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Introduction

In this paper we consider the residual spectrum of the hermitian quaternionic group H ′
2 defined

as an algebraic group over an algebraic number field k in Section 1 below. It is a non–quasi–split
inner form of the split group Sp8. Although, in principle, the results of this paper could be obtained
using the Arthur trace formula explained in [1], our strategy of the calculation is a more direct
approach of the Langlands spectral theory explained in [20] and [25].

The residual spectrum of various quasi–split groups was considered by several authors. Among
them are Mœglin and Walspurger [24], Mœglin [21], [22], [23], Kim [16], [17], [18], Žampera [39],
Kon–No [19]. In those papers the approach is also the Langlands spectral theory. For quasi–split
groups the normalization of the intertwining operators required for the application of the Langlands
spectral theory is obtained using the Langlands–Shahidi method explained in [31] and [32].

However, our situation is different. Since H ′
2 is not quasi–split, it is out of the scope of the

Langlands–Shahidi method. Therefore, we had to develop a new technique of the normalization
of the intertwining operators based on the Jacquet–Langlands correspondence explained in [5] and
the transfer of the Plancherel measure based on the global idea explained in [29]. It was already
used by the author of this paper in [6], [8] and [9], where we considered the residual spectrum of a
non–quasi–split inner forms of SO4, Sp4, SO8 and the parts of the residual spectra of non–quasi–
split inner forms of SO4n and Sp4n. See also [7] where the residual spectrum of GLn over a division
algebra is obtained.

In this paper we decompose the part of the residual spectrum of H ′
2 coming from the residues

of the Eisenstein series attached to cuspidal automorphic representations of the minimal standard
parabolic subgroup of H ′

2 defined over k. The results are given as Theorems 3.2.1, 3.2.2, 3.3.1, 3.3.2,
3.3.3, 3.3.6, 3.3.8, 3.3.11, 3.3.13, 3.3.15. When compared to the residual spectrum of the split group
Sp8, besides the interesting parity conditions (which appear for split groups as well) in Theorems
3.2.1, 3.3.3, 3.3.13, the results show certain features of hermitian quaternionic groups such as the
local conditions on the non–triviality of the one–dimensional representation at non–split places in
Theorems 3.2.2, 3.3.2, 3.3.13, 3.3.15, and the condition on the number of non–quasi–split places of
a global quaternion algebra used to define H ′

2 in Theorem 3.3.15. The reason for occurrence of such
conditions lies in the different local normalization factors at split and non–quasi–split places which
gives local L–functions in the global normalizing factors. This is never the case for split groups.

The paper consists of three Sections. In Section 1 we define the groups involved, review their
structure and recall the Jacquet–Langlands correspondence. In Section 2 the normalizing factors
for the intertwining operators are obtained. Finally, in Section 3 the considered part of the residual
spectrum of H ′

2 is decomposed.
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1. Preliminaries

In this Section we define the groups considered in this paper, review their structure and introduce
the notation. Also we recall the local and global Jacquet–Langlands correspondence.

Throughout this paper, let k be an algebraic number field, kv its completion at a place v and
A its ring of adeles. Let D be a quaternion algebra central over k and τ the involution fixing the
center of D. Then, D splits at all but finitely many places v of k, i.e. at those places the completion
D ⊗k kv is isomorphic to the additive group M(2, kv) of 2 × 2 matrices with coefficients in kv. In
this paper we assume that D splits at all archimedean places. This is a technical assumption which
could be removed if one had better understanding of the local representation theory of H ′

2 and its
Levi subgroups over the Hamilton quaternions. At finitely many non–archimedean places v of k
where D is non–split, the completion D ⊗k kv is isomorphic to the quaternion algebra Dv central
over kv. The finite non–empty set of non–archimedean places of k where D is non–split is denoted
by SD. The cardinality of SD, denoted by |SD|, is even for every D.

The algebraic group over k of invertible elements of D is denoted GL′1. At a split place v 6∈ SD

we have GL′1(kv) ∼= GL2(kv), where GL2 is the split group over k of invertible 2× 2 matrices. At
a non–split place v ∈ SD we have GL′1(kv) ∼= D×

v .
Let det′ denote the reduced norm of the simple algebra D ⊗k A and det′v the corresponding

reduced norm at a place v. If v 6∈ SD is split, then det′v = detv is just the determinant for 2 × 2
matrices, while if v ∈ SD is non–split, then det′v is the reduced norm of the quaternion algebra Dv.
The absolute value of the reduced norms det′ and det′v is denoted by ν.

Let V be a 2n–dimensional right vector space over D with the basis {e1, . . . , e2n}. Then

(ei, ej) = δi,2n−j+1 for 1 6 i 6 j 6 n

defines a hermitian form on V by

(v, v′) = τ((v′, v)) and (vx, v′x′) = τ(x)(v, v′)x′

for all v, v′ ∈ V and x, x′ ∈ D. The group of isometries of the hermitian form (·, ·) regarded as a
reductive algebraic group defined over k will be denoted by H ′

n. It is an inner form of the group
Sp4n. Hence, H ′

n(kv) ∼= Sp4n(kv) for every split place v 6∈ SD. In this paper we consider the
residual spectrum of the group H ′

2 which is an inner form of the split group Sp8.
Let T ′ be the maximal split torus in H ′

2. It is isomorphic to GL1 ×GL1. Denote by Φ′ the set
of the roots of H ′

2 with respect to T ′. Then

Φ′ = {±e1 ± e2,±2e1,±2e2},
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w w(s) = w(s1, s2) w(π′) ∼= w(π′1 ⊗ π′2)
1 (s1, s2) π′1 ⊗ π′2
w1 (s2, s1) π′2 ⊗ π′1
w2 (s1,−s2) π′1 ⊗ π̃′2

w1w2 (−s2, s1) π̃′2 ⊗ π′1
w2w1 (s2,−s1) π′2 ⊗ π̃′1

w1w2w1 (−s1, s2) π̃′1 ⊗ π′2
w2w1w2 (−s2,−s1) π̃′2 ⊗ π̃′1

w1w2w1w2 (−s1,−s2) π̃′1 ⊗ π̃′2
Table 1.1. Action of W ′

where ei(t1, t2) = ti for all (t1, t2) ∈ T ′. For the set of positive roots take

Φ′+ = {e1 ± e2, 2e1, 2e2}.
The corresponding set of simple roots is

∆′ = {e1 − e2, 2e2}.
Let W ′ be the Weyl group of H ′

2 with respect to T ′. Then

W ′ = {1, w1, w2, w1w2, w2w1, w1w2w1, w2w1w2, w1w2w1w2},
where w1 and w2 are the simple reflections with respect to the simple root e1 − e2 and 2e2, re-
spectively. The minimal parabolic subgroup P ′

0 = M ′
0N

′
0 of H ′

2 defined over k has the Levi factor
M ′

0
∼= GL′1 ×GL′1.

Let T ∼= GL1 ×GL1 ×GL1 ×GL1 be the maximal split torus of the split Sp8. Fix the positive
roots of Sp8 with respect to T in such a way that the split form P0 = M0N0 of the parabolic
subgroup P ′

0 = M ′
0N

′
0 is the standard parabolic subgroup of the split Sp8 with the Levi factor

M0
∼= GL2 × GL2. Let W (M0) be the subgroup of the Weyl group of Sp8 with respect to T

isomorphic to the quotient of the normalizer of M0 modulo M0. Then W (M0) ∼= W ′ and we
identify their elements.

For a Levi factor M of a standard parabolic subgroup of a reductive group, let a∗M,C ∼= X(M)⊗ZC
denote the complexification of the Z–module X(M) of k–rational characters of M . Then a∗M0,C ∼=
a∗M ′

0,C are two–dimensional complex vector spaces. The isomorphisms with C2 are fixed by choosing
for the basis the reduced norm on every copy of GL′1 in M ′

0 and the determinant on every copy of
GL2 in M0. The elements of a∗M0,C ∼= a∗M ′

0,C written in that fixed basis will be denoted s = (s1, s2),
where s1, s2 ∈ C. The positive Weyl chamber is given by inequalities Re(s1) > Re(s2) > 0.

The action of the Weyl group element w ∈ W ′ on s = (s1, s2) ∈ aM ′
0,C and a cuspidal auto-

morphic representation π′ ∼= π′1 ⊗ π′2 of the Levi factor M ′
0(A) ∼= GL′1(A) × GL′1(A) is induced

by the conjugation of the Levi factor. It is given in Table 1.1, where ·̃ denotes the contragredient
representation.

In this paper the parabolic induction from a standard parabolic subgroup P of a reductive group
G with the Levi factor M will be denoted by IndG

M instead of IndG
P . This will not cause any

confusion since all the parabolic subgroups appearing in the paper are standard. The induction is
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always normalized in a sense that the representation induced from a unitary representation is again
unitary.

Finally, let us recall the Jacquet–Langlands correspondence following Section 8 of [5]. In this pa-
per we refer to the Jacquet–Langlands correspondence as the local and global lift of representations
from the group GL′1 to the split group GL2.

Let π′ ∼= ⊗vπ
′
v be a cuspidal automorphic representation of GL′1(A) which is not one–dimensional.

Then, at non–split places the local lift πv of π′v is the square–integrable representation of GL2(kv)
defined by the character relation as in Theorem (8.1) of [5]. At split places we have GL′1(kv) ∼=
GL2(kv) and the local lift is just πv

∼= π′v. The global lift of π′ is defined using the local lifts
as π ∼= ⊗vπv. By Theorem (8.3) of [5] the global lift π is isomorphic to a cuspidal automorphic
representation of GL2(A). Hence, its local components πv are generic.

Let χ ◦ det′ = ⊗v

(
χv ◦ det′v

)
be an one–dimensional cuspidal automorphic representation of

GL′1(A). Here χv are unitary characters of k×v and χ is a unitary character of A×/k×. Then,
in this paper, the global lift of χ ◦ det′ is defined to be just the one–dimensional representation
χ ◦ det = ⊗v (χv ◦ detv) of GL2(A). It belongs to the residual spectrum of GL2(A). At non–
split places the local lift of χv ◦ det′v is defined by the Jacquet–Langlands correspondence as in
Theorem (8.1) of [5] to be the unique irreducible subrepresentation of the induced representation
IndGL2(kv)

GL1(kv)×GL1(kv)

(
χv| · |1/2 ⊗ χv| · |−1/2

)
. At non–archimedean places it is the Steinberg represen-

tation of GL2(kv) twisted by χv, but we denote this representation by Stχv at all places. Observe
that by our definition in this case the global and local lift are not consistent. The reason is that the
global lift is supposed to be in the discrete spectrum of GL2(A), while the local lift should preserve
the Plancherel measure.

In this paper a unitary character µ of A×/k× and µv of k×v are said to be quadratic if, respectively,
µ2 and µ2

v are trivial. Thus, the trivial character is among quadratic characters as well.

2. Normalization of intertwining operators

This Section is devoted to the local and global normalization, using scalar meromorphic nor-
malizing factors, of standard intertwining operators for H ′

2 attached to a cuspidal automorphic
representation of the Levi factor M ′

0(A) of the minimal standard parabolic subgroup of H ′
2. The

main requirement of the normalization is that the normalized intertwining operators are holomor-
phic and non–vanishing in the regions required for the calculation of the residual spectrum in
Section 3.

The normalizing factors are first defined locally, at every place v of k, in the first three Sub-
sections. The Subsections 2.1, 2.2, 2.3 correspond, respectively, to the possible cases: a generic
representation at a split place, a non–generic representation at a split place and any unitary rep-
resentation at a non–split place. Subsection 2.4 combines the results of the previous Subsections
to obtain the global normalizing factors as a product over all places of the local ones. All the
normalizing factors are given as ratios of L–functions and ε–factors.

2.1. Generic representation at split place. For the generic split case the normalization is given
by the Langlands–Shahidi method of [31] and [32] for the standard intertwining operators attached
to a generic irreducible representation of the Levi factor of a standard proper parabolic subgroup
of any quasi–split reductive group over kv. Of course, generic always means generic with respect
to the fixed continuous nontrivial additive character ψv of kv. We omit the details in this Section
since the proofs may be found in Section 1.1 of [8] and are based on [38].
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In this Subsection let G be a split classical group defined over kv. For every subset θ of the
set of simple roots ∆ of G with respect to the fixed maximal split torus, let Pθ = MθNθ be the
corresponding standard parabolic subgroup of G, where Mθ is the Levi factor and Nθ the unipotent
radical. Let a∗Mθ,C be the complexification of the Z–module of kv–rational characters of Mθ. It is
an r–dimensional complex vector space and its elements are denoted by s = (s1, . . . , sr) ∈ Cr. Let
W be the Weyl group of G. Let rθ be the adjoint representation of the Langlands dual L–group of
Mθ on the Lie algebra of the L–group of Nθ.

In the special case of a maximal proper parabolic subgroup we have θ = ∆ \ {α} for a simple
root α. Then a∗Mθ,C is one dimensional (except for G = GLn when it is one–dimensional modulo
center). We fix a basis vector

α̃ = 〈ρP , α∨〉−1ρP ,

where ρP equals half of the sum of positive roots of G not being roots of M , and we write sα̃ = α̃⊗s
for s ∈ C. Observe that in the maximal proper parabolic subgroup case there is at most one
nontrivial element w ∈ W such that w(∆ \ {α}) ⊂ ∆.

For s ∈ a∗Mθ,C, an irreducible representation πv of Mθ(kv) and an element w ∈ W such that
w(θ) ⊂ ∆ we denote by A(s, πv, w) the standard intertwining operator intertwining the induced
representations

I(s, πv) = IndG(kv)
Mθ(kv) (πv|s(·)|) → I(w(s), w(πv)) = IndG(kv)

Mw(θ)
(w(πv)|w(s)(·)|) ,

where |s(·)| and |w(s)(·)| are viewed as characters of Mθ(kv). The scalar meromorphic normalizing
factor for A(s, πv, w), defined via the Langlands–Shahidi method (see [32] for more details), is
denoted by r(s, πv, w) and the normalized intertwining operator N(s, πv, w) is then defined by

A(s, πv, w) = r(s, πv, w)N(s, πv, w).

Following [38], the main result of Section 1.1 of [8] shows the holomorphy and non–vanishing of
the normalized intertwining operators in a certain open set slightly bigger than the closure of the
positive Weyl chamber for a generic irreducible tempered representation πv. For the convenience
we recall it here.

Proposition 2.1.1. Let Pθ = MθNθ be the standard proper parabolic subgroup of G corresponding
to θ and w an element of the Weyl group W such that w(θ) ⊂ ∆. Let πv be an irreducible
generic tempered representation of Mθ(kv). Then the normalized intertwining operator N(s, πv, w)
is holomorphic and non–vanishing for s ∈ a∗Mθ,C such that

〈Re(s), α∨〉 > −1/`α for all α ∈ Φ+
w,θ,

where `α is the length of the corresponding adjoint representation rα in a decomposition of the
standard intertwining operator as in Section 2.1 of [31] and Φ+

w,θ is the set of all positive roots α

such that wα is a negative root.

Next, we consider the case of any irreducible unitary generic representation but only for the
parabolic subgroup P0 = M0N0 of the split group Sp8. We omit the proof since it is the same as
the proof of the analogous proposition in Section 1.1 of [8].

Proposition 2.1.2. Let P0 = M0N0 be the standard proper parabolic subgroup of the split group
Sp8 with the Levi factor M0

∼= GL2 ×GL2. Let πv
∼= π1,v ⊗ π2,v be an irreducible generic unitary
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representation of M0(kv). Then, for every w ∈ W (M0), the normalized intertwining operator
N(s, πv, w) is holomorphic and non–vanishing for s = (s1, s2) ∈ a∗M0,C such that

• Re(s1) > Re(s2) > 0, i.e. the closure of the positive Weyl chamber,
• 0 < s1 < 1/2 and s2 = 1/2,
• 1/2 < s1 < 1 and s1 − s2 = 1.

Finally, we collect in the following Corollary normalizing factors for the maximal standard proper
parabolic cases needed in the sequel. The normalizing factors in non–maximal cases are by definition
the products of the normalizing factors of the maximal cases appearing in a decomposition of the
standard intertwining operator according to the reduced decomposition of the Weyl group element
as in Section 2.1 of [31].

Corollary 2.1.3. For the case GL2 ×GL2 ⊂ GL4, the normalizing factor for the standard inter-
twining operator A((s1, s2), π1,v⊗π2,v, w1), where π1,v⊗π2,v is an irreducible generic representation
of GL2(kv)×GL2(kv) and w1 the unique nontrivial Weyl group element, equals

(2.1) r((s1, s2), π1,v ⊗ π2,v, w1) =
L(s1 − s2, π1,v × π̃2,v)

L(1 + s1 − s2, π1,v × π̃2,v)ε(s1 − s2, π1,v × π̃2,v, ψv)
,

where the L–function and ε–factor are the Rankin–Selberg ones of pairs.
For the case GL2 ⊂ Sp4, the normalizing factor for the intertwining operator A(s, πv, w2), where

πv is an irreducible generic representation of GL2(kv) and w2 the unique nontrivial Weyl group
element, equals

(2.2) r(s, πv, w2) =
L(s, πv)

L(1 + s, πv)ε(s, πv, ψv)
L(2s, ωπv)

L(1 + 2s, ωπv)ε(2s, ωπv , ψv)
,

where the L–functions and ε–factors are the principal Jacquet ones and the Hecke ones of the central
character ωπv of πv.

2.2. Non–generic representation at split place. A non–generic irreducible representation πv
∼=

π1,v ⊗ π2,v of M0(kv) ∼= GL2(kv) × GL2(kv) is the local component at a split place of a cuspidal
automorphic representation π′ ∼= π′1 ⊗ π′2 of M ′

0(A) if at least one of the representations π′1 and π′2
is one–dimensional. Then, the definition of the normalizing factor and the proof of the holomorphy
and non–vanishing of the normalized intertwining operators in the closure of the positive Weyl
chamber follow the proof of Lemma I.8 of [24]. It was already used in Section 1.2 of [8] for an inner
form of SO8 and hence we omit the details.

For the moment let G be any classical split group defined over kv. Let Pθ = MθNθ be the
standard proper parabolic subgroup of G defined over kv corresponding to a subset θ of the set
of simple roots ∆ with respect to the fixed maximal split torus. Let πv be an irreducible unitary
non–generic representation of Mθ(kv). Assume that there exists a standard parabolic subgroup of
Mθ with the Levi factor L, an irreducible tempered generic representation τv of L(kv) and s′ ∈ a∗L,C
such that πv is isomorphic to the unique irreducible subrepresentation of

IMθ
L (s′, τv) = IndMθ(kv)

L(kv)

(
τv|s′(·)|

)
.

Then, for every Weyl group element w such that w(θ) ⊂ ∆, the following diagram is commutative:

I(s, πv) ↪→ I(s + s′, τv)

A(s, πv, w)
y

yA(s + s′, τv, w)
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I(w(s), w(πv)) ↪→ I(w(s + s′), w(τv)),
where s is embedded into a∗L,C. In other words, A(s, πv, w) is the restriction of A(s + s′, τv, w) to
I(s, πv). Hence, the normalizing factor for A(s, πv, w) is defined to be

(2.3) r(s, πv, w) = r(s + s′, τv, w),

and the normalized operator N(s, πv, w) is actually the restriction of N(s + s′, τv, w) to I(s, πv).
The proof of the holomorphy and non–vanishing will follow from the following Lemma which we
recall without a proof since it is in fact a part of the proof of Lemma I.8 in [24].

Lemma 2.2.1. Assume that in the notation as above there exists a Weyl group element w′ such
that the image of the normalized intertwining operator

N(w′−1(s + s′), w′−1(τv), w′) : I(w′−1(s + s′), w′−1(τv)) → I(s + s′, τv)

is I(s, πv). Then, for all s ∈ a∗M,C such that w′−1(s + s′) satisfies the inequalities of Proposition
2.1.1 for ww′, the normalized intertwining operator N(s, πv, w) is holomorphic and non–vanishing
at s.

Now, we apply the Lemma to the possible cases for M0 ⊂ Sp8 and omit the details since the
proofs follow closely the proofs of the analogous propositions in Section 1.2 of [8]. The basic idea is
always to find an appropriate w′ which satisfies both conditions of the Lemma. In some cases such
w′ does not exist, and we excluded those cases in the propositions below. Further investigation of
those cases is made in Section 3 where they are treated as possible poles of the Eisenstein series
when decomposing the residual spectrum. In all the propositions P0 = M0N0 is the standard proper
parabolic subgroup of the split group Sp8 with the Levi factor M0

∼= GL2 ×GL2.

Proposition 2.2.2. Let πv
∼= (χ1,v◦detv)⊗π2,v be an irreducible non–generic unitary representation

of M0(kv), where χ1,v is a unitary character of k×v and π2,v is a unitary generic representation
of GL2(kv). Then, for every w ∈ W (M0), the normalized intertwining operator N(s, πv, w) is
holomorphic and non–vanishing for s = (s1, s2) ∈ a∗M0,C such that

• Re(s1) > Re(s2) > 0, i.e. the closure of the positive Weyl chamber,
• 0 < s1 < 1/2 and s2 = 1/2.

Proof. Along the same lines as the proof of the last proposition in Section 1.2 of [8]. ¤
Proposition 2.2.3. Let πv

∼= π1,v ⊗ (χ2,v ◦ detv) be an irreducible non–generic unitary representa-
tion of M0(kv), where χ2,v is a unitary character of k×v and π1,v a unitary generic representation
of GL2(kv). Then, for every w ∈ W (M0), the normalized intertwining operator N(s, πv, w) is
holomorphic and non–vanishing for s = (s1, s2) ∈ a∗M0,C such that

• Re(s1) > Re(s2) > 0, i.e. the closure of the positive Weyl chamber,
• 0 < s1 < 1/2 and s2 = 1/2,
• 0 < s1 < 3/2 and s2 = 3/2, except at (s1, s2) = (r, 3/2) for some 0 < r < 1/2; at the

exceptional point, if π1,v is not a complementary series representation of the form π1,v
∼=

µv| · |r ⊗ µv| · |−r, where µv is a unitary character of k×v , then it is always holomorphic and
non–vanishing.

Proof. For the last claim when verifying the surjectivity of the appropriate w′ of Lemma 2.2.1 one
uses the irreducibility of certain induced representations for GL3(kv) and GL4(kv). These are given
in [37] and [33]. ¤
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Proposition 2.2.4. Let πv
∼= (χ1,v ◦ detv) ⊗ (χ2,v ◦ detv) be an one–dimensional non–generic

unitary representation of M0(kv), where χ1,v and χ2,v are unitary characters of k×v . Then, for every
w ∈ W (M0), the normalized intertwining operator N(s, πv, w) is holomorphic and non–vanishing
for s = (s1, s2) ∈ a∗M0,C such that

• Re(s1) > Re(s2) > 0 except Re(s1) = Re(s2) = 0, i.e. the closure of the positive Weyl
chamber except at the origin,

• 0 < s1 < 1/2 and s2 = 1/2,
• 0 < s1 < 3/2 and s2 = 3/2, except at (s1, s2) = (1/2, 3/2); at the exceptional point if

χ1,v 6= χ2,v, then it is always holomorphic and non–vanishing, while if χ1,v = χ2,v then it is
holomorphic and non–vanishing at least for w ∈ {1, w2, w1w2, w2w1w2},

• 1 < s1 < 2 and s1 − s2 = 2, except at (s1, s2) = (3/2,−1/2); at the exceptional point if χ2,v

is not quadratic, then it is always holomorphic and non–vanishing, while if χ2,v is quadratic,
then it is holomorphic and non–vanishing at least for w ∈ {1, w1, w2w1, w1w2w1}.

Proof. For the third claim see the comment on the proof of the previous proposition and also [24].
For the last claim one uses the irreducibility of certain induced representations for Sp4(kv) given
in [30], [27] and [28]. ¤

At the end of this Subsection we collect the normalizing factors for the maximal standard proper
parabolic subgroup cases needed in the sequel.

Corollary 2.2.5. For the case GL2 ×GL2 ⊂ GL4, the normalizing factor for the standard inter-
twining operator A((s1, s2), (χ1,v ◦ detv)⊗ π2,v, w1), where χ1,v is a unitary character of k×v , π2,v is
an irreducible unitary generic representation of GL2(kv) and w1 the unique nontrivial Weyl group
element, equals

(2.4) r((s1, s2), (χ1,v ◦ detv)⊗ π2,v, w1) =

=
L(s1 − s2 − 1/2, χ1,vπ̃2,v)

L(s1 − s2 + 3/2, χ1,vπ̃2,v)ε(s1 − s2 + 1/2, χ1,vπ̃2,v, ψv)ε(s1 − s2 − 1/2, χ1,vπ̃2,v, ψv)
,

where the L–function and ε–factor are the principal Jacquet ones. In the case of π1,v irreducible
unitary generic and π2,v

∼= χ2,v ⊗ detv, where χ2,v is a unitary character of k×v , the normalizing
factor is of the same form with the principal Jacquet L–functions and ε–factors for π1,vχ

−1
2,v instead

of χ1,vπ̃2,v.
For the case GL2 × GL2 ⊂ GL4, the normalizing factor for the standard intertwining operator

A((s1, s2), (χ1,v ◦detv)⊗ (χ2,v ◦detv), w1), where χ1,v and χ2,v are unitary characters of k×v and w1

the unique nontrivial Weyl group element, equals

(2.5) r((s1, s2), (χ1,v ◦ detv)⊗ (χ2,v ◦ detv), w1) = rv(s1 − s2, χ1,vχ
−1
2,v),

where for s ∈ C and a unitary character χv of k×v

(2.6) rv(s, χv) =
L(s, χv)L(s− 1, χv)

L(s + 2, χv)L(s + 1, χv)ε(s + 1, χv, ψv)ε(s, χv, ψv)2ε(s− 1, χv, ψv)
.

and the L–function and ε–factor are the Hecke ones.



RESIDUAL SPECTRUM OF AN INNER FORM OF Sp8 9

For the case GL2 ⊂ Sp4, the normalizing factor for the intertwining operator A(s, χv ◦detv, w2),
where χv is a unitary character of k×v and w2 the unique nontrivial Weyl group element, equals
(2.7)

r(s, χv ◦ detv, w2) =
L(s− 1/2, χv)

L(s + 3/2, χv)ε(s + 1/2, χv, ψv)ε(s− 1/2, χv, ψv)
L(2s, χ2

v)
L(1 + 2s, χ2

v)ε(2s, χ2
v, ψv)

,

where the L–functions and ε–factors are the Hecke ones of χv and of the central character χ2
v of

χv ◦ detv.

2.3. Non–split place. In this Subsection let v ∈ SD be a place of k where D does not split. By our
assumption v is non–archimedean. Let π′v ∼= π′1,v⊗π′2,v be a unitary irreducible representation of the
Levi factor M ′

0(kv) ∼= GL′1(kv)×GL′1(kv) of the minimal parabolic subgroup of H ′
2. Observe that π′v

is supercuspidal since M ′
0 has no proper parabolic subgroups defined over kv. Let πv

∼= π1,v ⊗ π2,v

be the local lift of π′v from M ′
0(kv) to M0(kv) as defined in Section 1 using the Jacquet–Langlands

correspondence. It is a square–integrable representation of M0(kv).
For s ∈ a∗M ′

0,C and w ∈ W ′, the standard intertwining operator A(s, π′v, w) is defined as in the
split case. For the precise definition see Section 2 of [29] or Section 1.3 of [8]. It is important
to choose the Haar measures on the unipotent radicals for the split group and its inner form
compatibly as explained in Section 2 of [29]. See also [26]. In this case a decomposition of the
standard intertwining operators according to a reduced decomposition of the Weyl group element
as in Section 2.1 of [31] still holds.

The normalizing factor for the standard intertwining operator A(s, π′v, w) is defined to be

(2.8) r(s, π′v, w) = r(s, πv, w),

where the normalizing factor on the right is the generic split case normalizing factor attached to
the local lift πv which is square–integrable. Then, the normalized intertwining operator is defined
by

(2.9) A(s, π′v, w) = r(s, π′v, w)N(s, π′v, w)

as usual. Here we just give a sketch of the proof of the holomorphy and non–vanishing of N(s, π′v, w)
in the required regions since it follows closely the same proof for an inner form of SO8 in Section
1.3 of [8]. It is based on the comparison of the Plancherel formula of [29].

Proposition 2.3.1. Let π′v ∼= π′1,v ⊗π′2,v be an irreducible unitary representation of the Levi factor
M ′

0(kv). Then, for every w ∈ W ′, the normalized intertwining operator N(s, π′v, w) is holomorphic
and non–vanishing for s = (s1, s2) ∈ a∗M ′

0,C such that

• Re(s1) > Re(s2) > 0, i.e. the closure of the positive Weyl chamber,
• 0 < s1 < 1/2 and s2 = 1/2,
• if π′2,v is one–dimensional, then 0 < s1 < 3/2 and s2 = 3/2,
• 1/2 < s1 < 1 and s1 − s2 = 1,
• 1 < s1 < 2 and s1 − s2 = 2 except at (s1, s2) = (3/2,−1/2); at the exceptional point if

the central character ωπ′2,v
of π′2,v is non–trivial, then it is always holomorphic and non–

vanishing, while if ωπ′2,v
is trivial, then it is holomorphic and non–vanishing at least for

w ∈ {1, w1, w2w1, w1w2w1}.
Proof. The proof goes along the same lines as the proof of the analogous proposition in Section
1.3 of [8]. The third claim would not be true if one removed the condition of one–dimensionality.
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The reason lies in the reducibility points for the induced representations of GL′2(kv) which are a
special case of the results in [34]. For the last claim one needs the irreducibility of certain induced
representations for H ′

1(kv) obtained in [29]. ¤
In the following Corollaries we collect the normalizing factors for the maximal standard proper

parabolic subgroup cases needed in the sequel. The first is a direct consequence of equation (2.8).

Corollary 2.3.2. For the case GL′1 ×GL′1 ⊂ GL′2, the normalizing factor for the standard inter-
twining operator A((s1, s2), π′1,v⊗π′2,v, w1), where π′1,v⊗π′2,v is an irreducible unitary representation
of GL′1(kv)×GL′1(kv) and w1 the unique nontrivial Weyl group element, equals

(2.10) r((s1, s2), π′1,v ⊗ π′2,v, w1) =
L(s1 − s2, π1,v × π̃2,v)

L(1 + s1 − s2, π1,v × π̃2,v)ε(s1 − s2, π1,v × π̃2,v, ψv)
,

where the L–function and ε–factor are the Rankin–Selberg ones of pairs for the local lifts π1,v and
π2,v.

For the case GL′1 ⊂ H ′
1, the normalizing factor for the intertwining operator A(s, π′v, w2), where

π′v is an irreducible unitary representation of GL′1(kv) and w2 the unique nontrivial Weyl group
element, equals

(2.11) r(s, π′v, w2) =
L(s, πv)

L(1 + s, πv)ε(s, πv, ψv)
L(2s, ωπv)

L(1 + 2s, ωπv)ε(2s, ωπv , ψv)
,

where the L–functions and ε–factors are the principal Jacquet ones of the local lift πv and the Hecke
ones of the central character ωπv of πv. Observe that ωπ′v = ωπv .

Next Corollary gives the normalizing factors in a more precise form if at least one of the repre-
sentations π′1,v and π′2,v is one–dimensional. The form of the normalizing factors is made suitable
for obtaining the global normalizing factors in Subsection 2.4.

Recall from Section 1 that the local lift of the one–dimensional representation χv◦det′v of GL′1(kv),
where χv is a unitary character of k×v , is the Steinberg representation Stχv of GL2(kv). Then, the
Corollary is obtained from the previous Corollary using the expressions for the Rankin–Selberg and
principal Jacquet L–functions and ε–factors involving the Steinberg representations and the fact
that the central character of Stχv is χ2

v. These expressions are given in Theorem (3.1), Sections 8
and 9 of [15] and Section (3.1) of [13].

Corollary 2.3.3. For the case GL′1 ×GL′1 ⊂ GL′2, the normalizing factor for the standard inter-
twining operator A((s1, s2), (χ1,v ◦ det′v) ⊗ π′2,v, w1), where χ1,v is a unitary character of k×v , and
π2,v the local component at v of a non–one–dimensional cuspidal automorphic representation of
GL′1(A) and w1 the unique nontrivial Weyl group element, equals

(2.12) r((s1, s2), (χ1,v ◦ det′v)⊗ π′2,v, w1) =

=
L(s1 − s2 − 1/2, χ1,vπ̃2,v)

L(s1 − s2 + 3/2, χ1,vπ̃2,v)ε(s1 − s2 + 1/2, χ1,vπ̃2,v, ψv)ε(s1 − s2 − 1/2, χ1,vπ̃2,v, ψv)
,

where the L–function and ε–factor are the principal Jacquet ones for χ1,vπ̃2,v and π2,v is the local lift
of π′2,v. In the case of π′1,v the local component at v of a non–one–dimensional cuspidal automorphic
representation of GL′1(A) and π′2,v

∼= χ2,v ⊗ det′v, where χ2,v is a unitary character of k×v , the
normalizing factor can be written in the same form with the principal Jacquet L–functions and
ε–factors for π1,vχ

−1
2,v instead of χ1,vπ̃2,v.
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For the case GL′1 × GL′1 ⊂ GL′2, the normalizing factor for the standard intertwining operator
A((s1, s2), (χ1,v ◦det′v)⊗ (χ2,v ◦det′v), w1), where χ1,v and χ2,v are unitary characters of k×v and w1

the unique nontrivial Weyl group element, equals

(2.13) r((s1, s2), (χ1,v◦det′v)⊗(χ2,v◦det′v), w1) =

= rv(s1 − s2, χ1,vχ
−1
2,v)

L(s1 − s2, χ1,vχ
−1
2,v)L(s1 − s2 + 1, χ1,vχ

−1
2,v)

L(−(s1 − s2), χ−1
1,vχ2,v)L(1− (s1 − s2), χ−1

1,vχ2,v)
,

where rv(s, χv), for s ∈ C and a unitary character χv, is defined by equation (2.6) in Corollary
2.2.5 and the L–functions and ε–factors are the Hecke ones.

For the case GL′1 ⊂ H ′
1, the normalizing factor for the intertwining operator A(s, χv ◦ det′v, w2),

where χv is a unitary character of k×v and w2 the unique nontrivial Weyl group element, equals

(2.14) r(s, χv ◦ det′v, w2) =

=
L(s− 1/2, χv)

L(s + 3/2, χv)ε(s + 1/2, χv, ψv)ε(s− 1/2, χv, ψv)
L(s + 1/2, χv)
L(1/2− s, χ−1

v )
L(2s, χ2

v)
L(1 + 2s, χ2

v)ε(2s, χ2
v, ψv)

,

where the L–functions and ε–factors are the Hecke ones.

2.4. Global normalization. In this Subsection we combine the local results of the previous Sub-
sections to obtain the global normalizing factors. Let π′ ∼= π′1 ⊗ π′2 be a cuspidal automorphic
representation of the Levi factor M ′

0(A) ∼= GL′1(A)×GL′1(A) in H ′
2(A). In the rest of the paper we

distinguish three cases depending on the type of π′:
A. Both π′1 and π′2 are not one–dimensional,
B. One among π′1 and π′2 is one–dimensional and the other is not,
C. Both π′1 and π′2 are one–dimensional.

The global lifts defined in Section 1 of π′, π′1 and π′2 are denoted π, π1 and π2. Recall that if π′i is
not one–dimensional, then πi is cuspidal.

Let π′ ∼= ⊗vπ
′
v, where π′v ∼= π′1,v ⊗ π′2,v, be the decomposition of a cuspidal automorphic rep-

resentation into the restricted tensor product as in [4]. For s ∈ a∗M ′
0,C and w ∈ W ′, the global

standard intertwining operator denoted by A(s, π′, w) is defined by the global integral of the same
form as the local integrals defining the local standard intertwining operators. For more details see
Section II.1.6 of [25]. It is a tensor product of the local intertwining operators over all places. At
unramified places the local standard intertwining operator sends the unique suitably normalized
vector invariant for the fixed maximal compact subgroup into the invariant vector normalized in
the same way multiplied by the local normalizing factor r(s, π′v, w).

The global normalizing factor for A(s, π′, w) is defined as

(2.15) r(s, π′, w) =
∏
v

r(s, π′v, w).

It is meromorphic in s ∈ a∗M ′
0,C. Then, the global normalized intertwining operator is given by

A(s, π′, w) = r(s, π′, w)N(s, π′, w).

It is a tensor product of the local normalized intertwining operators over all places. At unrami-
fied places it just sends the suitably normalized invariant vector for the fixed maximal compact
subgroup into the invariant one normalized in the same way. The following Theorem deals with
the holomorphy and non–vanishing of the global normalized intertwining operators. The standard
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proof, which is omitted, reduces the question to the local results of the previous subsection. The
excluded points of the Theorem are just the possible poles of the normalized intertwining operators,
and in the calculation we regard these points as possible poles of the Eisenstein series.

Theorem 2.4.1. Let π′ ∼= π′1⊗π′2 be a cuspidal automorphic representation of the Levi factor M ′
0(A)

in H ′
2(A). Then, for every w ∈ W ′, the global normalized operator N(s, π′, w) is holomorphic and

non–vanishing for s = (s1, s2) ∈ a∗M ′
0,C such that

• Re(s1) > Re(s2) > 0 except at Re(s1) = Re(s2) = 0 in the case C, i.e. in the closure of the
positive Weyl chamber except at the origin in the case C,

• 0 < s1 < 1/2 and s2 = 1/2 in all the cases,
• in the case B with π′2 one–dimensional, 0 < s1 < 3/2 and s2 = 3/2, except at (s1, s2) =

(r, 3/2) for certain 0 < r < 1/2 depending on π′; the exceptional point does not appear if
the global lift π1 of π′1 satisfies the Ramanujan conjecture,

• in the case C, 0 < s1 < 3/2 and s2 = 3/2, except at (s1, s2) = (1/2, 3/2); at the exceptional
point it is always holomorphic and non–vanishing if w ∈ {1, w2, w1w2, w2w1w2},

• in the case A, 1/2 < s1 < 1 and s1 − s2 = 1,
• in the case C, 1 < s1 < 2 and s1−s2 = 2, except at (s1, s2) = (3/2,−1/2); at the exceptional

point it is always holomorphic and non–vanishing if w ∈ {1, w1, w2w1, w1w2w1}.
Finally, for cases A, B and C, we collect the global normalizing factors for the maximal standard

proper parabolic subgroups needed in the sequel. For GL′1 × GL′1 ⊂ GL′2 in case A the local
normalizing factors are given by equation (2.1) of Corollary 2.1.3 and (2.10) of Corollary 2.3.2. For
GL′1 ⊂ H ′

1 in case A the local normalizing factors are given by equation (2.2) of Corollary 2.1.3
and (2.11) of Corollary 2.3.2.

Corollary 2.4.2 (Case A). For GL′1×GL′1 ⊂ GL′2, the global normalizing factor for the standard
intertwining operator A((s1, s2), π′1 ⊗ π′2, w1), where π′1 ⊗ π′2 is a case A cuspidal automorphic
representation of GL′1(A)×GL′1(A), equals

(2.16) r((s1, s2), π′1 ⊗ π′2, w1) =
L(s1 − s2, π1 × π̃2)

L(1 + s1 − s2, π1 × π̃2)ε(s1 − s2, π1 × π̃2)
,

where the L–function and ε–factor are the global Rankin–Selberg ones of pairs for the global lifts π1

and π2.
For GL′1 ⊂ H ′

1, the global normalizing factor for the standard intertwining operator A(s, π′, w2),
where π′ is a cuspidal automorphic representation of GL′1(A) which is not one–dimensional, equals

(2.17) r(s, π′, w2) =
L(s, π)

L(1 + s, π)ε(s, π)
L(2s, ωπ)

L(1 + 2s, ωπ)ε(2s, ωπ)
,

where the L–function and ε–factor are the global principal Jacquet ones for the global lift π and the
global Hecke ones for the central character ωπ of the global lift π. Observe that ωπ = ωπ′.

For GL′1 × GL′1 ⊂ GL′2 in case B the local normalizing factors are given by equation (2.4) of
Corollary 2.2.5 and (2.12) of Corollary 2.3.3. For GL′1 ⊂ H ′

1 in case B the global normalizing factor
is already obtained in the Corollaries for either case A or case C.

Corollary 2.4.3 (Case B). For GL′1×GL′1 ⊂ GL′2, the global normalizing factor for the standard
intertwining operator A((s1, s2), (χ1 ◦det′)⊗π′2, w1), where χ1 is a unitary character of A×/k× and
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π′2 a cuspidal automorphic representation of GL′1(A) which is not one–dimensional, equals
(2.18)

r((s1, s2), (χ1◦det′)⊗π′2, w1) =
L(s1 − s2 − 1/2, χ1π̃2)

L(s1 − s2 + 3/2, χ1π̃2)ε(s1 − s2 + 1/2, χ1π̃2)ε(s1 − s2 − 1/2, χ1π̃2)
,

where the L–function and ε–factor are the global principal Jacquet ones for χ1π̃2 and π2 is the
global lift of π′2. For the intertwining operator A((s1, s2), π′1 ⊗ (χ2 ◦ det′), w1), where now π′1 is not
one–dimensional and χ2 a unitary character of A×/k×, the normalizing factor is of the same form
with the global principal Jacquet L–function and ε–factor for π1χ

−1
2 instead of χ1π̃2.

For GL′1 × GL′1 ⊂ GL′2 in case C the local normalizing factors are given by equation (2.5) of
Corollary 2.2.5 and (2.13) of Corollary 2.3.3. For GL′1 ⊂ H ′

1 in case C the local normalizing factors
are given by equation (2.7) of Corollary 2.2.5 and (2.14) of Corollary 2.3.3.

Corollary 2.4.4 (Case C). For GL′1×GL′1 ⊂ GL′2, the global normalizing factor for the standard
intertwining operator A((s1, s2), (χ1◦det′)⊗(χ2◦det′), w1), where χ1 and χ2 are unitary characters
of A×/k×, equals

(2.19) r((s1, s2), (χ1 ◦ det′)⊗ (χ2 ◦ det′), w1) =

= r(s1−s2, χ1χ
−1
2 )

∏

v∈SD

L(s1 − s2, χ1,vχ
−1
2,v)L(s1 − s2 + 1, χ1,vχ

−1
2,v)

L(−(s1 − s2), χ−1
1,vχ2,v)L(1− (s1 − s2), χ−1

1,vχ2,v)
,

where, for s ∈ C and a unitary character χ of A×/k×, r(s, χ) is a product over all places of rv(s, χv)
defined in equation (2.6) of Corollary 2.2.5, i.e.

(2.20) r(s, χ) =
L(s, χ)L(s− 1, χ)

L(s + 2, χ)L(s + 1, χ)ε(s + 1, χ)ε(s, χ)2ε(s− 1, χ)
,

and the L–functions and ε–factors are the global and local Hecke ones.
For GL′1 ⊂ H ′

1, the global normalizing factor for the intertwining operator A(s, χ ◦ det′, w2),
where χ is a unitary character of A×/k×, equals

(2.21) r(s, χ ◦ det′, w2) =

=
L(s− 1/2, χ)

L(s + 3/2, χ)ε(s + 1/2, χ)ε(s− 1/2, χ)

∏

v∈SD

L(s + 1/2, χv)
L(1/2− s, χ−1

v )
· L(2s, χ2)
L(1 + 2s, χ2)ε(2s, χ2)

,

where the L–functions and ε–factors are the global and local Hecke ones.

3. Calculation of the residual spectrum

Let L2
res denote the residual spectrum of H ′

2(A). By the definition it is the orthogonal complement
of the cuspidal spectrum inside the discrete spectrum of H ′

2(A). By the Langlands spectral theory,
explained in [20] and [25], the constituents of L2

res are obtained by taking the iterated residues at the
poles of the Eisenstein series attached to cuspidal automorphic representations of the Levi factors
of standard proper parabolic subgroups of H ′

2. In this paper we decompose the part L2
res,M ′

0
of the

residual spectrum coming from the poles of the Eisenstein series attached to cuspidal automorphic
representations of the Levi factor M ′

0(A) ∼= GL′1(A) × GL′1(A) of the minimal parabolic subgroup
P ′

0(A) of H ′
2(A). Now, very briefly, we explain the application of the Langlands spectral theory in

our case. For more details see Section V of [25] or, for the low rank examples, [16] and [8].
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3.1. Brief overview of the method. Let π′ be a cuspidal automorphic representation of M ′
0(A).

Let s ∈ a∗M ′
0,C and fs ∈ I(s, π′), where the dependency of automorphic forms fs on s is analytic

on a∗M ′
0,C and Paley–Wiener with values in the space of the induced representation. Then, the

Eisenstein series is defined as the analytic continuation from the domain of the convergence of the
series

(3.1) E(s, g; fs, π
′) =

∑

γ∈P ′0(k)\H′
2(k)

fs(γg)

for g ∈ H ′
2(A). It is meromorphic as a function of s. By the Langlands spectral theory, the

contribution of π′ to the whole space of square–integrable automorphic forms of H ′
2(A) is generated

by the integrals

(3.2) g 7→ 1
(2πi)2

∫

Re(s)=s0

E(s, g; fs, π
′)ds,

where s0 is deep enough in the positive Weyl chamber so that the integral defining the global
intertwining operators and the sum defining the Eisenstein series converge absolutely at s0.

During the calculation of the poles of the Eisenstein series we always assume that they are
real. There is no loss in the generality because that can be achieved just by twisting a cuspidal
automorphic representation of a Levi factor by the appropriate imaginary power of the absolute
value of the reduced norm of the determinant. Hence, this assumption is just a convenient choice
of coordinates and in the sequel we always assume that s1, s2 ∈ R. In the figures of the following
subsections only the real part of a∗M ′

0,C is presented.
When deforming the line of integration in (3.2) from s0 to the origin inside the positive Weyl

chamber as in the figures below, we cross the singular hyperplanes which are the poles of the
Eisenstein series. The integral at the origin gives a part of the continuous spectrum, while the
residues at the singular hyperplanes are the possible contributions to the residual spectrum. Next,
we take the coordinate system on the singular hyperplane such that the origin is the orthogonal
projection of the origin in a∗M ′

0,C and continue the same procedure. In such a way after taking
the iterated residues at the poles of the Eisenstein series we are left with the contribution of π′ to
L2

res,M ′
0
.

The analytic properties of the Eisenstein series coincide with the analytic properties of their
constant terms along P ′

0. Therefore, instead of the poles and square integrability of the Eisenstein
series we can study the poles and square integrability of their constant terms. The benefit lies in
the fact that, by Proposition II.1.7. of [25], the constant term equals

(3.3)
∑

w∈W ′
A(s, π′, w)fs(g)

and for the standard intertwining operators A(s, π′, w) we have defined in Section 2 the scalar mero-
morphic normalizing factors r(s, π′, w). By Theorem 2.4.1, the normalized intertwining operators
N(s, π′, w) are holomorphic and non–vanishing in the regions required in the calculations below.
Thus, the calculation of the poles of (3.3) reduces to the poles of the global normalizing factors.
The points excluded in Theorem 2.4.1 are also treated as possible poles during calculation.
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The first step in the decomposition of L2
res,M ′

0
is according to the type of π′, i.e. case A, B or C.

Thus,

(3.4) L2
res,M ′

0

∼= L2
A ⊕ L2

B ⊕ L2
C ,

where L2
A, L2

B and L2
C are the parts of L2

res,M ′
0

obtained as the iterated residues at the poles of
the Eisenstein series attached to case A, B and C cuspidal automorphic representations of M ′

0(A),
respectively. In the following Subsections 3.2 and 3.3 we decompose L2

B and L2
C . The decomposition

of L2
A is omitted because it can be rewritten line by line from the case A decomposition in Section

2.2 of [8]. The only difference is the additional non–vanishing condition at s = 1/2 for the principal
L–functions L(s, πi) attached to the global Jacquet–Langlands lifts of π′i. This condition comes from
the principal L–function in the case A global normalizing factor for the H ′

1 intertwining operator
attached to w2 given in Corollary 2.4.2. For the inner form G′

2 of SO8 the principal L–function
does not appear in the corresponding normalizing factor.

Before proceeding to the calculation we recall the Langlands square integrability criterion given
in Section I.4.11 of [25] and on page 104 of [20], and the analytic properties of L–functions given
for the Hecke L–functions in [36], for the principal Jacquet L–functions for GL2 in [14] and for
the Rankin–Selberg L–functions of pairs for GL2 ×GL2 in [12]. Observe that the global Hecke L–
function L(s,1) for the trivial character 1 of A×/k× is nothing else than the Dedekind ζ–function
of the algebraic number field k. Recall that in this paper a unitary character µ of A×/k× is said
to be quadratic if µ2 is trivial.

Lemma 3.1.1. The space obtained as the iterated residue at the pole s = (s1, s2) ∈ a∗M ′
0,C of the

Eisenstein series attached to a cuspidal automorphic representation π′ of M ′
0(A) consists of square–

integrable automorphic forms if and only if w(s) = (s′1, s
′
2) satisfies s′1 < 0 and s′1 + s′2 < 0, for

every w ∈ W ′ such that the corresponding intertwining operator in the constant term (3.3) gives a
nontrivial contribution.

Lemma 3.1.2. The global Rankin–Selberg L–function of pairs L(s, σ1 × σ2) for cuspidal automor-
phic representations σ1 and σ2 of GL2(A) has simple poles at s = 0 and s = 1 if σ1

∼= σ̃2 and it is
entire otherwise. It has no zeroes for Re(s) > 1.

The global principal Jacquet L–function L(s, σ) for a cuspidal automorphic representation σ of
GL2(A) is entire. It is has no zeroes for Re(s) > 1.

The global Hecke L–function L(s, µ) for a unitary character µ of A×/k× has simple poles at s = 0
and s = 1 if µ is trivial and it is entire otherwise. It has no zeroes for Re(s) > 1.

The local Hecke L–function L(s, µv) for a unitary character µv of a non–archimedean field k×v
has the only real simple pole at s = 0 if µv is trivial, and it is entire otherwise. It has no zeroes.

The proof of the following elementary Lemma repeatedly used in the calculations is omitted.

Lemma 3.1.3. Let L(s) be a meromorphic function on C having only simple poles, L(0) 6= 0,
and satisfying the functional equation L(s) = ε(s)L(1 − s), where ε(s) is an entire non–vanishing
function such that ε(0)ε(1) = 1. Then

L(s)
L(1 + s)ε(s)

∣∣∣∣
s=0

=
{ −1, if s = 0 is a simple pole of L(s),

1, otherwise.

The following simple Lemma is very helpful in describing the images of the normalized intertwin-
ing operators obtained below as the residues of the constant terms of the Eisenstein series. The
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same Lemma was used several times in our previous paper [8]. Hence, we skip here the details.
When applying the Lemma, w′ and w′′ are carefully chosen in such a way that, besides (1) and (2),
w′′ww′ is the longest Weyl group element and w′−1(s + s′) is at least in the closure of the positive
Weyl chamber. This enables a description of the image using the Langlands classification.

Lemma 3.1.4. Let πv be an irreducible unitary representation of the Levi factor M0(kv) of the
standard parabolic subgroup of Sp8, s ∈ a∗M0,C and w ∈ W (M0). Assume that there is a Levi
subgroup L ⊂ M0, s′ ∈ a∗L,C and a tempered representation τv of L(kv) such that πv is the unique
irreducible subrepresentation of the induced representation IM

L (s′, τv). Suppose that w′ and w′′ are
the elements of the Weyl group W of Sp8 such that

(1) the image of the normalized intertwining operator N(w′−1(s + s′), w′−1(τv), w′) is I(s, πv),
(2) the restriction of the normalized intertwining operator N(w(s+s′), w(τv), w′′) to the induced

representation I(w(s), w(πv)) is injective,
where we identified s with an element of a∗L,C. Then the image of the normalized intertwining
operator N(s, πv, w) is isomorphic to the image of N(w′−1(s + s′), w′−1(τv), w′′ww′).

Proof. The Lemma is a simple consequence of the decomposition property of normalized intertwin-
ing operators. ¤

3.2. Case B. In this case a cuspidal automorphic representation π′ ∼= π′1 ⊗ π′2 of M ′
0(A) is such

that one of the representations π′1 and π′2 is one–dimensional and the other is not. The global
normalizing factors for the maximal standard proper parabolic subgroup with the Levi factor GL′1×
GL′1 ⊂ GL′2 are given in Corollary 2.4.3 and the Levi factor GL′1 ⊂ H ′

1 in Corollary 2.4.2 for non–
one–dimensional representations and Corollary 2.4.4 for one–dimensional representations. By the
analytic properties of the L–functions of Lemma 3.1.2, the possible singular hyperplanes of the
normalizing factors for the intertwining operators in the sum (3.3) are shown in Figure 3.1 if π′1 is
one–dimensional and in Figure 3.2 if π′2 is one–dimensional. There are four possible iterated poles,
at points

B1(3/2, 1/2), B2(1/2, 1/2),

if π′1 is one–dimensional and
B3(1/2, 3/2), B4(1/2, 1/2)

if π′2 is one–dimensional. Note that we do not consider the possible iterated pole at B5(r, 3/2)
when π′2 is one–dimensional. By Theorem 2.4.1, if the Ramanujan conjecture holds for cuspidal
automorphic representations of GL2(A), then B5 is not a pole. Although in principle one could
describe the hypothetical contribution at B5 in the same way as for the poles at C4 or C6 in
Section 3.3, we skip that here since it would not bring any new insight. Having that in mind, L2

B
decomposes into

L2
B
∼= L2

B1
⊕ L2

B2
⊕ L2

B3
⊕ L2

B4
.

The cases of B1 and B3, as well as B2 and B4, are in fact the same. For a pair of points the results
and the proofs can be obtained from each other just by interchanging the roles of π′1 and π′2, s1

and s2, etc. Therefore, we state and prove only the decomposition of L2
B1

and L2
B2

.
Before giving the decomposition of L2

B1
, consider the induced representation

IndGL′2(kv)

GL′1(kv)×GL′1(kv)
((1v ◦ det′v)ν

3/2 ⊗ π′2,vν
1/2) ∼= IndGL′2(kv)

GL′1(kv)×GL′1(kv)
((1v ◦ det′v)ν

1/2 ⊗ π′2,vν
−1/2),
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Figure 3.1. Case B singular hyperplanes for π′1 one–dimensional

Figure 3.2. Case B singular hyperplanes for π′2 one–dimensional

where 1v is the trivial character of k×v and π′2,v is a unitary, generic at split places, irreducible
representation with the trivial central character. It is irreducible as a consequence of [3], [2], [24].
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w Res2s2=1r(s, π′, w)
w2 1

w1w2
L(z,χ1π2)

L(z+2,χ1π2)ε(z,χ1π2)ε(z+1,χ1π2)

L(z,χ1π2)
L(z+2,χ1π2)ε(z,χ1π2)ε(z+1,χ1π2)

w2w1w2
L(z−1/2,χ1)

L(z+3/2,χ1)ε(z−1/2,χ1)ε(z+1/2,χ1)
L(2z,χ2

1)

L(1+2z,χ2
1)ε(2z,χ2

1)

∏
v∈SD

L(z+1/2,χ1,v)

L(1/2−z,χ−1
1,v)

w1w2w1w2
L(z,χ1π2)

L(z+2,χ1π2)ε(z,χ1π2)ε(z+1,χ1π2)
L(z−1,χ1π2)

L(z+1,χ1π2)ε(z−1,χ1π2)ε(z,χ1π2)
L(z−1/2,χ1)

L(z+3/2,χ1)ε(z−1/2,χ1)ε(z+1/2,χ1)
L(2z,χ2

1)

L(1+2z,χ2
1)ε(2z,χ2

1)

∏
v∈SD

L(z+1/2,χ1,v)

L(1/2−z,χ−1
1,v)

Table 3.1. Residues along 2s2 = 1 of case B normalizing factors for π′1 = χ1 ◦ det′

Hence, the normalized intertwining operator

N(1, (1v ◦ det′v)⊗ π′2,v, w1),

where 1 = 1α̃ = (1/2,−1/2), acts as Id or −Id. We denote the sign by ηv. Its inverse, required in
the decomposition of LB3 , acts by the same scalar.

Theorem 3.2.1. The subspace L2
B1

of the residual spectrum of H ′
2(A) decomposes into

L2
B1

= ⊕π′B1(π′),

where the sum is over all cuspidal automorphic representations π′ ∼= (1 ◦ det′)⊗ π′2 of M ′
0(A) such

that 1 is the trivial character of A×/k×, π′2 is not one–dimensional, the central character ωπ′2 of π′2
is trivial, L(1/2, π2) 6= 0 and the parity condition

L(1/2, π2)L(−1/2, π2)
L(5/2, π2)L(3/2, π2)

∏
v

ηv 6= −1

holds, where π2 is the global lift of π′2.
B1(π′) is the irreducible space of automorphic forms spanned by the iterated residue at s =

(3/2, 1/2) of the Eisenstein series attached to π′. The constant term map gives rise to an isomor-
phism of B1(π′) and the image of the normalized intertwining operator N((3/2, 1/2), π′, w2w1w2).

Proof. Let π′ ∼= (χ1 ◦ det′) ⊗ π′2 be a case B cuspidal automorphic representation of M ′
0(A) The

iterated pole at B1(3/2, 1/2) of the Eisenstein series attached to π′ is first calculated along the
singular hyperplane 2s2 = 1 as shown in Figure 3.1. The pole along 2s2 = 1 occurs if only if the
central character ωπ′2 is trivial and L(1/2, π2) 6= 0. In the new variable z = s1 the residues are up
to a nonzero constant given in Table 3.1, where 1 is the trivial character of A×/k×. Observe that
π2 is selfcontragredient since ωπ2 is trivial.

The terms in Table 3.1 have the pole at B1(3/2, 1/2), i.e. z = 3/2, if and only if χ1 is trivial.
Up to a nonzero constant the residue of the term corresponding to w2w1w2 equals

N((3/2, 1/2), π′, w2w1w2),
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while after applying the global functional equation for the L–functions, the residue of the term
corresponding to w1w2w1w2 equals

L(1/2, π2)L(−1/2, π2)
L(5/2, π2)L(3/2, π2)

N((3/2, 1/2), π′, w1w2w1w2).

The residue acting at a decomposable vector of the induced representation gives

N((3/2, 1/2), π′, w2w1w2)
[
Id +

L(1/2, π2)L(−1/2, π2)
L(5/2, π2)L(3/2, π2)

N((3/2, 1/2), π′, w1)
]

.

Now, the non–vanishing condition for the square–bracket gives the parity condition of the Theorem.
The Langlands square–integrability criterion of Lemma 3.1.1 is satisfied. The irreducibility of the
image of the normalized operator N((3/2, 1/2), π′, w2w1w2) is proved as in case B of [8]. ¤

Before giving the decomposition of L2
B2

we consider the induced representation

IndGL′2(kv)

GL′1(kv)×GL′1(kv)

(
(χ1,v ◦ det′v)⊗ π′2,v

)
.

where π′2,v is a unitary, generic at split places, irreducible representation with the trivial central
character and χ1,v a quadratic character of k×v . It is irreducible at all places by [3], [2], [33]. Hence,
the normalized intertwining operator

N(0, (χ1,v ◦ det′v)⊗ π′2,v, w1)

acts as Id or −Id. We denote the sign by ηv. Its inverse required in the decomposition of L2
B4

acts
by the same scalar.

Furthermore, consider the image of the normalized intertwining operator

N((1/2, 1/2), π′v, w1w2w1w2),

where π′v ∼= (χ1,v ◦ det′v) ⊗ π′2,v and χ1 and π′2,v are as above. At non–split places the image is
irreducible by the Langlands classification since π′v is supercuspidal. At split places, the image is
described in terms of the Langlands classification as in Section 2.3 of [8]. However, due to more
complicated reducibilities for the symplectic group, the image is irreducible if and only if χ1,v is
trivial. If χ1,v is a non–trivial quadratic character, it is a sum of two irreducible constituents. In
both cases, we denote the constituents by Π±v , and make a convention that Π−v is trivial if χ1,v is
trivial. In terms of the Langlands classification, if π2,v is tempered, then Π±v is the quotient of the
standard module

IndSp8(kv)
GL1(kv)×GL2(kv)×SL2(kv)

(
χ1,v| · | ⊗ π2,vν

1/2 ⊗ τ±v
)

,

while if π2,v is a complementary series attached to a unitary character µv of k×v and an exponent
0 < r < 1/2, then it is the quotient of the standard module

IndSp8(kv)
GL1(kv)×GL1(kv)×GL1(kv)×SL2(kv)

(
χ1,v| · | ⊗ µvν

1/2+r ⊗ µvν
1/2−r ⊗ τ±v

)
.

Here τ±v are irreducible tempered representations of SL2(kv) defined by

IndSL2(kv)
GL1(kv)χ1,v

∼= τ+
v ⊕ τ−v ,

where τ−v is trivial if χ1,v is trivial.
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Theorem 3.2.2. The subspace L2
B2

of the residual spectrum of H ′
2(A) decomposes into

L2
B2

= ⊕π′B2(π′),

where the sum is over all cuspidal automorphic representations π′ ∼= (χ1 ◦ det′) ⊗ π′2 of M ′
0(A)

such that χ1 is a nontrivial quadratic character, χ1,v is nontrivial for all v ∈ SD, π′2 is not one–
dimensional, the central character ωπ′2 of π′2 is trivial, L(1/2, π2) 6= 0 and L(1/2, χ1π2) 6= 0, where
π2 is the global lift of π′2, and the parity condition

∏
v ηv = 1 holds.

B2(π′) is the space of automorphic forms spanned by the iterated residue at s = (1/2, 1/2) of the
Eisenstein series attached to π′. The constant term map gives rise to an isomorphism of B2(π′)
and the sum of the irreducible representations of the form ⊗vΠ′v, where Π′v is one of at most two
irreducible components of the image of N((1/2, 1/2), π′v, w1w2w1w2) and at almost all split places
it is Π+

v .

Proof. The proof goes along the same lines as the proof of the previous Theorem. The residues
along 2s2 = 1 are already given in Table 3.1. Now, the pole at z = 1/2 of the terms in Table 3.1
is obtained if and only if χ1 is a quadratic character such that χ1,v is nontrivial at all v ∈ SD and
L(1/2, χ1π2) 6= 0. The local condition comes from the local Hecke L–function in the denominator
of the global normalizing factors which would otherwise cancel the pole. Again, using the global
functional equation and decomposing, the iterated residue at B2(1/2, 1/2) equals

N((1/2, 1/2), π′, w2w1w2)
[
Id + N((1/2, 1/2), π′, w1)

]
.

The non–vanishing of the square–bracket gives the parity condition. The square–integrability cri-
terion of Lemma 3.1.1 is satisfied. Since N((1/2, 1/2), π′, w1) is an isomorphism, the image of
N((1/2, 1/2), π′, w2w1w2) is isomorphic to the image of N((1/2, 1/2), π′, w1w2w1w2) which was
decomposed at every place just before the statement of the Theorem. Since an automorphic repre-
sentation is unramified at almost all places, Π′v = Π+

v at almost all split places. ¤

3.3. Case C. In this case π′ ∼= π′1⊗π′2 is a cuspidal automorphic representation of M ′
0(A) such that

π′i = χi ◦det′, for i = 1, 2, where χi is a unitary character of A×/k×. The global normalizing factors
of the standard intertwining operators in the sum (3.3) are the products of the maximal proper
parabolic subgroup cases given in Corollary 2.4.4. By the analytic properties of the L–functions of
Lemma 3.1.2, the possible singular hyperplanes of the terms in the sum (3.3) are given in Figure
3.3. There are eight possible iterated poles denoted as in Figure 3.3 by

C1(7/2, 3/2), C2(5/2, 1/2), C3(2, 0), C4(3/2,−1/2)

C5(3/2, 3/2), C6(1/2, 3/2), C7(3/2, 1/2), C8(1/2, 1/2).

Hence, L2
C decomposes accordingly into

L2
C
∼= L2

C1
⊕ L2

C2
⊕ L2

C3
⊕ L2

C4
⊕ L2

C5
⊕ L2

C6
⊕ L2

C7
⊕ L2

C8
.

Theorem 3.3.1. The subspace L2
C1

of the residual spectrum of H ′
2(A) is the irreducible space of

automorphic forms consisting only of constant functions on H ′
2(A).

Proof. Let π′ ∼= (χ1 ◦ det′)⊗ (χ2 ◦ det′) be a case C cuspidal automorphic representation of M ′
0(A).

As shown in Figure 3.3, for the contribution of π′ to the residual spectrum at C1(7/2, 3/2) the
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Figure 3.3. Case C singular hyperplanes

w Ress1−s2=2r(s, (χ ◦ det′)⊗ (χ ◦ det′), w)
w1 1

w2w1
L(z+1/2,χ)

L(z+5/2,χ)ε(z+3/2,χ)ε(z+1/2,χ)

∏
v∈SD

L(z+3/2,χv)

L(−1/2−z,χ−1
v )

· L(2z+2,χ2)
L(2z+3,χ2)ε(2z+2,χ2)

w1w2w1
L(z+1/2,χ)

L(z+5/2,χ)ε(z+3/2,χ)ε(z+1/2,χ)

∏
v∈SD

L(z+3/2,χv)

L(−1/2−z,χ−1
v )

· L(2z+2,χ2)
L(2z+3,χ2)ε(2z+2,χ2)

L(2z−1,χ2)L(2z,χ2)
L(2z+1,χ2)L(2z+2,χ2)ε(2z−1,χ2)ε(2z,χ2)2ε(2z+1,χ2)

∏
v∈SD

L(2z,χ2
v)L(2z+1,χ2

v)

L(−2z,χ−2
v )L(1−2z,χ−2

v )

L(z+1/2,χ)
L(z+5/2,χ)ε(z+3/2,χ)ε(z+1/2,χ)

∏
v∈SD

L(z+3/2,χv)

L(−1/2−z,χ−1
v )

· L(2z+2,χ2)
L(2z+3,χ2)ε(2z+2,χ2)

w1w2w1w2
L(2z−1,χ2)L(2z,χ2)

L(2z+1,χ2)L(2z+2,χ2)ε(2z−1,χ2)ε(2z,χ2)2ε(2z+1,χ2)

∏
v∈SD

L(2z,χ2
v)L(2z+1,χ2

v)

L(−2z,χ−2
v )L(1−2z,χ−2

v )
L(z−3/2,χ)

L(z+1/2,χ)ε(z−1/2,χ)ε(z−3/2,χ)

∏
v∈SD

L(z−1/2,χv)

L(3/2−z,χ−1
v )

· L(2z−2,χ2)
L(2z−1,χ2)ε(2z−2,χ2)

Table 3.2. Residues along s1 − s2 = 2 of case C normalizing factors

iterated pole of the sum (3.3) is first considered along s1− s2 = 2. It occurs if and only if χ1 = χ2.
Let χ = χ1 = χ2. The residues, written in a new variable z on s1 − s2 = 2 given by

s1 = z + 1 and s2 = z − 1,

up to a nonzero constant are given in Table 3.2.
Point C1 corresponds to z = 5/2. The pole of the terms in Table 3.2 at z = 5/2 may occur only

if χ is trivial. Then, only the term corresponding to the Weyl group element w1w2w1w2 has a pole.
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It is simple. Hence, up to a nonzero constant, the iterated residue at C1 of the sum (3.3) equals

N((7/2, 3/2), (1 ◦ det′)⊗ (1 ◦ det′), w1w2w1w2).

The square–integrability criterion of Lemma 3.1.1 is satisfied, and the image of that operator is the
trivial representation of Sp8(kv) at every place. Hence, L2

C1
consists only of the constant functions

on H ′
2(A). ¤

Before giving the decomposition of L2
C2

consider the image of local normalized operator

N((5/2, 1/2), (χv ◦ det′v)⊗ (χv ◦ det′v), w1w2w1w2),

where χv is a quadratic character of k×v . It is irreducible at non–split places by the Langlands
classification. At split places its image can be described as in the case of B2 in Section 3.2. It is
the sum of two irreducible representations if χv is nontrivial and it is irreducible if χv is trivial. As
before, we denote the irreducible components by Π+

v and Π−v , where Π−v is trivial if χv is trivial
and at unramified places Π+

v is the unramified component.

Theorem 3.3.2. The subspace L2
C2

of the residual spectrum of H ′
2(A) is isomorphic to

L2
C2

= ⊕π′C2(π′),

where the sum is over all one–dimensional cuspidal automorphic representations π′ ∼= (χ ◦ det′)⊗
(χ ◦ det′) of M ′

0(A) such that χ is a nontrivial quadratic character and χv is nontrivial for all
v ∈ SD.
C2(π′) is the space of automorphic forms spanned by the iterated residue at s = (5/2, 1/2) of the

Eisenstein series attached to π′. The constant term map gives rise to an isomorphism of C2(π′)
and the sum of the irreducible representations of the form ⊗vΠ′v, where Π′v is one of at most two
irreducible components of the image of N((5/2, 1/2), π′v, w1w2w1w2) and it is Π+

v at almost all split
places.

Proof. We skip the proof since it is the same as the proof of Theorem 3.3.1. The local condition of
non–triviality of the local component χv at all places v ∈ SD comes from the local L–functions in
the global normalizing factors. ¤

Before decomposing L2
C3

consider the induced representation

IndH′
1(kv)

GL′1(kv)

(
χv ◦ det′v

)
,

where χv is a quadratic character of k×v . It is irreducible by [29], [30], [27], [28]. Hence, the H ′
1(kv)

normalized intertwining operator
N(0, χv ◦ det′v, w2)

acts as Id or −Id and we denote the sign by ηv.

Theorem 3.3.3. The subspace L2
C3

of the residual spectrum of H ′
2(A) decomposes into

L2
C3

= ⊕π′C3(π′),

where the sum is over all one–dimensional cuspidal automorphic representations π′ ∼= (χ ◦ det′)⊗
(χ◦det′) of M ′

0(A) such that χ is a quadratic character and the parity condition
∏

v ηv = −ε(1/2, χ)
holds.
C3(π′) is the irreducible space of automorphic forms spanned by the iterated residue at s = (2, 0)

of the Eisenstein series attached to π′. The constant term map gives rise to an isomorphism of
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C3(π′) and the image of the normalized intertwining operator N((2, 0), π′, w1w2w1). At non–split
places it is the Langlands quotient of the induced representation

IndH′
2(kv)

GL′1(kv)×H′
1(kv)

(
(χv ◦ det′v)⊗ τv

)
,

where τv
∼= IndH′

1(kv)

GL′1(kv)

(
χv ◦ det′v

)
is irreducible and tempered. At split places it is the Langlands

quotient of the induced representation

IndSp8(kv)
T (kv)

(
χv| · |5/2 ⊗ χv| · |3/2 ⊗ χv| · |1/2 ⊗ χv| · |1/2

)
,

where T ∼= GL1 ×GL1 ×GL1 ×GL1 is the maximal split torus of Sp8.

Proof. Calculating the residue at z = 1, which corresponds to C3, of the terms in Table 3.2, using
Lemma 3.1.2, Lemma 3.1.3 and the global functional equation for L–functions, shows that the pole
occurs if and only if χ = χ1 = χ2 is a quadratic character. The residue is non–zero only for terms
corresponding to w1w2w1 and w1w2w1w2. Their sum acting on the decomposable vector gives

N((2, 0), π′, w1w2w1)
[
Id− ε(1/2, χ)N((2, 0), π′, w2)

]
.

The parity condition comes from the non–vanishing of the square bracket. The square–integrability
criterion of Lemma 3.1.1 is satisfied. The description in terms of the Langlands classification
of the image of the normalized intertwining operator N((2, 0), π′, w1w2w1w2), which is isomor-
phic to the image of N((2, 0), π′, w1w2w1), comes at a non–split place from the fact that τ ′v ∼=
IndH′

2(kv)

GL′1(kv)

(
χv ◦ det′v

)
is irreducible and tempered. At a split place one observes that the induced

representation IndSL2(kv)
GL1(kv)

(
χv| · |−1/2

)
is irreducible. ¤

As in the decomposition of the corresponding space in Section 2.4 of [8], before decomposing L2
C4

we describe the images of certain local normalized intertwining operators. We study the behavior
of the normalized intertwining operator N(s, χv ◦ det′v, w2) at s = −1/2, where χv is a unitary
character of k×v . If χv is quadratic, let Xv be the image of

N(1/2, χv ◦ det′v, w2).

It is a subrepresentation of the induced representation

Iv = IndH′
1(kv)

GL′1(kv)

(
(χv ◦ det′v)ν

−1/2
)

.

As a simple consequence of the Langlands classification, Xv is irreducible unless v is split and χv is
a nontrivial quadratic character. If reducible, it is a direct sum of two non–isomorphic irreducible
representations. Let Yv

∼= Iv/Xv denote the quotient.

Lemma 3.3.4. If χv is not quadratic, then the normalized intertwining operator

N(s, χv ◦ det′v, w2)

is holomorphic and non–vanishing at s = −1/2. Moreover, it is an isomorphism.
If χv is quadratic, then it has a pole at s = −1/2. The operator

Ñ(−1/2, χv ◦ det′v, w2) = lim
s→−1/2

(s + 1/2)N(s, χv ◦ det′v, w2)
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is holomorphic and non–vanishing. In the notation as above, its kernel is Xv, and its image is
isomorphic to Yv. Thus, N(s, χv ◦ det′v, w2) at s = −1/2 restricted to Xv is holomorphic and
non–vanishing.

Proof. The same as the proof of the corresponding Lemma in Section 2.4 of [8]. ¤
Corollary 3.3.5. Let π′v ∼= (χv ◦ det′v)⊗ (χv ◦ det′v). If χv is not quadratic, then the image of the
normalized intertwining operator N((3/2,−1/2), π′v, w1w2w1w2), denoted by Wv, is nontrivial and
isomorphic to the image of N((3/2, 1/2), π′v, w1w2w1).

If χv is quadratic, then the image of N((3/2, 1/2), π′v, w1w2w1)Ñ(−1/2, χv ◦ det′v, w2), denoted
by W ′

v, is nontrivial. Furthermore, if χv is quadratic, then the image of N((3/2, 1/2), π′v, w1w2w1),
again denoted by Wv, is nontrivial and contains W ′

v as a subrepresentation.

Proof. Although we have not specified the irreducible constituents of Yv in terms of the Langlands
classification, the exponents are certainly at most 1, and the proof goes along the same lines as the
proof of the corresponding Corollary in Section 2.4 of [8]. ¤

For a unitary character µ of k×\A×, let S1(µ) denote the set of places of k such that µv is trivial.
For a unitary character χ of k×\A×, let

m(χ) = |S1(χ2) ∩ SD| − |S1(χ) ∩ SD|.
Note that m(χ) ≥ 0 since S1(χ) ⊂ S1(χ2).

Theorem 3.3.6. The subspace L2
C4

of the residual spectrum of H ′
2(A) decomposes into

L2
C4

=
(
⊕π′C(1)

4 (π′)
)
⊕

(
⊕π′C(2)

4 (π′)
)

.

The former sum is over all one–dimensional cuspidal automorphic representations π′ ∼= (χ◦det′)⊗
(χ ◦ det′) of M ′

0(A) such that χ is quadratic. The latter sum is over all one–dimensional cuspidal
automorphic representations π′ ∼= (χ ◦ det′)⊗ (χ ◦ det′) of M ′

0(A) such that χ is not quadratic but
there is either at least one non–split place v ∈ SD where χv is trivial or at least one split place
v 6∈ SD where χ2

v is trivial.
The spaces C(1)

4 (π′) and C(2)
4 (π′) are the spaces of automorphic forms spanned by the residues

lim
z→1/2

(z − 1/2)nRess1−s2=2E(s, g; fs, π
′),

where n is the order of the pole at z = 1/2. Here z is the new variable on s1 − s2 = 2 given by
s1 = z + 1 and s2 = z − 1.

If χ is a nontrivial quadratic character, the constant term map gives rise to an isomorphism
between C(1)

4 (π′) and
⊕V [(⊗v∈V W ′

v)⊗ (⊗v 6∈V Wv)],
where the sum is over all finite sets of places V such that |V | = m(χ) and Wv, W ′

v are defined in
Corollary 3.3.5. If χ is trivial, then the constant term map implies that C(1)

4 (π′) contains a space
isomorphic to ⊕w[W ′

w ⊗ (⊗v 6=wWv)], where the sum is over all places.
If χ is not quadratic, the constant term map gives rise to an isomorphism between C(2)

4 (π′) and

⊕V [(⊗v∈V W ′
v)⊗ (⊗v 6∈V Wv)],

where the sum is over all finite sets of places V ⊂ S1(χ2) such that |V | = m(χ) + 1 and Wv, W ′
v

are defined in Corollary 3.3.5.
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Proof. Along the same lines as the proof of the corresponding Theorem in Section 2.4 of [8]. The
more complicated description is only due to the more complicated normalizing factors. ¤

Before passing to L2
C5

consider the normalized intertwining operator

N(0, (1v ◦ det′v)⊗ (1v ◦ det′v), w1)

acting on the induced representation

IndGL′2(kv)

GL′1(kv)×GL′1(kv)

(
(1v ◦ det′v)⊗ (1v ◦ det′v)

)
,

where 1v is the trivial character of k×v . Since the induced representation is irreducible by [34], [2],
[33], the normalized intertwining operator acts as Id or −Id. We denote the sign by ηv.

The irreducibility of the spaces of automorphic forms appearing in the decomposition of L2
C5

follows from the following Lemma. Using Lemma 3.1.4, it is a consequence of the Langlands
classification.

Lemma 3.3.7. Let π′v ∼= (1v ◦ det′v)⊗ (1v ◦ det′v) be the trivial representation of M ′
0(kv), where 1v

is the trivial character of k×v . Then, the images of the normalized intertwining operators

N((3/2, 3/2), π′v, w2w1w2) and N((3/2, 3/2), π′v, w1w2w1w2)

are isomorphic and irreducible. At non–split places it is isomorphic to the Langlands quotient of
the induced representation

IndH′
2(kv)

GL1(kv)′×GL′1(kv)

(
(1v ◦ det′v)ν

3/2 ⊗ (1v ◦ det′v)ν
3/2

)
,

while at non–split places it is isomorphic to the Langlands quotient of the induced representation

IndSp8(kv)
T (kv)

(| · |2 ⊗ | · |2 ⊗ | · |1 ⊗ | · |1) ,

where T ∼= GL1 ×GL1 ×GL1 ×GL1 is the maximal split torus of Sp8.

Proof. The images are isomorphic because the GL4(kv) normalized operator N(0, π′v, w1) is an
isomorphism. At non–split places the image is irreducible by the Langlands classification since π′v
is supercuspidal and w1w2w1w2 is the longest Weyl group element. Let v be a split place and, in
the notation of Lemma 3.1.4, w = w1w2w1w2 and s = (3/2, 3/2). Furthermore, L is the maximal
split torus T ∼= GL1 ×GL1 ×GL1 ×GL1,

s + s′ = (1, 2, 1, 2) and τv
∼= 1v ⊗ 1v ⊗ 1v ⊗ 1v.

For w′ we take the Weyl group element corresponding to the permutation

w′ = (1, 4, 3)(2),

where (i1, i2, . . . , il) denotes the cycle mapping i1 7→ i2 7→ . . . 7→ il 7→ i1. The permutation p of
m letters acts on s = (s1, . . . , sm) ∈ Cm by p(s) = (sp−1(1), . . . , sp−1(m)) and on a representation
σ ∼= σ1 ⊗ . . .⊗ σm of GLn1(kv)× . . .×GLnm(kv) by p(σ) = σp−1(1) ⊗ . . .⊗ σp−1(m). Then

w′−1(s + s′) = (2, 2, 1, 1),

and the normalized intertwining operator N(w′−1(s + s′), w′−1(τv), w′) is surjective onto I(s, πv)
since it can be decomposed into

IndSp8(kv)
T (kv)

(| · |2 ⊗ | · |2 ⊗ | · |1 ⊗ | · |1) →
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IndSp8(kv)
GL1(kv)×GL2(kv)×GL1(kv)

(
| · |2 ⊗ (1v ◦ detv)ν3/2 ⊗ | · |1

)
→

IndSp8(kv)
GL2(kv)×GL1(kv)×GL1(kv)

(
(1v ◦ detv)ν3/2 ⊗ | · |2 ⊗ | · |1

)
→

IndSp8(kv)
GL2(kv)×GL2(kv)

(
(1v ◦ detv)ν3/2 ⊗ (1v ◦ detv)ν3/2

)
,

where the first and the third arrow are surjective by the Langlands classification, while the second
one is an isomorphism by the results of [2] at non–archimedean and Lemma I.7 of [24] at archimedean
places. Thus condition (1) of Lemma 3.1.4 is satisfied.

In the notation of Lemma 3.1.4 we take the Weyl group element w′′ = (1, 2, 3)(4). Then w′′ww′
is the longest Weyl group element with respect to T . Now, we verify condition (2) of Lemma 3.1.4.
The normalized intertwining operator N(w(s + s′), w(τv), w′′) acts on the induced representation

IndSp8(kv)
T (kv)

(| · |−2 ⊗ | · |−1 ⊗ | · |−2 ⊗ | · |−1
)

containing I(w(s), w(πv)) as a subrepresentation. If its restriction to I(w(s), w(πv)) were not in-
jective, then its kernel would have nontrivial intersection with I(w(s), w(πv)). Decomposing the
normalized intertwining operator N(w(s+s′), w(τv), w′′) according to w′′ = (1, 2)(3)(4)◦(1)(2, 3)(4)
into

IndSp8(kv)
T (kv)

(| · |−2 ⊗ | · |−1 ⊗ | · |−2 ⊗ | · |−1
) →

IndSp8(kv)
T (kv)

(| · |−2 ⊗ | · |−2 ⊗ | · |−1 ⊗ | · |−1
) →

IndSp8(kv)
T (kv)

(| · |−2 ⊗ | · |−2 ⊗ | · |−1 ⊗ | · |−1
)
,

where the second arrow is an isomorphism, we obtain that its kernel is isomorphic to the kernel of
the first arrow, which is

IndSp8(kv)
GL1(kv)×GL2(kv)×GL1(kv)

(
| · |−2 ⊗ St1vν

−3/2 ⊗ | · |−1
)

,

where, abusing the non–archimedean notation, St1v at archimedean places denotes the unique
irreducible subrepresentation of the induced representation IndGL2(kv)

GL1(kv)×GL1(kv)

(| · |1/2 ⊗ | · |−1/2
)
.

Since by the Langlands classification this kernel contains the Langlands quotient as the unique ir-
reducible subrepresentation, if the intersection with I(w(s), w(πv)) were nontrivial it would contain
this Langlands quotient as a subrepresentation. However, such a subrepresentation would be the
irreducible quotient of I(s, πv) which is the quotient of

IndSp8(kv)
T (kv)

(| · |2 ⊗ | · |2 ⊗ | · |1 ⊗ | · |1)

by the first part of the proof. But the last induced representation has its own unique irreducible
Langlands quotient which is not isomorphic to the one in the kernel. This proves condition (2) of
Lemma 3.1.4.

Applying Lemma 3.1.4 shows that the image of the normalized intertwining operator N(s, πv, w)
is isomorphic to the image of

N((2, 2, 1, 1),1v ⊗ 1v ⊗ 1v ⊗ 1v, w
′′ww′).

Since w′′ww′ is the longest Weyl group element and (2, 2, 1, 1) ∈ a∗T,C satisfies the conditions of the
Langlands classification, the image is irreducible as claimed. ¤
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w Res2s2=3r(s, (χ1 ◦ det′)⊗ (1 ◦ det′), w)
w2 1

w1w2
L(z+3/2,χ1)L(z+1/2,χ1)

L(z+7/2,χ1)L(z+5/2,χ1)ε(z+5/2,χ1)ε(z+3/2,χ1)2ε(z+1/2,χ1)

∏
v∈SD

L(z+3/2,χ1,v)L(z+5/2,χ1,v)

L(−z−3/2,χ−1
1,v)L(−z−1/2,χ−1

1,v)

w2w1w2
L(z+3/2,χ1)L(z+1/2,χ1)

L(z+7/2,χ1)L(z+5/2,χ1)ε(z+5/2,χ1)ε(z+3/2,χ1)2ε(z+1/2,χ1)

∏
v∈SD

L(z+3/2,χ1,v)L(z+5/2,χ1,v)

L(−z−3/2,χ−1
1,v)L(−z−1/2,χ−1

1,v)

L(z−1/2,χ1)
L(z+3/2,χ1)ε(z+1/2,χ1)ε(z−1/2,χ1)

∏
v∈SD

L(z+1/2,χ1,v)

L(1/2−z,χ−1
1,v)

· L(2z,χ2
1)

L(2z+1,χ2
1)ε(2z,χ2

1)

L(z+3/2,χ1)L(z+1/2,χ1)
L(z+7/2,χ1)L(z+5/2,χ1)ε(z+5/2,χ1)ε(z+3/2,χ1)2ε(z+1/2,χ1)

∏
v∈SD

L(z+3/2,χ1,v)L(z+5/2,χ1,v)

L(−z−3/2,χ−1
1,v)L(−z−1/2,χ−1

1,v)

w1w2w1w2
L(z−1/2,χ1)

L(z+3/2,χ1)ε(z+1/2,χ1)ε(z−1/2,χ1)

∏
v∈SD

L(z+1/2,χ1,v)

L(1/2−z,χ−1
1,v)

· L(2z,χ2
1)

L(2z+1,χ2
1)ε(2z,χ2

1)

L(z−5/2,χ1)L(z−3/2,χ1)
L(z+1/2,χ1)L(z−1/2,χ1)ε(z−1/2,χ1)ε(z−3/2,χ1)2ε(z−5/2,χ1)

∏
v∈SD

L(z−3/2,χ1,v)L(z−1/2,χ1,v)

L(3/2−z,χ−1
1,v)L(5/2−z,χ−1

1,v)

Table 3.3. Residues along 2s2 = 3 of case C normalizing factors

Theorem 3.3.8. The subspace L2
C5

of the residual spectrum of H ′
2(A) is

L2
C5

=
{ {0}, if

∏
v ηv = 1,

C5

(
(1 ◦ det′)⊗ (1 ◦ det′)

)
, if

∏
v ηv = −1.

Here C5

(
(1 ◦ det′)⊗ (1 ◦ det′)

)
is the irreducible space of automorphic forms spanned by the it-

erated residue at s = (3/2, 3/2) of the Eisenstein series attached to the trivial representation
π′ ∼= (1 ◦ det′) ⊗ (1 ◦ det′) of M ′

0(A). The constant term map gives rise to an isomorphism of
C5

(
(1 ◦ det′)⊗ (1 ◦ det′)

)
and the image of the normalized operator N((3/2, 3/2), π′, w2w1w2) de-

scribed in the previous Lemma 3.3.7.

Proof. In order to find the contribution to the residual spectrum at C5(3/2, 3/2) we study the
iterated pole of the Eisenstein series attached to a case C cuspidal automorphic representation
π′ ∼= (χ1 ◦ det′) ⊗ (χ2 ◦ det′). As shown in Figure 3.3, we first look at the pole of the normalizing
factors along 2s2 = 3. It occurs if and only if χ2 is trivial. The residues, up to a non–zero constant
are given in Table 3.3, where z = s1.

Point C5 corresponds to z = 3/2. By Lemma 3.1.2, the pole of terms in Table 3.3 at z = 3/2
occurs if and only if χ1 is trivial. Only the terms corresponding to the Weyl group elements w2w1w2

and w1w2w1w2 have the pole and it is simple. Up to a non–zero constant, using the global functional
equation and Lemma 3.1.3, the sum of its residues acting on a decomposable vector gives

N((3/2, 3/2), π′, w2w1w2)
[
Id−N((3/2, 3/2), π′, w1)

]

The parity condition is obtained from the non–vanishing of the square brackets. The square–
integrability criterion of Lemma 3.1.1 is satisfied and the irreducibility of the image of the normal-
ized intertwining operator

N((3/2, 3/2), (1 ◦ det′)⊗ (1 ◦ det′), w2w1w2),

follows from the previous Lemma 3.3.7. ¤
Decomposing L2

C6
is quite similar to L2

C4
. We use the same notation to emphasize the analogy.

For a split place v consider the behavior of the normalized intertwining operator N((s, 3/2), πv, w1)
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at s = 1/2, where πv
∼= (χ1,v ⊗ detv) ⊗ (1v ⊗ detv). Here 1v is the trivial and χ1,v a unitary

character of k×v . If χ1,v is trivial, let Xv denote the image of N((3/2, 1/2), πv, w1). By the Langlands
classification it is an irreducible subrepresentation of

Iv = IndGL4(kv)
GL2(kv)×GL2(kv)

(
(χ1,v ⊗ detv)ν1/2 ⊗ (1v ⊗ detv)ν3/2

)
.

Let Yv
∼= Iv/Xv denote the quotient. The proofs of the following Lemma and its Corollary are

the same as the corresponding proofs in Section 2.4 of [8] and the corresponding proofs in the
decomposition of L2

C4
above.

Lemma 3.3.9. If either v ∈ SD or χ1,v is nontrivial, then N((s, 3/2), πv, w1) at s = 1/2 is an
isomorphism. Thus, it is holomorphic and non–vanishing.

If v 6∈ SD and χ1,v is trivial, then N((s, 3/2), πv, w1) has a pole at s = 1/2. The operator

Ñ((1/2, 3/2), πv, w1) = lim
s→1/2

(s− 1/2)N((s, 3/2), πv, w1)

is holomorphic, its image is isomorphic to Yv, and its kernel is Xv. Thus, the restriction of
N((s, 3/2), πv, w1) at s = 1/2 to Xv is holomorphic and non–vanishing.

Corollary 3.3.10. Let π′v ∼= (χ1,v ◦ det′v) ⊗ (1v ◦ det′v). If v ∈ SD or χ1,v is nontrivial, then the
image of N((1/2, 3/2), π′v, w1w2w1w2), denoted by Wv, is nontrivial and isomorphic to the image
of N((3/2, 1/2), π′v, w2w1w2).

If v 6∈ SD and χ1,v is trivial, then the image of

N((3/2, 1/2), π′v, w2w1w2)Ñ((1/2, 3/2), π′v, w1),

denoted by W ′
v, is nontrivial. Furthermore, in this case the image of N((1/2, 3/2), π′v, w2w1w2),

again denoted by Wv is nontrivial and contains W ′
v as a subrepresentation.

As before, let S1(µ) denote the set of places where a local component µv of a unitary character
µ of k×\A× is trivial. Let ηv be the sign of N((1/2, 3/2), π′v, w1) acting on Xv. For χ1 a nontrivial
quadratic character of k×\A× such that χ1,v is nontrivial for all v ∈ SD, let

C =
L(−2, χ1)L(−1, χ1)

L(1, χ1)L(0, χ1)ε(0, χ1)ε(−1, χ1)2ε(−2, χ1)

∏

v∈SD

L(−1, χ1,v)L(0, χ1,v)
L(1, χ1,v)L(2, χ1,v)

be the non–zero constant appearing in the parity conditions of the Theorem below.

Theorem 3.3.11. The subspace L2
C6

of the residual spectrum of H ′
2(A) decomposes into

L2
C6

=
(
⊕π′C(1)

6 (π′)
)
⊕

(
⊕π′C(2)

6 (π′)
)

.

The former sum is over all one–dimensional cuspidal automorphic representations π′ ∼= (χ1◦det′)⊗
(1 ◦det′) of M ′

0(A) such that χ1 is a nontrivial quadratic character and either χ1,v is nontrivial for
all v ∈ SD and the parity condition C ·∏v ηv 6= −1 holds, or there is a non–split place v ∈ SD where
χ1,v is trivial. The latter sum is over all one–dimensional cuspidal automorphic representations
π′ ∼= (χ1 ◦ det′) ⊗ (1 ◦ det′) of M ′

0(A) such that there is a split place v 6∈ SD where χ1,v is trivial
and if χ1 is a nontrivial quadratic character then the parity condition C ·∏v ηv = −1 holds.

The spaces C(1)
6 (π′) and C(2)

6 (π′) are the spaces of automorphic forms spanned by the residues

lim
s1→1/2

(s1 − 1/2)nRes2s2=3E(s, g; fs, π
′),
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where n is the order of the pole at s1 = 1/2.
In the notation of Corollary 3.3.10, the constant term map gives rise to an isomorphism between

C(1)
6 (π′) and ⊗vWv. Unless χ1 is trivial, the constant term map gives rise to an isomorphism

between C(2)
6 (π′) and

⊕w∈S1(χ1)\SD
[W ′

w ⊗ (⊗v 6=wWv)].

Finally, if χ1 is trivial the constant term map implies that C(2)
6 (π′) contains a space isomorphic to

⊕w 6∈SD
[W ′

w ⊗ (⊗v 6=wWv)].

Proof. The proof is quite similar to the proof of Theorem 3.3.6 and the corresponding Theorem
in Section 2.4 of [8]. The parity condition comes from the fact that there is a case in which the
pole occurs for the normalizing factors of operators attached to both w2w1w2 and w1w2w1w2. An
argument similar to the proof of Theorem 3.3.13 shows that the cancellation of the pole is precisely
the parity condition of the Theorem. ¤

For the description of the irreducible constituents of L2
C7

we need the following Lemma.

Lemma 3.3.12. Let π′v ∼= (1v ◦ det′v)⊗ (χ2,v ◦ det′v) be a representation of M ′
0(kv), where χ2,v is a

quadratic character of k×v . Then the images of the normalized intertwining operators

N((3/2, 1/2), π′v, w2w1w2) and N((3/2, 1/2), π′v, w1w2w1w2)

are isomorphic. At non–split places the image is irreducible and isomorphic to the Langlands
quotient of the induced representation

IndH′
2(kv)

GL′1(kv)×GL′1(kv)

(
(1v ◦ det′v)ν

3/2 ⊗ (χ2,v ◦ det′v)ν
1/2

)
.

At the split places where χ2,v = 1v is trivial it is irreducible and isomorphic to the Langlands
quotient of the induced representation

IndSp8(kv)
GL1(kv)×GL1(kv)×GL1(kv)×SL2(kv)

(| · |2 ⊗ | · |1 ⊗ | · |1 ⊗ τ1,v

)
,

where τ1,v
∼= IndSL2(kv)

GL1(kv)1v is irreducible and tempered. At the split places where χ2,v is nontrivial
it is the direct sum of two irreducible representations isomorphic to the Langlands quotients of the
induced representations

IndSp8(kv)
GL1(kv)×GL1(kv)×GL1(kv)×SL2(kv)

(| · |2 ⊗ | · |1 ⊗ χ2,v| · |1 ⊗ τi,v

)
,

for i = 1, 2, where τ1,v ⊕ τ2,v
∼= IndSL2(kv)

GL1(kv)χ2,v and τi,v are irreducible and tempered.

Proof. Another application of Lemma 3.1.4 similar to Lemma 3.3.7. Thus we omit the proof. ¤

By the Lemma the normalized intertwining operator

N((−1/2,−3/2), (χ2,v ◦ det′v)⊗ (1v ◦ det′v), w1)

restricted to the image of N((3/2, 1/2), π′v, w2w1w2) is an isomorphism of the two images described
in the Lemma. Since those images are at all places completely reducible, let Π′±v denote the ±1–
eigenspaces. It is possible that one of the spaces is trivial, and the unramified component is always
Π′+v .
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w Res2s2=1r(s, π′, w)
w2 1

w1w2
L(z−1/2,χ1χ2)L(z+1/2,χ1χ2)

L(z+3/2,χ1χ2)L(z+5/2,χ1χ2)ε(z−1/2,χ1χ2)ε(z+1/2,χ1χ2)2ε(z+3/2,χ1χ2)∏
v∈SD

L(z+1/2,χ1,vχ2,v)L(z+3/2,χ1,vχ2,v)

L(−z−1/2,χ−1
1,vχ2,v)L(1/2−z,χ−1

1,vχ2,v)

L(z−1/2,χ1χ2)L(z+1/2,χ1χ2)
L(z+3/2,χ1χ2)L(z+5/2,χ1χ2)ε(z−1/2,χ1χ2)ε(z+1/2,χ1χ2)2ε(z+3/2,χ1χ2)

w2w1w2
∏

v∈SD

L(z+1/2,χ1,vχ2,v)L(z+3/2,χ1,vχ2,v)

L(−z−1/2,χ−1
1,vχ2,v)L(1/2−z,χ−1

1,vχ2,v)

L(z−1/2,χ1)
L(z+3/2,χ1)ε(z+1/2,χ1)ε(z−1/2,χ1)

∏
v∈SD

L(z+1/2,χ1,v)

L(1/2−z,χ−1
1,v)

· L(2z,χ2
1)

L(2z+1,χ2
1)ε(2z,χ2

1)

L(z−1/2,χ1χ2)L(z+1/2,χ1χ2)
L(z+3/2,χ1χ2)L(z+5/2,χ1χ2)ε(z−1/2,χ1χ2)ε(z+1/2,χ1χ2)2ε(z+3/2,χ1χ2)∏

v∈SD

L(z+1/2,χ1,vχ2,v)L(z+3/2,χ1,vχ2,v)

L(−z−1/2,χ−1
1,vχ2,v)L(1/2−z,χ−1

1,vχ2,v)

w1w2w1w2
L(z−1/2,χ1)

L(z+3/2,χ1)ε(z+1/2,χ1)ε(z−1/2,χ1)

∏
v∈SD

L(z+1/2,χ1,v)

L(1/2−z,χ−1
1,v)

· L(2z,χ2
1)

L(2z+1,χ2
1)ε(2z,χ2

1)

L(z−3/2,χ1χ2)L(z−1/2,χ1χ2)
L(z+1/2,χ1χ2)L(z+3/2,χ1χ2)ε(z−3/2,χ1χ2)ε(z−1/2,χ1χ2)2ε(z+1/2,χ1χ2)∏

v∈SD

L(z−1/2,χ1,vχ2,v)L(z+1/2,χ1,vχ2,v)

L(−z+1/2,χ−1
1,vχ2,v)L(3/2−z,χ−1

1,vχ2,v)

Table 3.4. Residues along 2s2 = 1 of case C normalizing factors

Theorem 3.3.13. The subspace L2
C7

of the residual spectrum of H ′
2(A) decomposes into

L2
C7

= ⊕π′C7(π′),

where the sum is over all cuspidal automorphic representations of the form π′ ∼= (1⊗ det′)⊗ (χ2 ⊗
det′) of M ′

0(A) such that χ2 is a nontrivial quadratic character and χ2,v is nontrivial for all v ∈ SD.
C7(π′) is the space of automorphic forms spanned by the iterated residue at s = (3/2, 1/2) of the

Eisenstein series attached to π′. The constant term map gives rise to an isomorphism of C7(π′)
and the direct sum of the spaces of the form ⊗vΠ

ηv
v , where ηv ∈ {+,−}, ηv = + for almost all v,

and the parity condition
∏
v

ηv · L(0, χ2)L(1, χ2)
L(2, χ2)L(3, χ2)ε(0, χ2)ε(1, χ2)2ε(2, χ2)

∏

v∈SD

L(1, χ2,v)L(2, χ2,v)
L(−1, χ2,v)L(0, χ2,v)

6= −1

holds.

Proof. At C7 the iterated residue of the constant term (3.3) of the Eisenstein series attached to a
case C cuspidal automorphic representation π′ ∼= (χ1 ◦det′)⊗ (χ2 ◦det′) of M ′

0(A) is first calculated
along 2s2 = 1 as shown in Figure 3.3. By the analytic properties of the L–functions in Lemma
3.1.2, the pole of the normalizing factors occurs if and only if χ2 is a nontrivial quadratic character
such that χ2,v is nontrivial at all places v ∈ SD. Then, the terms corresponding to the Weyl group
elements w2, w1w2, w2w1w2 and w1w2w1w2 have poles and they are simple. The residues, up to a
nonzero constant are given in Table 3.4, where z = s1.

Point C7 corresponds to z = 3/2. There are two possibilities for obtaining the pole of the terms
in Table 3.4. First, the pole occurs if χ1χ2 is trivial, i.e. χ1 = χ2 is a nontrivial quadratic character
such that χ1,v = χ2,v is nontrivial at all v ∈ SD. Then, the terms corresponding to the Weyl group
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elements w1w2, w2w1w2 and w1w2w1w2 have poles at z = 3/2 and they are all simple. However,
since w1w2(3/2, 1/2) = (−1/2, 3/2) does not satisfy the square–integrability criterion of Lemma
3.1.1, the contribution of the iterated pole can be square–integrable only for automorphic forms f
such that

N((3/2, 1/2), π′, w1w2)f = 0.

But then, the remaining two residues also vanish on f by the decomposition property of the inter-
twining operators, and there is no contribution to L2

C7
in this case.

The other possibility for the pole of the terms in Table 3.4 at z = 3/2 is for χ1 trivial. Then
χ1χ2 = χ2. Hence, by the analytic properties of the L–functions of Lemma 3.1.2, the terms
corresponding to the Weyl group elements w2w1w2 and w1w2w1w2 have poles and they are simple.
Up to a nonzero constant, the sum of the residues acing on a decomposable vector gives[

Id + C ·N((−1/2,−3/2), w2w1w2(π′), w1)
]
N((3/2, 1/2), π′, w2w1w2),

where the constant C is given by
L(0, χ2)L(1, χ2)

L(2, χ2)L(3, χ2)ε(0, χ2)ε(1, χ2)2ε(2, χ2)

∏

v∈SD

L(1, χ2,v)L(2, χ2,v)
L(−1, χ2,v)L(0, χ2,v)

The parity condition is just the non–vanishing condition for the square–bracket acting on the
image of N((3/2, 1/2), π′, w2w1w2). The square–integrability criterion of Lemma 3.1.1 is satisfied
and the contribution of the iterated residue is isomorphic to the part of the image of the normalized
intertwining operator N((3/2, 1/2), π′, w2w1w2) satisfying the parity condition. ¤

Before decomposing L2
C8

consider the normalized intertwining operator

N(0, χ1,v ◦ det′ ⊗ χ′2,v ◦ det′, w1)

acting on the induced representation

IndGL′2(kv)

GL′1(kv)×GL′1(kv)

(
(χ1,v ◦ det′v)⊗ (χ2,v ◦ det′v)

)
.

The induced representation is irreducible by [34], [2], [33]. Hence, the normalized operator acts as
Id or −Id and we denote the sign by ηv. For the description of the irreducible components of L2

C8

we need the following Lemma.

Lemma 3.3.14. Let π′v ∼= (χ1,v ◦ det′v)⊗ (χ2,v ◦ det′v) be a representation of M ′
0(A), where χi,v are

quadratic characters of k×v . Then the images of the normalized intertwining operators

N((1/2, 1/2), π′v, w2w1w2) and N((1/2, 1/2), π′v, w1w2w1w2)

are isomorphic. At non–split places the image is irreducible as the Langlands quotient of the induced
representation

IndH′
2(kv)

GL′1(kv)×GL′1(kv)

(
(χ1,v ◦ det′v)ν

1/2 ⊗ (χ2,v ◦ det′v)ν
1/2

)
.

At split places, it is either irreducible or the direct sum of two or four irreducible constituents, where
the irreducible constituents are isomorphic to the Langlands quotients of the induced representations
of the form

IndSp8(kv)
GL1(kv)×GL1(kv)×Sp4(kv)

(
χ2,v| · |1 ⊗ χ1,v| · |1 ⊗ σv,

)

where σv is one of the irreducible tempered constituents of the induced representation

IndSp4(kv)
GL1(kv)×GL1(kv) (χ1,v ⊗ χ2,v) ,
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whose decomposition is given in [30] at non–archimedean, and [27] and [28] at archimedean places.

Proof. Again Lemma 3.1.4 applies similarly as in 3.3.7. Hence, we omit the proof. ¤

Theorem 3.3.15. The subspace L2
C8

of the residual spectrum of H ′
2(A) decomposes into

L2
C8

=
(
⊕π′C(1)

8 (π′)
)
⊕

(
⊕π′C(2)

8 (π′)
)

.

The former sum is over all one–dimensional cuspidal automorphic representations π′ ∼= (χ◦det′)⊗
(χ ◦ det′) of M ′

0(A) such that χ is a nontrivial quadratic character, χv is nontrivial for all v ∈ SD,
the cardinality |SD| = 2 and the parity condition

∏
v ηv = −1 holds. The latter sum is over all

one–dimensional cuspidal automorphic representations π′ ∼= (χ1 ◦ det′)⊗ (χ2 ◦ det′) of M ′
0(A) such

that χ1 6= χ2 are both nontrivial quadratic characters, χ1,v and χ2,v are nontrivial for all v ∈ SD,
χ1,v 6= χ2,v for all v ∈ SD and the parity condition

∏
v ηv = 1 holds.

Both C(1)
8 (π′) and C(2)

8 (π′) are the spaces of automorphic forms spanned by the iterated residues
at s = (1/2, 1/2) of the Eisenstein series attached to π′. The constant term map gives rise to
isomorphisms of both spaces and the sum of the irreducible representations of the form ⊗vΠ′v,
where Π′v is one of the irreducible constituents of the image of the normalized intertwining operator
N((1/2, 1/2), π′, w2w1w2) described in the previous Lemma 3.3.14 and it is the unramified one at
almost all places.

Proof. The first step in calculating the iterated pole at C8(1/2, 1/2) is along 2s2 = 1 as in the proof
of the previous Theorem. Thus, the residues are given in Table 3.4 and the pole appears if and
only if χ2 is a nontrivial quadratic character with χ2,v nontrivial at all places v ∈ SD. Point C8

corresponds to z = 1/2. By the analytic properties of the L–functions of Lemma 3.1.2, the pole at
z = 1/2 of the terms in Table 3.4 does not occur unless χ1 is a quadratic character. Indeed, if χ1

were not quadratic, then both χ1 and χ1χ2 would be nontrivial. Therefore, let χ1 be a quadratic
character. Now, we distinguish two cases.

First, assume χ1 = χ2, i.e. χ1χ2 is trivial. Due to the local L–functions in the denominator, the
term corresponding to w1w2 has a zero of order |SD| − 2 > 0. Recall that |SD| is always even. The
terms corresponding to w2w1w2 and w1w2w1w2 have a simple pole only if |SD| = 2. Otherwise, the
order of the pole in the denominator is |SD| > 4 and cancels the pole in the numerator which is of
order 3. Moreover, up to a constant which is non–zero due to the sum of the residues acting on a
decomposable vector gives

N((1/2, 1/2), π′, w2w1w2)
[
Id−N((1/2, 1/2), π′, w1)

]
.

The non–vanishing of the square bracket implies the parity condition. The square–integrability
criterion of Lemma 3.1.1 is satisfied and the contribution to the residual spectrum is isomorphic to
the image of the normalized intertwining operator

N((1/2, 1/2), π′, w2w1w2)

which is described in the previous Lemma 3.3.14.
Now, assume χ1 6= χ2, i.e. χ1χ2 is nontrivial. If χ1 is trivial, then the double pole in the

numerator is cancelled by the pole of the local L–functions in the denominator. If χ1 is nontrivial,
then the numerator has only a simple pole, but it is not cancelled if χ1,v is nontrivial and χ1,v 6= χ2,v

for all v ∈ SD. Therefore, the pole occurs in this case if and only if χ1 is a nontrivial quadratic
character, χ1,v is nontrivial and χ1,v 6= χ2,v for all v ∈ SD. Then, the terms corresponding to the
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Weyl group elements w2w1w2 and w1w2w1w2 have simple poles. Up to a nonzero constant the sum
of the residues acting on a decomposable vector is of the form

N((1/2, 1/2), π′, w2w1w2)
[
Id + N((1/2, 1/2), π′, w1w2w1w2)

]
.

The non–vanishing of the square bracket is the parity condition in this case. The square–integrabi-
lity criterion of 3.1.1 is satisfied and the contribution of this case to the residual spectrum is
isomorphic to the image of the normalized intertwining operator

N((1/2, 1/2), π′, w2w1w2).

which is described in the previous Lemma 3.3.14. ¤
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[35] M. Tadić, Representations of p–Adic Symplectic Groups, Compositio Math. 90 (1994), 123–181
[36] J. Tate, Fourier Analysis in Number Fields and Hecke’s Zeta–Functions, Harvard Dissertation, 1950, in Algebraic

Number Theory, Academic Press, Boston, 1967
[37] A.V. Zelevinsky, Induced Representations of Reductive p–adic Groups II. On Irreducible Representations of
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