the trivial character 1 of $\mathbb{A}^{\times} / k^{\times}$is nothing else than the complete ζ-function of algebraic number field k.

Lemma 2.1. The global principal Jacquet L-function $L(s, \sigma)$ of a cuspidal automorphic representation σ of $G L_{2}(\mathbb{A})$ is entire. It has no zeroes for $\operatorname{Re}(s) \geqslant 1$.

The global Hecke L-function $L(s, \mu)$ of a unitary character μ of $\mathbb{A}^{\times} / k^{\times}$has simple poles at $s=0$ and $s=1$ if μ is trivial and it is entire otherwise. It has no zeroes for $R e(s) \geqslant 1$. The local Hecke L-function $L\left(s, \mu_{v}\right)$ of a unitary character μ_{v} of k_{v}^{\times}has a simple real pole at $s=0$ if μ_{v} is trivial and it is entire otherwise. It has no zeroes.

3. Calculation of the residual spectra

In this Section we decompose the residual spectra of $G_{1}^{\prime}(\mathbb{A})$ and $H_{1}^{\prime}(\mathbb{A})$ and parts of the residual spectra of $S O_{4}(\mathbb{A})$ and $S p_{4}(\mathbb{A})$ required for defining the correspondence. The strategy of decomposition is Langlands spectral theory explained in [17] and [22]. Constituents of the residual spectrum are spaces of automorphic forms obtained as iterated residues inside the positive Weyl chamber of Eisenstein series attached to cuspidal automorphic representations of Levi factors of standard proper parabolic subgroups which are square-integrable. The calculation of poles reduces to the poles of the constant term of the Eisenstein series since it inherits all analytic properties from the Eisenstein series. Furthermore, the constant term equals the sum of standard intertwining operators and their poles are given by the normalizing factors of the previous Section. Square integrability of the iterated residues is checked using Langlands square integrability criterion from page 104 of [17].

During calculation of poles of Eisenstein series we always assume that they are real. There is no loss in generality because that can be achieved just by twisting a cuspidal automorphic representation of a Levi factor by the appropriate imaginary power of the absolute value of the reduced norm of the determinant. Hence, this assumption is just a convenient choice of coordinates.

Let $L_{r e s}^{2}\left(G_{1}^{\prime}\right)$ and $L_{r e s}^{2}\left(H_{1}^{\prime}\right)$ be the residual spectra of $G_{1}^{\prime}(\mathbb{A})$ and $H_{1}^{\prime}(\mathbb{A})$, respectively. Since those groups have only one proper parabolic subgroup P_{0}^{\prime} with the Levi factor $M_{0}^{\prime} \cong G L_{1}^{\prime}$, constituents of the residual spectrum are iterated residues of the Eisenstein series attached to cuspidal automorphic representations of $M_{0}^{\prime}(\mathbb{A})$.

Let $L_{\text {res }}^{2}\left(S O_{4}\right)$ and $L_{\text {res }}^{2}\left(S p_{4}\right)$ be the residual spectra of $S O_{4}(\mathbb{A})$ and $S p_{4}(\mathbb{A})$, respectively. For every standard proper parabolic subgroup P of $S O_{4}$ or $S p_{4}$ with the Levi factor M let $L_{r e s, M}^{2}\left(S O_{4}\right)$ or $L_{r e s, M}^{2}\left(S p_{4}\right)$ be the part of the residual spectrum which is obtained as iterated residues of the Eisenstein series attached to cuspidal automorphic representations of $M(\mathbb{A})$. Accordingly, the residual spectrum decomposes into the direct sum

$$
L_{\text {res }}^{2}\left(S O_{4}\right) \cong \oplus_{M} L_{r e s, M}^{2}\left(S O_{4}\right) \quad \text { and } \quad L_{\text {res }}^{2}\left(S p_{4}\right) \cong \oplus_{M} L_{\text {res }, M}^{2}\left(S p_{4}\right) .
$$

However, only parts attached to Levi factors $M_{0} \cong G L_{2}$ and $T \cong G L_{1} \times G L_{1}$ are involved in the correspondence between the residual spectra of $G_{1}^{\prime}(\mathbb{A})$ and $H_{1}^{\prime}(\mathbb{A})$ and the residual spectra of $S O_{4}(\mathbb{A})$ and $S p_{4}(\mathbb{A})$. Thus, in this paper we decompose only those parts of the residual spectra.
Theorem 3.1. The residual spectrum $L_{\text {res }}^{2}\left(G_{1}^{\prime}\right)$ of the group $G_{1}^{\prime}(\mathbb{A})$ decomposes into the direct sum

$$
L_{r e s}^{2}\left(G_{1}^{\prime}\right) \cong\left(\oplus_{\pi^{\prime}} \mathcal{A}_{G_{1}^{\prime}}\left(\pi^{\prime}\right)\right) \oplus\left(\oplus_{\chi} \mathcal{A}_{G_{1}^{\prime}}(\chi)\right)
$$

The former sum is over all higher-dimensional cuspidal automorphic representations π^{\prime} of $M_{0}^{\prime}(\mathbb{A}) \cong$ $G L_{1}^{\prime}(\mathbb{A})$ having trivial central character. The latter sum is over all quadratic characters χ of $\mathbb{A}^{\times} / k^{\times}$.

The irreducible space of automorphic forms $\mathcal{A}_{G_{1}^{\prime}}\left(\pi^{\prime}\right)$ is spanned by the residue at $s=1 / 2$ of the Eisenstein series attached to π^{\prime} which is by the constant term map isomorphic to the image of the normalized intertwining operator $N\left(1 / 2, \pi^{\prime}, w\right)$.

The irreducible space of automorphic forms $\mathcal{A}_{G_{1}^{\prime}}(\chi)$ is spanned by the residue at $s=1 / 2$ of the Eisenstein series attached to the one-dimensional cuspidal automorphic representation $\chi \circ \operatorname{det}^{\prime}$ of $M_{0}^{\prime}(\mathbb{A}) \cong G L_{1}^{\prime}(\mathbb{A})$ which is by the constant term map isomorphic to the image of the normalized intertwining operator $N\left(1 / 2, \chi \circ \operatorname{det}^{\prime}, w\right)$.
Proof. The constant term of the Eisenstein series attached to both π^{\prime} and $\chi \circ \operatorname{det}^{\prime}$ is the sum over W^{\prime} of standard intertwining operators. Since w is the only nontrivial element of W^{\prime}, poles of the Eisenstein series inside the positive Weyl chamber $s>0$ are those of the standard intertwining operator corresponding to w. Moreover, by the previous Section, the normalized intertwining operator is holomorphic and non-vanishing for $s>0$ and hence poles of the standard intertwining operator for $s>0$ coincide with poles of the normalizing factor.

For higher-dimensional π^{\prime} the normalizing factor is given by (1) and by Lemma 2.1 it has a pole if and only if ω_{π} is trivial, where π corresponds to π^{\prime} by Jacquet-Langlands correspondence. Then the simple pole is at $s=1 / 2$ and its residue, up to a non-zero constant, equals $N\left(1 / 2, \pi^{\prime}, w\right)$. Observe that $\omega_{\pi}=\omega_{\pi^{\prime}}$ because central characters are invariant for Jacquet-Langlands correspondence.

For one-dimensional $\chi \circ \operatorname{det}^{\prime}$ the normalizing factor is given by (2) and by Lemma 2.1 it has a pole if and only if χ^{2} is trivial. Then the simple pole is at $s=1 / 2$ and its residue, up to a non-zero constant, equals $N\left(1 / 2, \chi \circ \operatorname{det}^{\prime}, w\right)$.

Langlands square-integrability criterion is obviously satisfied in both cases. It remains to prove that the images of $N\left(1 / 2, \pi^{\prime}, w\right)$ and $N\left(1 / 2, \chi \circ \operatorname{det}^{\prime}, w\right)$ are irreducible. That is done locally for every place v of k. If π_{v}^{\prime} or $\chi_{v} \circ \operatorname{det}_{v}^{\prime}$ is tempered, the image is irreducible by Langlands classification since $1 / 2$ is in the positive Weyl chamber. Observe that this is the case for all $v \in S$.

Let $v \notin S$ and $\pi_{v} \cong \pi_{v}^{\prime}$ a non-tempered representation of $G L_{2}\left(k_{v}\right)$. Then, as a local component of a cuspidal automorphic representation of $G L_{2}(\mathbb{A})$, it is unitary and generic. Thus π_{v} is a complementary series, i.e. a fully induced representation

$$
\pi_{v} \cong \operatorname{Ind}_{G L_{1}\left(k_{v}\right) \times G L_{1}\left(k_{v}\right)}^{G L_{2}\left(k_{v}\right)}\left(\mu_{v}|\cdot|^{r} \otimes \mu_{v}|\cdot|^{-r}\right)
$$

where $0<r<1 / 2$ and μ_{v} is a unitary character of k_{v}^{\times}. Then, the image of $N\left(1 / 2, \pi_{v}^{\prime}, w\right)$ is the same as the image of $N\left((1 / 2+r, 1 / 2-r), \mu_{v} \otimes \mu_{v}, w_{1} w_{2}\right)$ which is irreducible by the Langlands classification since $(1 / 2+r, 1 / 2-r)$ is in the positive Weyl chamber for $T \subset S O_{4}$ and $w_{1} w_{2}$ the longest Weyl group element.

Similarly, $\chi_{v} \circ \operatorname{det}_{v}$ at $v \notin S$ is the Langlands quotient of the standard module

$$
\operatorname{Ind}_{G L_{1}\left(k_{v}\right) \times G L_{1}\left(k_{v}\right)}^{G L_{2}\left(k_{v}\right)}\left(\chi_{v}|\cdot|^{1 / 2} \otimes \chi_{v}|\cdot|^{-1 / 2}\right)
$$

In other words it is the image of the normalized intertwining operator $N\left((1 / 2,-1 / 2), \chi_{v} \otimes \chi_{v}, w_{1}\right)$. Hence, the image of $N\left(1 / 2, \chi_{v} \circ \operatorname{det}_{v}^{\prime}, w\right)$ is the same as the image of $N\left((1,0), \chi_{v} \otimes \chi_{v}, w_{1} w_{2}\right)$ which is irreducible by Langlands classification as above.

Before decomposing $L_{r e s}^{2}\left(H_{1}^{\prime}\right)$ we introduce some notation. Let $\chi \circ \operatorname{det}^{\prime}=\otimes_{v}\left(\chi_{v} \circ \operatorname{det}_{v}^{\prime}\right)$ be a one-dimensional cuspidal automorphic representation of the Levi factor $G L_{1}^{\prime}(\mathbb{A})$ in $H_{1}^{\prime}(\mathbb{A})$ where χ is a quadratic character of $\mathbb{A}^{\times} / k^{\times}$. For a non-split place $v \in S$ let Π_{v}^{\prime} denote the image of the local normalized intertwining operator $N\left(1 / 2, \chi_{v} \circ \operatorname{det}_{v}^{\prime}, w\right)$. Since $\chi_{v} \circ \operatorname{det}_{v}^{\prime}$ is supercuspidal and $1 / 2$ is in the open positive Weyl chamber, that image is irreducible by the Langlands classification.

For a split place $v \notin S$ consider the image of the normalized operator $N\left(1 / 2, \chi_{v} \circ \operatorname{det}_{v}^{\prime}, w\right)$. It is isomorphic to the image of the normalized intertwining operator $N\left((1,0), \chi_{v} \otimes \chi_{v}, w_{1} w_{2} w_{1} w_{2}\right)$ because $w=w_{2} w_{1} w_{2}$ and $\chi_{v} \circ \operatorname{det}^{\prime}$ is the image of the $G L_{2}\left(k_{v}\right)$ normalized intertwining operator $N\left((1 / 2,-1 / 2), \chi_{v} \otimes \chi_{v}, w_{1}\right)$. By decomposition property of Section 2.1 in [25], normalized operator

$$
N\left((1,0), \chi_{v} \otimes \chi_{v}, w_{1} w_{2} w_{1} w_{2}\right)=N\left((1,0), \chi_{v} \otimes \chi_{v}, w_{1} w_{2} w_{1}\right) N\left((1,0), \chi_{v} \otimes \chi_{v}, w_{2}\right)
$$

By inducing in stages we have

$$
\operatorname{Ind}_{T\left(k_{v}\right)}^{S p_{4}\left(k_{v}\right)}\left(\chi_{v}|\cdot| \otimes \chi_{v}\right) \cong \operatorname{Ind}_{G L_{1}\left(k_{v}\right) \times S L_{2}\left(k_{v}\right)}^{S p_{4}\left(k_{v}\right)}\left(\chi_{v}|\cdot| \otimes \operatorname{Ind}_{G L_{1}\left(k_{v}\right)}^{S L_{2}\left(k_{v}\right)} \chi_{v}\right)
$$

Observe that $N\left((1,0), \chi_{v} \otimes \chi_{v}, w_{2}\right)$ intertwines the $S L_{2}\left(k_{v}\right)$ induced representation with itself. Furthermore,

$$
\operatorname{Ind}_{G L_{1}\left(k_{v}\right)}^{S L_{2}\left(k_{v}\right)} \chi_{v} \cong \tau_{v}^{+} \oplus \tau_{v}^{-}
$$

where $\tau_{v}^{ \pm}$are irreducible tempered representations of $S L_{2}\left(k_{v}\right)$ and the sign in the exponent denotes the sign of action of $S L_{2}\left(k_{v}\right)$ normalized intertwining operator $N\left((1,0), \chi_{v} \otimes \chi_{v}, w_{2}\right)$. Moreover, $\tau_{v}^{ \pm}$ are both nontrivial unless χ_{v} is trivial and then τ_{v}^{-}is trivial. If χ_{v} is unramified, then the unramified component of the induced representation is τ_{v}^{+}since, by definition, the normalized operator acts as identity on the unramified component. Now, $w_{1} w_{2} w_{1}$ is the longest Weyl group element for the standard proper parabolic subgroup of $S p_{4}$ with Levi factor isomorphic to $G L_{1} \times S L_{2}, 1$ is in the positive Weyl chamber and $\chi_{v} \otimes \tau_{v}^{ \pm}$is tempered. Therefore, the image of the operator $N\left((1,0), \chi_{v} \otimes \chi_{v}, w_{1} w_{2} w_{1}\right)$ acting on

$$
\operatorname{Ind}_{G L_{1}\left(k_{v}\right) \times S L_{2}\left(k_{v}\right)}^{S p_{4}\left(k_{v}\right)}\left(\chi_{v}|\cdot| \otimes \tau_{v}^{ \pm}\right)
$$

is irreducible by Langlands classification and we denote it by $\Pi_{v}^{\prime \pm}$. Then the image of the normalized intertwining operator $N\left(1 / 2, \chi_{v} \circ \operatorname{det}_{v}^{\prime}, w\right)$ decomposes into the direct sum

$$
\Pi_{v}^{\prime+} \oplus \Pi_{v}^{\prime-}
$$

where $\Pi_{v}^{\prime-}$ is trivial if χ_{v} is trivial. Observe that representations Π_{v}^{\prime} at $v \in S$ and $\Pi_{v}^{\prime \pm}$ at $v \notin S$ depend on the quadratic character χ_{v} although it is not explicit in our notation. Moreover, since τ_{v}^{+}is the unramified component for unramified $\chi_{v}, \Pi_{v}^{\prime-}$ is never unramified.

Theorem 3.2. The residual spectrum $L_{\text {res }}^{2}\left(H_{1}^{\prime}\right)$ of the group $H_{1}^{\prime}(\mathbb{A})$ decomposes into the direct sum

$$
L_{r e s}^{2}\left(H_{1}^{\prime}\right) \cong\left(\oplus_{\pi^{\prime}} \mathcal{A}_{H_{1}^{\prime}}\left(\pi^{\prime}\right)\right) \oplus\left(\oplus_{\chi} \mathcal{A}_{H_{1}^{\prime}}(\chi)\right) \oplus \mathcal{A}_{H_{1}^{\prime}}(\mathbf{1})
$$

The former sum is over all higher-dimensional cuspidal automorphic representations π^{\prime} of $M_{0}^{\prime}(\mathbb{A}) \cong$ $G L_{1}^{\prime}(\mathbb{A})$ which have trivial central character and $L(1 / 2, \pi) \neq 0$ for the global principal Jacquet L function of a cuspidal automorphic representation π corresponding to π^{\prime} by the Jacquet-Langlands correspondence. The latter sum is over all quadratic characters χ of $\mathbb{A}^{\times} / k^{\times}$such that χ_{v} is nontrivial at all non-split places $v \in S$. Finally, 1 denotes the trivial character of $\mathbb{A}^{\times} / k^{\times}$.

The irreducible space of automorphic forms $\mathcal{A}_{H_{1}^{\prime}}\left(\pi^{\prime}\right)$ is spanned by the residue at $s=1 / 2$ of the Eisenstein series attached to π^{\prime} which is by the constant term map isomorphic to the image of the normalized intertwining operator $N\left(1 / 2, \pi^{\prime}, w\right)$.

The space of automorphic forms $\mathcal{A}_{H_{1}^{\prime}}(\chi)$, for nontrivial χ, is spanned by the residue at $s=1 / 2$ of the Eisenstein series attached to the one-dimensional cuspidal automorphic representation $\chi \circ \operatorname{det}^{\prime}$ of $M_{0}^{\prime}(\mathbb{A}) \cong G L_{1}^{\prime}(\mathbb{A})$ which is by the constant term map isomorphic to the image of the normalized intertwining operator $N\left(1 / 2, \chi \circ \operatorname{det}^{\prime}, w\right)$. It decomposes into the sum of irreducible constituents which are by the constant term map isomorphic to irreducible representations of $H_{1}^{\prime}(\mathbb{A})$ of the form $\otimes_{v} \Pi_{v}^{\prime}$, where Π_{v}^{\prime} at a non-split place $v \in S$ is defined above, while at a split place $v \notin S$ it is one of representations $\Pi_{v}^{\prime \pm}$ defined above and it is $\Pi_{v}^{\prime+}$ at almost all places.

The irreducible space of automorphic forms $\mathcal{A}_{H_{1}^{\prime}}(\mathbf{1})$ is spanned by the iterated residue at $s=3 / 2$ of the Eisenstein series attached to $\mathbf{1} \circ \operatorname{det}^{\prime}$ which is by the constant term map isomorphic to the image of the normalized intertwining operator $N\left(3 / 2, \mathbf{1} \circ \operatorname{det}^{\prime}, w\right)$.

Proof. The proof goes along the same lines as the proof of the previous Theorem 3.1. Poles of the Eisenstein series inside the positive Weyl chamber $s>0$ coincide with poles of the normalizing factors for the standard intertwining operator corresponding to w.

For higher-dimensional π^{\prime} the normalizing factor is given by (3) and by Lemma 2.1 it has a pole if and only if ω_{π} is trivial and $L(1 / 2, \pi) \neq 0$, where π corresponds to π^{\prime} by Jacquet-Langlands correspondence. Then the simple pole is at $s=1 / 2$ and its residue, up to a non-zero constant, equals $N\left(1 / 2, \pi^{\prime}, w\right)$. Observe that $\omega_{\pi}=\omega_{\pi^{\prime}}$ because central characters are invariant for JacquetLanglands correspondence.

For one-dimensional $\chi \circ \operatorname{det}^{\prime}$ the normalizing factor is given by (4) and by Lemma 2.1 its possible poles are at $s=1 / 2$ and $s=3 / 2$. The pole at $s=1 / 2$ occurs if and only if χ^{2} is trivial but χ_{v} is nontrivial at all non-split places $v \in S$. It is simple and the residue, up to a non-zero constant, equals $N\left(1 / 2, \chi \circ \operatorname{det}^{\prime}, w\right)$. The local condition on χ_{v} appears since otherwise the pole of local L-functions $L\left(1 / 2-s, \chi_{v}^{-1}\right)$ in denominator of (4) would cancel the pole of numerator. The pole at $s=3 / 2$ occurs if and only if χ is trivial. It is simple and the residue, up to a nonzero constant, equals $N\left(3 / 2, \mathbf{1} \circ \operatorname{det}^{\prime}, w\right)$.

Langlands square-integrability criterion is obviously satisfied in both cases. Irreducibility of images of $N\left(1 / 2, \pi^{\prime}, w\right)$ and $N\left(3 / 2, \mathbf{1} \circ \operatorname{det}^{\prime}, w\right)$ follows as in the proof of the previous Theorem 3.1. Moreover, the same argument shows that the image of the local normalized intertwining operator $N\left(1 / 2, \chi_{v} \circ \operatorname{det}_{v}, w\right)$ at a split place $v \in S$ is the same as the image of $N\left((1,0), \chi_{v} \otimes \chi_{v}, w_{1} w_{2} w_{1} w_{2}\right)$. By the discussion preceding the statement of this Theorem, that image is the sum of $\Pi_{v}^{\prime+}$ and $\Pi_{v}^{\prime-}$. At a non-split place $v \in S$ the image of the local normalized operator $N\left(1 / 2, \chi_{v} \circ \operatorname{det}_{v}^{\prime}, w\right)$ is irreducible by Langlands classification and denoted by Π_{v}^{\prime} above. From images of the local normalized intertwining operators at all places we obtain decomposition of the image of the global
normalized intertwining operator $N\left(1 / 2, \chi \circ \operatorname{det}^{\prime}, w\right)$. At almost all places Π_{v}^{\prime} is $\Pi_{v}^{\prime+}$ because $\Pi_{v}^{\prime-}$ is never an unramified representation of $S p_{4}\left(k_{v}\right)$ as explained above.
Theorem 3.3. The part $L_{\text {res }, M_{0}}^{2}\left(S O_{4}\right)$ of the residual spectrum $L_{\text {res }}^{2}\left(S O_{4}\right)$ of the group $S O_{4}(\mathbb{A})$ decomposes into the direct sum

$$
L_{\text {res }, M_{0}}^{2}\left(S O_{4}\right) \cong \oplus_{\pi} \mathcal{A}_{S O_{4}}^{M_{0}}(\pi)
$$

where the sum is over all cuspidal automorphic representations π of $M_{0}(\mathbb{A}) \cong G L_{2}(\mathbb{A})$ having trivial central character. The irreducible space of automorphic forms $\mathcal{A}_{S O_{4}}^{M_{0}}(\pi)$ is spanned by the iterated residue at $s=1 / 2$ of the Eisenstein series attached to π which is by the constant term map isomorphic to the image of the normalized intertwining operator $N(1 / 2, \pi, w)$.

The part $L_{\text {res }, T}^{2}\left(\mathrm{SO}_{4}\right)$ of the residual spectrum $L_{\text {res }}^{2}\left(\mathrm{SO}_{4}\right)$ of the group $\mathrm{SO}_{4}(\mathbb{A})$ decomposes into the direct sum

$$
L_{r e s, T}^{2}\left(S O_{4}\right) \cong \oplus_{\chi} \mathcal{A}_{S O_{4}}^{T}(\chi)
$$

where the sum is over all quadratic characters χ of $\mathbb{A}^{\times} / k^{\times}$. The irreducible space of automorphic forms $\mathcal{A}_{S_{O}}^{T}(\chi)$ is spanned by the iterated residue at $\left(s_{1}, s_{2}\right)=(1,0)$ of the Eisenstein series attached to cuspidal automorphic representation $\chi \otimes \chi$ of $T(\mathbb{A}) \cong G L_{1}(\mathbb{A}) \times G L_{1}(\mathbb{A})$ which is by the constant term map isomorphic to the image of the normalized intertwining operator $N\left((1,0), \chi \otimes \chi, w_{1} w_{2}\right)$.
Proof. First we decompose the part $L_{r e s, M_{0}}^{2}\left(S O_{4}\right)$. Since the only nontrivial element of $W\left(M_{0}\right)$ is w, poles inside the positive Weyl chamber $s>0$ of the Eisenstein series attached to a cuspidal automorphic representation π of $M_{0}(\mathbb{A})$ coincide with poles of the normalizing factor for the standard intertwining operator corresponding to w. It is given by (5) and by Lemma 2.1 the pole occurs if and only if the central character ω_{π} is trivial. Then, the pole is at $s=1 / 2$, it is simple and its residue, up to a non-zero constant, equals $N(1 / 2, \pi, w)$. The Langlands square-integrability criterion is obviously satisfied and the image of that operator is irreducible by the same argument as in the proof of Theorem 3.1.

For the part $L_{\text {res }, T}^{2}\left(S O_{4}\right)$, the constant term of the Eisenstein series attached to a cuspidal automorphic representation $\chi_{1} \otimes \chi_{2}$ of $T(\mathbb{A})$ is the sum over $W=\left\{1, w_{1}, w_{2}, w_{1} w_{2}\right\}$ of the standard intertwining operators. Normalizing factors corresponding to w_{1} and w_{2} are given by (7) and (9) and the normalizing factor corresponding to $w_{1} w_{2}$ is just the product of those two. Hence, by Lemma 2.1, possible poles inside the positive Weyl chamber $s_{1}>\left|s_{2}\right|$ of the normalizing factors are along hyperplanes $s_{1}-s_{2}=1$ and $s_{1}+s_{2}=1$. The hyperplane $s_{1}-s_{2}=1$ is singular if and only if $\chi_{1}=\chi_{2}$ and hyperplane $s_{1}+s_{2}=1$ is singular if and only if $\chi_{1}=\chi_{2}^{-1}$. Then the pole along both is simple. Therefore, the only possible iterated pole is at their intersection, i.e. for $\left(s_{1}, s_{2}\right)=(1,0)$ and the Weyl group element $w_{1} w_{2}$. It occurs if and only if $\chi=\chi_{1}=\chi_{2}$ is a quadratic character and its residue, up to a non-zero constant, equals $N\left((1,0), \chi \otimes \chi, w_{1} w_{2}\right)$. That image is irreducible by the Langlands classification because $(1,0)$ is in the positive Weyl chamber and $w_{1} w_{2}$ is the longest Weyl group element. The Langlands square integrability criterion is satisfied since $w_{1} w_{2}(1,0)=(-1,0)$.

The residual spectrum for the remaining case of the split group $S p_{4}(\mathbb{A})$ is decomposed by H . Kim in [11]. For convenience, we state his Theorem 3.3 and Theorem 5.4 in our notation in the following Theorem 3.4 below. Recall that before the statement of Theorem 3.2 we decomposed the image of the local normalized intertwining operator $N\left((1,0), \chi_{v} \otimes \chi_{v}, w_{1} w_{2} w_{1} w_{2}\right)$ into the sum

$$
\Pi_{v}^{+} \oplus \Pi_{v}^{-},
$$

where Π_{v}^{-}is trivial if χ_{v} is trivial.
Theorem 3.4 (Kim, [11]). The part $L_{\text {res }, M_{0}}^{2}\left(S p_{4}\right)$ of the residual spectrum $L_{\text {res }}^{2}\left(S p_{4}\right)$ of the group $S p_{4}(\mathbb{A})$ decomposes into the direct sum

$$
L_{r e s, M_{0}}^{2}\left(S p_{4}\right) \cong \oplus_{\pi} \mathcal{A}_{S p_{4}}^{M_{0}}(\pi)
$$

where the sum is over all cuspidal automorphic representations π of $M_{0}(\mathbb{A}) \cong G L_{2}(\mathbb{A})$ having trivial central character and such that $L(1 / 2, \pi) \neq 0$. The irreducible space of automorphic forms $\mathcal{A}_{S p_{4}}^{M_{0}}(\pi)$ is spanned by the iterated residue at $s=1 / 2$ of the Eisenstein series attached to π which is by the constant term map isomorphic to the image of the normalized intertwining operator $N(1 / 2, \pi, w)$.

The part $L_{\text {res }, T}^{2}\left(S p_{4}\right)$ of the residual spectrum $L_{\text {res }}^{2}\left(S p_{4}\right)$ of the group $S p_{4}(\mathbb{A})$ decomposes into the direct sum

$$
L_{r e s, T}^{2}\left(S p_{4}\right) \cong\left(\oplus_{\chi} \mathcal{A}_{S p_{4}}^{T}(\chi)\right) \oplus \mathcal{A}_{S p_{4}}^{T}(\mathbf{1}),
$$

where the sum is over all nontrivial quadratic characters χ of $\mathbb{A}^{\times} / k^{\times}$and $\mathbf{1}$ is the trivial character of $\mathbb{A}^{\times} / k^{\times}$.

The space of automorphic forms $\mathcal{A}_{S p_{4}}^{T}(\chi)$, for nontrivial χ, is spanned by the iterated residue at $\left(s_{1}, s_{2}\right)=(1,0)$ of the Eisenstein series attached to cuspidal automorphic representation $\chi \otimes \chi$ of $T(\mathbb{A}) \cong G L_{1}(\mathbb{A}) \times G L_{1}(\mathbb{A})$. It decomposes into the sum of irreducible constituents which are by the constant term map isomorphic to irreducible representations of $S p_{4}(\mathbb{A})$ of the form $\otimes_{v} \Pi_{v}$, where Π_{v} is one of representations $\Pi_{v}^{ \pm}$, it is Π_{v}^{+}at almost all places and the product of the signs over all places equals 1.

The irreducible space of automorphic forms $\mathcal{A}_{S p_{4}}^{T}(\mathbf{1})$ is spanned by the iterated residue at $\left(s_{1}, s_{2}\right)=$ $(2,1)$ of the Eisenstein series attached to the trivial cuspidal automorphic representation $\mathbf{1} \otimes \mathbf{1}$ of $T(\mathbb{A}) \cong G L_{1}(\mathbb{A}) \times G L_{1}(\mathbb{A})$ which is by the constant term map isomorphic to the image of the normalized intertwining operator $N\left((2,1), \mathbf{1} \otimes \mathbf{1}, w_{1} w_{2} w_{1} w_{2}\right)$.

Finally, we obtain correspondence between the residual spectra of $G_{1}^{\prime}(\mathbb{A})$ and $S O_{4}(\mathbb{A})$ and between the residual spectra of $H_{1}^{\prime}(\mathbb{A})$ and $S p_{4}(\mathbb{A})$.

Corollary 3.5. Mapping 乙 defined, in notation of Theorem 3.1 and Theorem 3.3, by

$$
\begin{aligned}
\imath\left(\mathcal{A}_{G_{1}^{\prime}}\left(\pi^{\prime}\right)\right) & =\mathcal{A}_{S O_{4}}^{M_{0}}(\pi), \\
\imath\left(\mathcal{A}_{G_{1}^{\prime}}(\chi)\right) & =\mathcal{A}_{S O_{4}}^{T}(\chi),
\end{aligned}
$$

where π corresponds to π^{\prime} by the Jacquet-Langlands correspondence, is an injective map from irreducible constituents of $L_{r e s}^{2}\left(G_{1}^{\prime}\right)$ to irreducible constituents of $L_{r e s, M_{0}}^{2}\left(S O_{4}\right) \oplus L_{r e s, T}^{2}\left(S O_{4}\right)$. The image of the map \imath consists of
(a) all irreducible constituents $\mathcal{A}_{S O_{4}}^{M_{0}}(\pi)$ of $L_{\text {res, } M_{0}}^{2}\left(S O_{4}\right)$ such that π_{v} is square-integrable at every place $v \in S$, and
(b) all irreducible constituents $\mathcal{A}_{S O_{4}}^{T}(\chi)$ of $L_{\text {res }, T}^{2}\left(S O_{4}\right)$.

Proof. Corollary is a direct consequence of decompositions in Theorem 3.1 and Theorem 3.3. Local square integrability condition in part (a) of the image of \imath comes from the global Jacquet-Langlands correspondence. Namely, by Theorem (8.3) of [5], it is a bijection between all higher-dimensional cuspidal automorphic representations of $G L_{1}^{\prime}(\mathbb{A})$ and all cuspidal automorphic representations of $G L_{2}(\mathbb{A})$ such that the local component at every place $v \in S$ is square-integrable.

Corollary 3.6. Mapping J is defined, in notation of Theorem 3.2 and Theorem 3.4, by

$$
\begin{aligned}
\jmath\left(\mathcal{A}_{H_{1}^{\prime}}\left(\pi^{\prime}\right)\right) & =\mathcal{A}_{S p_{4}}^{M_{0}}(\pi), \\
\jmath\left(\otimes_{v} \Pi_{v}^{\prime}\right) & =\oplus\left(\otimes_{v} \Pi_{v}\right), \\
\jmath\left(\mathcal{A}_{H_{1}^{\prime}}(\mathbf{1})\right) & =\mathcal{A}_{S p_{4}}^{T}(\mathbf{1}),
\end{aligned}
$$

where π corresponds to π^{\prime} by the Jacquet-Langlands correspondence. In the second row $\otimes_{v} \Pi_{v}^{\prime}$ is an irreducible constituent of $\mathcal{A}_{H_{1}^{\prime}}(\chi)$ and the sum is over $2^{|S|-1}$ irreducible constituents $\otimes_{v} \Pi_{v}$ of $\mathcal{A}_{S p_{4}}^{T}(\chi)$ such that $\Pi_{v} \cong \Pi_{v}^{\prime}$ for $v \notin S, \Pi_{v}$ is one of $\Pi_{v}^{ \pm}$for $v \in S$ and the product of all signs equals 1. Then \jmath is an injective map from irreducible constituents of $L_{\text {res }}^{2}\left(H_{1}^{\prime}\right)$ to not necessarily irreducible constituents of $L_{\text {res }, M_{0}}^{2}\left(S p_{4}\right) \oplus L_{\text {res,T }}^{2}\left(S p_{4}\right)$. The image of the map 〕 consists of
(a) all irreducible constituents $\mathcal{A}_{S p_{4}}^{M_{0}}(\pi)$ of $L_{\text {res, } M_{0}}^{2}\left(S p_{4}\right)$ such that π_{v} is square-integrable at every place $v \in S$,
(b) all constituents of the form $\oplus\left(\otimes_{v} \Pi_{v}\right)$ as above of $\mathcal{A}_{S p_{4}}^{T}(\chi)$ in $L_{r e s, T}^{2}\left(S p_{4}\right)$ such that χ_{v} is nontrivial at all $v \in S$, and
(c) the irreducible constituent $\mathcal{A}_{S p_{4}}^{T}(\mathbf{1})$ of $L_{\text {res }, T}^{2}\left(S p_{4}\right)$.

Observe that the sum of all the constituents in (b) gives the whole space $\mathcal{A}_{S p_{4}}^{T}(\chi)$.
Proof. Corollary is a direct consequence of decompositions in Theorem 3.2 and Theorem 3.4. Local square integrability condition in part (a) of the image of \jmath comes from the global Jacquet-Langlands correspondence as in the previous Corollary 3.5. Local non-triviality condition in part (b) comes from Theorem 3.2. The reason lies in different form of local normalizing factors for standard intertwining operators at split and non-split places resulting with local Hecke L-functions appearing in the global normalizing factor (4).

Observe that, for nontrivial χ, in decomposition of spaces $\mathcal{A}_{H_{1}^{\prime}}(\chi)$ and $\mathcal{A}_{S p_{4}}^{T}(\chi)$ given in Theorem 3.2 and Theorem 3.4 into irreducible constituents, the choice of local components at a split place is exactly the same. At a non-split place there is one choice for the local component of an irreducible constituent of $\mathcal{A}_{H_{1}^{\prime}}(\chi)$ and two choices for the local component of an irreducible constituent of $\mathcal{A}_{S p_{4}}^{T}(\chi)$. However, the parity condition for irreducible constituents of $\mathcal{A}_{S p_{4}}^{T}(\chi)$ reduces the freedom of choice. Therefore, \jmath sends irreducible constituents of $\mathcal{A}_{H_{1}^{\prime}}(\chi)$ to the sum of $2^{|S|-1}$ irreducible components of $\mathcal{A}_{S p_{4}}^{T}(\chi)$ as defined in the Corollary.

References

[1] J. Arthur, Intertwining Operators and Residues I. Weighted Characters, J. Funct. Anal. 84 (1989), 19-84
[2] J. Arthur, An Introduction to the Trace Formula, in Harmonic Analysis, the Trace Formula and Shimura Varieties, Clay Mathematics Proceedings 4 (2005), 1-263
[3] J. Arthur, L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Ann. of Math. Studies 120, Princeton Univ. Press, 1989
[4] P. Deligne, D. Kazhdan, M.F. Vignéras, Représentations des algèbres centrales simples p-adiques, in Représentations des Groupes Réductifs sur un Corps Local (1984), Herman, Paris, 33-117
[5] S. Gelbart, H. Jacquet, Forms of $G L(2)$ from the Analytic Point of View, Proc. Sympos. Pure Math. 33, part 1 (1979), 213-251
[6] N. Grbac, On the Residual Spectrum of Hermitian Quaternionic Inner Form of SO_{8}, preprint
[7] N. Grbac, On a Relation between Residual Spectra of Split Classical Groups and their Inner Forms, preprint
[8] M. Hanzer, Unitary Dual of the Hermitian Quaternionic Group of the Split Rank 2, Pacific J. Math, to appear
[9] H. Jacquet, Principal L-Functions of the Linear Group, Proc. Sympos. Pure Math. 33, part 2 (1979), 63-86
[10] H. Jacquet, R.P. Langlands, Automorphic Forms on $G L_{2}$, Lecture Notes in Math. 114, Springer-Verlag, 1970
[11] H.H. Kim, The Residual Spectrum of $S p_{4}$, Compositio Math. 99 (1995), 129-151
[12] H.H. Kim, The Residual Spectrum of G_{2}, Canad. J. Math. 48 (1996), 1245-1272
[13] H.H. Kim, Langlands-Shahidi Method and Poles of Automorphic L-functions: Application to Exterior Square L-Functions, Canad. J. Math. 51 (1999), 835-849
[14] H.H. Kim, Langlands-Shahidi Method and Poles of Automorphic L-functions II, Israel J. Math. 117 (2000), 261-284
[15] H.H. Kim, Residual Spectrum of Odd Orthogonal Groups, Internat. Math. Res. Notices 17 (2001), 873-906
[16] T. Kon-No, The Residual Spectrum of $U(2,2)$, Trans. Amer. Math. Soc. 350 (1998), 1285-1358
[17] R.P. Langlands, On the Functional Equations Satisfied by Eisenstein series, Lecture Notes in Math. 544, Springer-Verlag, 1976
[18] C. Meglin, Orbites unipotentes et spectre discret non ramifie, Compositio Math. 77 (1991), 1-54
[19] C. Meglin, Représentations unipotentes et formes automorphes de carré intégrable, Forum Math. 6 (1994), 651-744
[20] C. Meglin, Conjectures sur le spectre residuel, J. Math. Soc. Japan 53 (2001), 395-427
[21] C. Meglin, J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. École Norm. Sup. 22 (1989), 605-674
[22] C. Meglin, J.-L. Waldspurger, Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Math. 113, Cambridge University Press, 1995
[23] G. Muić, On Certain Classes of Unitary Representations for Split Classical Groups, Canad. J. Math., to appear
[24] G. Muić, G. Savin, Complementary Series for Hermitian Quaternionic Groups, Canad. Math. Bull. 43 (2000), 90-99
[25] F. Shahidi, On Certain L-Functions, Amer. J. Math. 103 (1981), 297-355
[26] F. Shahidi, A Proof of Langlands' Conjecture on Plancherel Measures; Complementary Series of \mathfrak{p}-adic Groups, Ann. of Math. 132 (1990), 273-330
[27] M. Tadić, Induced Representations of $G L(n, A)$ for p-adic Division Algebras A, J. Reine Angew. Math. 405 (1990), 48-77
[28] J. Tate, Fourier Analysis in Number Fields and Hecke's Zeta-Functions, Harvard Dissertation, 1950, in Algebraic Number Theory, Academic Press, Boston, 1967
[29] S. Žampera, The Residual Spectrum of the Group of Type G_{2}, J. Math. Pures Appl. 76 (1997), 805-835
Neven Grbac, Department of Mathematics, University of Zagreb, Unska 3, 10000 Zagreb, Croatia
E-mail address: neven.grbac@zpm.fer.hr

