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Introduction

This paper is concerned with the residual spectrum of the hermitian quaternionic classical groups
G′

n and H ′
n defined as algebraic groups for a quaternion algebra over an algebraic number field in

Section 1. Groups G′
n and H ′

n are not quasi–split. They are inner forms of the split groups SO4n and
Sp4n. Hence, the parts of the residual spectrum of G′

n and H ′
n obtained in this paper are compared

to the corresponding parts for the split groups SO4n and Sp4n. The problem of comparing the
residual spectra of split groups and their inner forms is still open even for the general linear group
as mentioned in [3] and Section 25 of [2].

For quasi–split groups there are many papers regarding the residual spectrum. Among them are
the papers by Mœglin and Walspurger [24], Mœglin [21], [22], [23], Kim [14], [15], [18], Žampera
[40], Kon–No [19]. For quasi–split groups in those papers the Langlands–Shahidi method described
in [31] and [32] gives the normalization of the intertwining operators by L–functions required in the
application of the Langlands spectral theory explained in [20] and [25].

Although, in principle, the results of this paper could be obtained using the Arthur trace formula
explained in [2], the strategy of this paper is a more direct approach of the Langlands spectral theory
and the Arthur trace formula is not used at all. However, the groups G′

n and H ′
n considered in this

paper are not quasi–split. Hence, they are out of the reach of the Langlands–Shahidi method and
we had to develop a new technique in order to define the normalization of the intertwining operators
and prove the required holomorphy and non–vanishing of the normalized intertwining operators.
It is based on the lift of representations defined using the Jacquet–Langlands correspondence of
[7] keeping the Plancherel measure invariant. This technique, as well as the first calculation of
the residual spectrum for a non–quasi–split group, was used in the author’s paper [8] where the
principal series part of the residual spectrum for the group G′

2 of the semi–simple rank 2 was
constructed. The invariance of the Plancherel measure was used for the first time by Muić and
Savin in [30] to obtain the complementary series coming from a supercuspidal representation of
the Levi factor of the Siegel parabolic subgroup for the local p–adic G′

n and H ′
n. Their global idea

for transferring the Plancherel measures between the split groups and their inner forms does not
work for inner forms of the split groups SO4n+2 and Sp4n+2 and that is the reason why this paper
restricts its attention only to inner forms of SO4n and Sp4n.

The main results on the residual spectrum of G′
n and H ′

n are obtained in Theorem 2.2 and its
Corollary 2.3 of this paper. They show certain ambiguities of quaternionic groups such as the
condition on the non–triviality of the local components at all non–split places in case (ii) for the
group H ′

n. The reason for that lies in a different form of the local normalization factors at split and
non–quasi–split places. The comparison of the parts of the residual spectrum obtained in Theorem

1
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2.2 and the corresponding parts of the residual spectrum for split groups SO4n and Sp4n is given
in Theorem 2.4 and Corollary 2.5.

A simple consequence of Theorem 2.2 is Corollary 2.7 showing the unitarizability of the duals
under the Aubert–Schneider–Stuhler involution defined in [4] and [34] of the principal series Stein-
berg representations of hermitian quaternionic classical groups H ′

n and G′
n defined for a quaternion

algebra over a local field of characteristic zero. Namely, these duals are the local components of
automorphic representations belonging to the residual spectrum obtained in Theorem 2.2. This
idea of solving the unitarizability question for local representations using the fact that they are the
local components of an automorphic representation belonging to the residual spectrum was used
for the first time by Speh in [33] for archimedean fields and by Tadić in [35] for non–archimedean
fields.

The paper is divided into two Sections. In Section 1 the normalization factors of the intertwining
operators are defined and the required holomorphy and non–vanishing of the normalized intertwin-
ing operators is proved. This is done first for the local intertwining operators at a split place for
generic and non–generic representations in Subsections 1.1 and 1.2 and at a non–split place in
Subsection 1.3. Finally, the global normalization factors are obtained as the products of the local
ones in Subsection 1.4.

Section 2 is devoted to the construction of the certain parts of the residual spectrum of the groups
G′

n and H ′
n coming from the minimal parabolic subgroup. The main results are Theorem 2.2 and its

Corollary 2.3, as well as the comparison with the parts of the residual spectrum for split SO4n and
Sp4n in Theorem 2.4 and Corollary 2.5. The unitarizability of the Aubert–Schneider–Stuhler duals
of the principal series Steinberg representations of the local G′

n and H ′
n is obtained in Corollary

2.7.
During the calculation of the poles of the Eisenstein series we always assume that they are real.

There is no loss in generality because that can be achieved just by twisting a cuspidal automorphic
representation of a Levi factor by the appropriate imaginary power of the absolute value of the
reduced norm of the determinant. Hence, this assumption is just a convenient choice of coordinates.

We should remark that in this paper the usual parabolic induction from a standard parabolic
subgroup P of G with the Levi decomposition P = MN will be denoted by IndG

M instead of IndG
P .

This will not cause any confusion since all the parabolic subgroups appearing in the paper are
standard.

This paper is an outgrowth of author’s Ph.D. thesis. I would like to thank my advisor G. Muić
for many useful discussions and a constant help during the preparation of this paper. I would like
to thank M. Tadić for supporting my research and for his interest in my work. The conversations
with H. Kim and E. Lapid were useful in clarifying several issues in automorphic forms and with I.
Badulescu in the representation theory of GLn over division algebras. Also I would like to thank my
friend M. Hanzer for many useful conversations on the local representation theory of the hermitian
quaternionic groups. And finally, I would like to thank my wife Tiki for her infinite love and
support.

1. Normalization of intertwining operators

Throughout this paper let k be an algebraic number field, kv its completion at a place v and A
its ring of adeles. Let D be a quaternion algebra central over k and τ the usual involution fixing
the center of D. Then D splits at all but finitely many places v of k, i.e. at those places the
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completion D⊗k kv is isomorphic to the additive group M(2, kv) of 2× 2 matrices with coefficients
in kv. At finitely many places v of k where D is non–split the completion D ⊗k kv is isomorphic
to the quaternion algebra Dv central over kv. The finite set of places of k where D is non–split is
denoted by S. The cardinality of S, denoted by |S|, is even for every D.

The group of invertible elements of D regarded as an algebraic group over k is denoted GL′1.
At a split place v 6∈ S it is isomorphic to GL′1(kv) ∼= GL2(kv), where GL2 is the split group of
invertible 2× 2 matrices. At a non–split place v ∈ S it is isomorphic to GL′1(kv) ∼= D×

v .
Let det′ denote the reduced norm of the simple algebra D ⊗k A and det′v the corresponding

reduced norm at a place v. If v 6∈ S is split, then det′v = detv is just the determinant for 2 × 2
matrices, while if v ∈ S is non–split, then det′v is the reduced norm of the quaternion algebra Dv.
The absolute value of the reduced norm det′ and det′v is denoted by ν.

Let V be a 2n–dimensional right vector space over D. We fix the basis {e1, . . . , e2n} of V . Then
(ei, ej) = δi,2n−j+1 for 1 6 i 6 j 6 n defines a hermitian form on V by

(v, v′) = ετ((v′, v)) and (vx, v′x′) = τ(x)(v, v′)x′

for all v, v′ ∈ V and x, x′ ∈ D, where ε ∈ {±1}. The group of isometries of the form (·, ·) regarded
as a reductive algebraic group defined over k will be denoted by G′

n if ε = −1 and by H ′
n if ε = 1.

Then, G′
n is an inner form of the split group SO4n, while H ′

n is an inner form of the split group
Sp4n. Hence G′

n(kv) ∼= SO4n(kv) and H ′
n(kv) ∼= Sp4n(kv) for every place v 6∈ S.

The maximal split torus over k for both, G′
n and H ′

n, is isomorphic to GL1 × . . .×GL1 with n
copies of GL1. The minimal parabolic subgroup P ′

0 defined over k of both, G′
n and H ′

n, has the
Levi factor M ′

0
∼= GL′1 × . . .×GL′1 with n copies of GL′1.

The Weyl groups W ′ for G′
n and H ′

n with respect to the maximal split torus are the same. For
the corresponding split case M0

∼= GL2×. . .×GL2 in SO4n or Sp4n let W (M0) denote the subgroup
of the Weyl group W consisting of elements fixing the Levi factor M0. Then W ′ ∼= W (M0) and we
will use just the symbol W ′ in the sequel.

Let a∗C ∼= X(M ′
0) ⊗Z C denote the complexification of the Z–module X(M ′

0) of k–rational char-
acters of M ′

0. We fix the basis of a∗C consisting of the reduced norms for every copy of GL′1. Hence,
a∗C is an n–dimensional complex vector space and in the fixed basis we denote its elements as
s = (s1, . . . , sn) ∈ Cn. In the split case of M0 in SO4n and Sp4n the space a∗C is the same.

Before proceeding to the normalization we define the local and global lift of representations from
GL′1 to the split GL2. It is given by the Jacquet–Langlands correspondence explained in Section 8
of [7]. More precisely, let σ′ ∼= ⊗vσ

′
v be a cuspidal automorphic representation of GL′1(A) which is

not one–dimensional. Then, at non–split places v ∈ S the local lift σv of σ′v is the square–integrable
representation of GL2(kv) defined by the character relation as in Theorem (8.1) of [7]. At split
places v 6∈ S we have GL′1(kv) ∼= GL2(kv) and the local lift is just σv

∼= σ′v. The global lift of σ′ is
defined using the local lifts as σ ∼= ⊗vσv. By Theorem (8.3) of [7] the global lift σ is isomorphic to
a cuspidal automorphic representation of GL2(A). Hence, its local components σv are generic.

Let χ ◦ det′ = ⊗v

(
χv ◦ det′v

)
be an one–dimensional cuspidal automorphic representation of

GL′1(A). Here χv are unitary characters of k×v and χ is a unitary character of A×/k×. Then
the global lift of χ ◦ det′ is just the one–dimensional representation χ ◦ det = ⊗v (χv ◦ detv) of
GL2(A). It belongs to the residual spectrum of GL2(A). At a non–split place v ∈ S the local lift of
χv ◦ det′v is defined by the Jacquet–Langlands correspondence as in Theorem (8.1) of [7] to be the
Steinberg representation of GL2(kv) twisted by χv, i.e. the unique irreducible subrepresentation of
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the induced representation

IndGL2(kv)
GL1(kv)×GL1(kv)

(
χv| · |1/2 ⊗ χv| · |−1/2

)
,

where | · | is the absolute value on GL1(kv) ∼= k×v . We denote this representation by Stχv . Observe
that by our definition in this case the global and local lifts are not consistent. The reason is that
the global lift is supposed to be in the discrete spectrum of GL2(A), while the local lift should
preserve the Plancherel measure.

This Section is devoted to the definition of the scalar normalization factors for the standard
intertwining operators appearing in the constant term of the Eisenstein series attached to a cuspidal
automorphic representation of the Levi factor M ′

0(A) of the minimal standard parabolic subgroup P ′
0

of G′
n and H ′

n. The main requirement of the normalized intertwining operators is to be holomorphic
and non–vanishing ’deep enough’ in the positive Weyl chamber so that the poles of the standard
intertwining operators are captured in the normalizing factors. The expression ’deep enough’ is
made precise in the statements of the results below.

The normalization is obtained separately for the local normalized intertwining operators at every
place v. We distinguish three cases: a split place where the representation is generic, a split place
where the representation is not generic and a non–split place. Every case is treated in a separate
Subsection below.

1.1. Generic split case. Let v be a place of k where D splits, i.e. v 6∈ S, and let G be a classical
split group defined over kv. Fix the set of positive and simple roots of G and a nontrivial continuous
additive character ψv of kv. For a ψv–generic representation of the Levi factor M(kv) of a parabolic
subgroup P of G the normalization factor of the standard intertwining operators is obtained using
the Langlands–Shahidi method in [32]. We recall the definition here for the convenience of the
reader. For more detailed exposition see the original paper [32] or consult Section 1.1 of [8].

First, let P be the maximal proper parabolic subgroup corresponding to the subset of the set
of simple roots obtained by removing the simple root α. For a ψv–generic representation πv of its
Levi factor M(kv) and the unique nontrivial element w of the Weyl group such that its action on
the set of simple roots keeps simple all the roots in the subset defining P , the normalization factor
of the standard intertwining operator

A(sα̃, πv, w)
acting on the induced representation

I(sα̃, πv) ∼= IndG(kv)
M(kv) (πv ⊗ |sα̃(·)|) ,

is defined to be

(1) r(sα̃, πv, w) =
∏̀

i=1

L(is, πv, ri)
L(1 + is, πv, ri)ε(is, πv, ri, ψv)

for s ∈ C. Here,
α̃ = 〈ρP , α∨〉−1ρP ,

where ρP equals the half of the sum of the positive roots of G not being the roots of M and
we write sα̃ = α̃ ⊗ s ∈ a∗M,C for s ∈ C. The L–functions and ε–factors are the ones defined by
Shahidi in Section 7 of [32] and ri are the irreducible components, indexed as in [32], of the adjoint
representation r of the Langlands dual group of the Levi factor M on the Langlands dual Lie
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algebra of the Lie algebra of the unipotent radical of P . The normalized intertwining operator
N(sα̃, πv, w) is given by

A(sα̃, πv, w) = r(sα̃, πv, w)N(sα̃, πv, w).

Once the normalization is defined for the maximal proper parabolic subgroup case, the normal-
ization factor

r(s, πv, w)

for a ψv–generic representation πv of a general proper parabolic subgroup Pθ with the Levi factor
Mθ and s ∈ a∗M,C is defined as the product of the normalizing factors for the maximal proper
parabolic cases appearing in the decomposition, according to a reduced decomposition of w into
simple reflections, of the standard intertwining operator A(s, πv, w) given in Section 2.1 of [31].
Although a reduced decomposition of w into simple reflections is not unique, the normalizing
factor is independent of the choice of such decomposition. The normalized intertwining operator
N(s, πv, w) is again defined by

A(s, πv, w) = r(s, πv, w)N(s, πv, w).

We recall the main result of [39] (see also Proposition 1.3 of [8]) showing the holomorphy and non–
vanishing of the normalized intertwining operator N(s, πv, w) in a certain open set slightly bigger
than the closure of the positive Weyl chamber for a tempered ψv–generic representation πv.

Proposition 1.1. Let Pθ be the proper parabolic subgroup of G corresponding to a subset θ of the
set of simple roots and w an element of the Weyl group W such that w(θ) is also a subset of the
set of simple roots. Let πv be an irreducible ψv–generic tempered representation of the Levi factor
Mθ(kv). Then the normalized intertwining operator

N(s, πv, w)

is holomorphic and non–vanishing for s ∈ a∗M,C such that

〈Re(s), α∨〉 > −1/`α for all α ∈ Φ+
w,θ,

where `α is the length of the corresponding adjoint representation rα in the decomposition of the
standard intertwining operator given in Section 2.1 of [31] and Φ+

θ,w is the set of all the positive
roots α such that wα is a negative root.

Finally, we have to a consider non–tempered unitary ψv–generic representation. This will be
done just for representations πv

∼= σ1,v ⊗ . . . ⊗ σn,v of M0(kv) ∼= GL2(kv) × . . . × GL2(kv) in the
split SO4n(kv) or Sp4n(kv).

Proposition 1.2. Let P0 be the standard parabolic subgroup of the split group SO4n or Sp4n with
the Levi factor M0

∼= GL2 × . . . × GL2. Let πv
∼= σ1,v ⊗ . . . ⊗ σn,v be an irreducible unitary

non–tempered generic representation of M0(kv). Then, for every w ∈ W (M0), the normalized
intertwining operator

N(s, πv, w)

is holomorphic and non–vanishing in the closure of the positive Weyl chamber in a∗C, i.e. for all
s = (s1, . . . , sn) ∈ a∗C such that

Re(s1) > . . . > Re(sn) > 0.
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Proof. If a unitary generic representation σi,v of GL2(kv) is not tempered, then it is a complemen-
tary series, i.e. the fully induced representation of the form

σi,v
∼= IndGL2(kv)

GL1(kv)×GL1(kv)(µi,v| · |ri ⊗ µi,v| · |−ri),

where µi,v is a unitary character of GL1(kv) and 0 < ri < 1/2. Since the intertwining operators
are compatible with the induction in stages the problem of the holomorphy and non–vanishing is
reduced to the tempered case.

More precisely, there is a tempered representation τv of one of the Levi factors L(kv) con-
tained in M0(kv) and an element s′ of the corresponding space a∗L,C such that I(s, πv) ∼= I(s′, τv).
Therefore, the holomorphy and non–vanishing of N(s, πv, w) is equivalent to the holomorphy
and non–vanishing of N(s′, τv, w). If s = (s1, . . . , sn), then s′ is obtained by replacing si with
(si + ri, si − ri) for all i such that σi,v is a complementary series. Now, it is enough to check
that if Re(s1) > . . . Re(sn) > 0, then the inequalities of Proposition 1.1 are satisfied. That is a
straightforward check using the bound 0 < ri < 1/2. ¤

At the end of this Subsection we collect the normalizing factors for the generic split maximal
proper parabolic cases needed in the sequel. For the case GL2×GL2 ⊂ GL4 the normalizing factor
of the standard intertwining operator A((s1, s2), σ1,v⊗σ2,v, w) acting on the induced representation

I((s1, s2), σ1,v ⊗ σ2,v) = IndGL4(kv)
GL2(kv)×GL2(kv) (σ1,vν

s1 ⊗ σ2,vν
s2) ∼= I ((s1 − s2)α̃, σ1,v ⊗ σ2,v)

equals

(2) r((s1, s2), σ1,v ⊗ σ2,v, w) =
L(s1 − s2, σ1,v × σ̃2,v)

L(1 + s1 − s2, σ1,v × σ̃2,v)ε(s1 − s2, σ1,v × σ̃2,v, ψv)
,

where the L–functions and ε–factors are the Rankin–Selberg ones of pairs and ·̃ denotes the con-
tragredient representation. For the case GL2 ⊂ SO4 the normalizing factor of the standard inter-
twining operator A(s, σv, w) acting on the induced representation

I(s, σv) = IndSO4(kv)
GL2(kv) (σvν

s) = I(2sα̃, σv)

equals

(3) r(s, σv, w) =
L(2s, ωσv)

L(1 + 2s, ωσv)ε(2s, ωσv , ψv)
,

where the L–functions and ε–factors are the Hecke ones for the central character ωσv of σv. For the
case GL2 ⊂ Sp4 the normalizing factor of the standard intertwining operator A(s, σv, w) acting on
the induced representation

I(s, σv) = IndSp4(kv)
GL2(kv) (σvν

s) = I(sα̃, σv)

equals

(4) r(s, σv, w) =
L(s, σv)

L(1 + s, σv)ε(s, σv, ψv)
· L(2s, ωσv)
L(1 + 2s, ωσv)ε(2s, ωσv , ψv)

,

where the L–functions and ε–factors are the principal Jacquet ones for σv and the Hecke ones for
the central character ωσv of σv.
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1.2. Non–generic split case. In this Subsection let v be a place of k where D splits. We define
the normalization factor for the standard intertwining operators attached to an one–dimensional
unitary representation

πv
∼= (χ1,v ◦ detv)⊗ . . .⊗ (χn,v ◦ detv)

of the Levi factor M0(kv) ∼= GL2(kv)× . . .×GL2(kv) of the split group SO4n(kv) or Sp4n(kv). The
strategy follows the Mœglin and Waldspurger proof of Lemma I.8 in [24] rather closely. See also
Section 1.2 of [8].

Representation πv embeds into the induced representation

IM
T (s′, τv) = IndM(kv)

T (kv)

(
χ1,v| · |−1/2 ⊗ χ1,v| · |1/2 ⊗ . . .⊗ χn,v| · |−1/2 ⊗ χn,v| · |1/2

)

as the unique irreducible subrepresentation, where T is the maximal split torus in SO4n or Sp4n,

s′ = (−1/2, 1/2, . . . ,−1/2, 1/2) ∈ a∗T,C and τv = χ1,v ⊗ χ1,v ⊗ . . .⊗ χn,v ⊗ χn,v.

Hence, for every element w ∈ W (M0) of the Weyl group the standard intertwining operator
A(s, πv, w), where s = (s1, . . . , sn) ∈ a∗C, fits into the commutative diagram
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I(s, πv) ↪→ I(s + s′, τv)

A(s, πv, w)
y

yA(s + s′, τv)

I(w(s), w(πv)) ↪→ I(w(s + s′), w(τv)).
Here s is embedded into a∗T,C. In other words, A(s, πv, w) is the restriction of A(s+s′, τv) to I(s, πv).
Hence, the normalizing factor for A(s, πv, w) is defined to be

(5) r(s, πv, w) = r(s + s′, τv, w)

and the normalized operator N(s, πv, w) is actually the restriction of N(s + s′, τv, w) to I(s, πv).

Proposition 1.3. For every w ∈ W (M0), the normalized intertwining operator

N ((s1, . . . , sn), (χ1,v ◦ detv)⊗ . . .⊗ (χn,v ◦ detv), w)

defined above is holomorphic and non–vanishing in the positive open Weyl chamber

Re(s1) > . . . > Re(sn) > 0.

Proof. Let w′ be the element of the Weyl group corresponding to the permutation

w′ = (1, 2)(3, 4) . . . (2n− 1, 2n),

where (i1, . . . , il) denotes the cycle mapping i1 → i2 → . . . → il → i1. The Weyl group element cor-
responding to a permutation p acts on a∗T,C as (s1, . . . , s2n) → (sp−1(1), . . . , sp−1(2n)) and analogously
on representations.

By the discussion above, πv is the unique irreducible subrepresentation of IM
T (s′, τv). Hence, it

is the image of the M(kv) normalized intertwining operator N(w′−1(s′), w′−1(τv), w′). Observe that
w′(s) = s. Then, N(s, πv, w) fits into the following commutative diagram

I(s, πv)
N(s+w′−1(s′),w′−1(τv),w′)←−−−−−−−−−−−−−−−−−−−−−−−−− I(s + w′−1(s′), w′−1(τv))

N(s,πv,w)
y

yN(s+w′−1(s′),w′−1(τv),ww′)

I(w(s), w(πv)) ↪→ I(w(s + s′), w(τv)),
where the upper horizontal arrow is surjective. Since for s in the positive open Weyl chamber

s + w′−1(s′) = (s1 + 1/2, s1 − 1/2, . . . , sn + 1/2, sn − 1/2) ∈ a∗T,C
satisfies the inequalities of Proposition 1.1 for the Weyl group element ww′, the right vertical
arrow is holomorphic and non–vanishing. Therefore, the commutativity of the diagram implies
that N(s, πv, w) is also holomorphic and non–vanishing for such s. ¤

Finally, we collect the normalizing factors in this case for the maximal proper parabolic subgroup
cases. The general proper parabolic subgroup normalizing factors are again just the product of
those. For the case GL2×GL2 ⊂ GL4 the normalizing factor of the standard intertwining operator
A ((s1, s2), (χ1,v ◦ detv)⊗ (χ2,v ◦ detv), w) acting on the induced representation

I((s1, s2), (χ1,v ◦ detv)⊗ (χ2,v ◦ detv)) = IndGL4(kv)
GL2(kv)×GL2(kv) ((χ1,v ◦ detv)νs1 ⊗ (χ2,v ◦ detv)νs2)

∼= I ((s1 − s2)α̃, (χ1,v ◦ detv)⊗ (χ2,v ◦ detv))
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equals

(6) r((s1, s2), (χ1,v ◦ detv)⊗ (χ2,v ◦ detv), w) = r1(s1 − s2, χ1,vχ
−1
2,v),

where, for s ∈ C and a unitary character χv of k×v ,

r1(s, χv) =
L(s, χv)L(s− 1, χv)

L(s + 2, χv)L(s + 1, χv)ε(s + 1, χv, ψv)ε(s, χv, ψv)2ε(s− 1, χv, ψv)
.

The L–functions and ε–factors are the Hecke ones for a character. For the case GL2 ⊂ SO4 the
normalizing factor of the standard intertwining operator A(s, χv ◦ detv, w) acting on the induced
representation

I(s, χv ◦ detv) = IndSO4(kv)
GL2(kv) ((χv ◦ detv)νs) = I(2sα̃, χv ◦ detv)

equals

(7) r(s, χv ◦ detv, w) =
L(2s, χ2

v)
L(2s + 1, χ2

v)ε(2s, χ2
v, ψv)

,

where the L–functions and ε–factors are the Hecke ones for the central character χ2
v of χv ◦detv. For

the case GL2 ⊂ Sp4 the normalizing factor of the standard intertwining operator A(s, χv ◦ detv, w)
acting on the induced representation

I(s, σv) = IndSp4(kv)
GL2(kv) ((χv ◦ detv)νs) = I(sα̃, χv ◦ detv)

equals

(8) r(s, χv ◦ detv, w) =

=
L(s + 1/2, χv)

L(s + 3/2, χv)ε(s + 1/2, χv, ψv)
· L(s− 1/2, χv)
L(s + 1/2, χv)ε(s− 1/2, χv, ψv)

· L(2s, χ2
v)

L(1 + 2s, χ2
v)ε(2s, χ2

v, ψv)
,

where the L–functions and ε–factors are the Hecke ones for χv and for the central character χ2
v of

χv ◦ detv.

1.3. Non–split case. In this Subsection let v be a place of k where D does not split. We define
the normalization factors for the standard intertwining operators attached to irreducible a unitary
representation

π′v ∼= σ′1,v ⊗ . . .⊗ σ′n,v

of the Levi factor M ′
0(kv) ∼= GL′1(kv)× . . .×GL′1(kv) of the group G′

n(kv) or H ′
n(kv). Since GL′1(kv)

has no proper parabolic subgroups, π′v and all σ′i,v are supercuspidal.
For w ∈ W ′ and s ∈ a∗C, the standard intertwining operator A(s, π′v, w) is defined as the analytic

continuation of the usual integral (see for example [30] or Section 1.3 of [8]). Here we have to
stress that the Haar measures used in the definition of the standard intertwining operators for the
split and non–split case are chosen compatibly as explained in Section 2 of [30]. That enables the
transfer of the Plancherel measure between the split case and its non–split inner form as in [30]
which is crucial in the proof of the holomorphy and non–vanishing of the normalized intertwining
operators defined below.

In the definition of the normalizing factor for A(s, π′v, w) we use the local lift of representa-
tions from GL′1(kv) to GL2(kv) defined using the local Jacquet–Langlands correspondence at the
beginning of this Section. If

πv
∼= σ1,v ⊗ . . .⊗ σn,v
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denotes the local lift of π′v from M ′
0(kv) to M0(kv), then the normalizing factor is defined to be

(9) r(s, π′v, w) = r(s, πv, w)

and the normalized intertwining operator N(s, π′v, w) by

A(s, π′v, w) = r(s, π′v, w)N(s, π′v, w).

Observe that πv is square–integrable as the local lift of a supercuspidal representation.

Proposition 1.4. Let π′v ∼= σ′1,v ⊗ . . . ⊗ σ′n,v be an irreducible unitary representation of the Levi
factor M ′

0(kv) ∼= GL′1(kv) × . . . × GL′1(kv) of G′
n(kv) or H ′

n(kv) and s = (s1, . . . , sn) ∈ a∗C. Then,
for every w ∈ W ′, the normalized intertwining operator

N(s, π′v, w)

is holomorphic and non–vanishing in the closure of the positive Weyl chamber

Re(s1) > . . . > Re(sn) > 0.

Proof. The proof is essentially the same as the proof of Proposition 1.11 in [8]. Decomposition of
the standard intertwining operator reduces the proof to the maximal proper parabolic cases treated
in Proposition 1.10 of [8] except the new case GL′1 ⊂ H ′

1. But that case is settled in the same way
since the result on the Plancherel measure from [30] holds. ¤

Again, we collect here the normalizing factors for the maximal proper parabolic cases. But in
the non–split case the normalizing factors are given using the normalizing factors of the split case.
Hence, the maximal parabolic cases are given by equations (2) for GL′1 × GL′1 ⊂ GL′2, (3) for
GL′1 ⊂ G′

1 and (4) for GL′1 ⊂ H ′
1. Nevertheless, we rewrite these equations in more appropriate

manner just for the one–dimensional unitary representations of GL′1(kv).
As already mentioned, by Theorem (8.1) of [7], the local lift of an one–dimensional unitary repre-

sentation χv◦det′v of GL′1(kv), where χv is a unitary character of k×v , is the Steinberg representation
Stχv . Hence, in the equations for the normalizing factor the Rankin–Selberg of pairs and principal
Jacquet L–functions and ε–factors for the Steinberg representations appear, as well as the Hecke
L–function and ε–factor of the central character of Stχv . By Theorem (3.1), Sections 8 and 9 of
[13] and Section (3.1) of [11] those L–functions and ε–factors can be written as

L(s, Stχ1,v × Stχ−1
2,v

) = L(s + 1, χ1,vχ
−1
2,v)L(s, χ1,vχ

−1
2,v),

ε(s, Stχ1,v × Stχ−1
2,v

, ψv) = ε(s + 1, χ1,vχ
−1
2,v, ψv)ε(s, χ1,vχ

−1
2,v, ψv)2ε(s− 1, χ1,vχ

−1
2,v, ψv) ·

·L(1− s, χ−1
1,vχ2,v)L(−s, χ−1

1,vχ2,v)

L(s− 1, χ1,vχ
−1
2,v)L(s, χ1,vχ

−1
2,v)

,

L(s, Stχv) = L(s + 1/2, χv),

ε(s, Stχv , ψv) = ε(s + 1/2, χv, ψv)ε(s− 1/2, χv, ψv)
L(1/2− s, χ−1

v )
L(s− 1/2, χv)

,

L(s, ωStχv
) = L(s, χ2

v),

ε(s, ωStχv
, ψv) = ε(s, χ2

v, ψv).
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Therefore, for the case GL′1 × GL′1 ⊂ GL′2 the normalizing factor of the standard intertwining
operator A((s1, s2), (χ1,v ◦ det′v)⊗ (χ2,v ◦ det′v), w) acting on the induced representation

I((s1, s2), (χ1,v ◦ det′v)⊗ (χ2,v ◦ det′v)) = IndGL′2(kv)

GL′1(kv)×GL′1(kv)

(
(χ1,v ◦ det′v)ν

s1 ⊗ (χ2,v ◦ det′v)ν
s2

)

equals

(10) r((s1, s2), (χ1,v ◦ det′v)⊗ (χ2,v ◦ det′v), w) = r2(s1 − s2, χ1,vχ
−1
2,v),

where, for s ∈ C and a unitary character χv of k×v ,

r2(s, χv) =

=
L(s + 1, χv)L(s, χv)

L(s + 2, χv)L(s + 1, χv)ε(s + 1, χv, ψv)ε(s, χv, ψv)2ε(s− 1, χv, ψv)
L(s, χv)L(s− 1, χv)

L(−s, χ−1
v )L(1− s, χ−1

v )
.

For the case GL′1 ⊂ G′
1 the normalizing factor of the standard intertwining operator A(s, χv◦det′v, w)

acting on the induced representation

I(s, π′v) = IndG′1(kv)

GL′1(kv)
(π′vν

s)

equals

(11) r(s, χv ◦ det′v, w) =
L(2s, χ2

v)
L(1 + 2s, χ2

v)ε(2s, χ2
v, ψv)

.

For the case GL′1 ⊂ H ′
1 the normalizing factor of the standard intertwining operator A(s, χv◦det′v, w)

acting on the induced representation

I(s, π′v) = IndH′
1(kv)

GL′1(kv)
(π′vν

s)

equals

(12) r(s, χv ◦det′v, w) =

=
L(s + 1/2, χv)

L(s + 3/2, χv)ε(s + 1/2, χv, ψv)ε(s− 1/2, χv, ψv)
L(s− 1/2, χv)
L(1/2− s, χ−1

v )
· L(2s, χ2

v)
L(1 + 2s, χ2

v)ε(2s, χ2
v, ψv)

.

1.4. Global normalization. In this Subsection we combine the local results of the previous Sub-
sections in order to get the normalization factor for the global intertwining operators attached to
a cuspidal automorphic representation

π′ ∼= σ′1 ⊗ . . .⊗ σ′n
of the Levi factor M ′

0(A) ∼= GL′1(A) × . . . × GL′1(A) of the group G′
n(A) or H ′

n(A), where σi are
cuspidal automorphic representations of GL′1(A) which are either all not one–dimensional or all
one–dimensional.

For w ∈ W ′ and s ∈ a∗C, the global standard intertwining operator A(s, π′, w) decomposes
according to the restricted tensor product π′ ∼= ⊗vπ

′
v, when acting on a pure tensor fs = ⊗vfs,v ∈

I(s, π′), into the product of the local standard intertwining operators A(s, π′v, w). Hence, it is
natural to define the global normalizing factor to be the product over all places of the local ones,
i.e.

(13) r(s, π′, w) =
∏
v

r(s, π′v, w).
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The holomorphy and non–vanishing of the global normalized intertwining operators N(s, π′, w)
defined by

A(s, π′, w) = r(s, π′, w)N(s, π′, w)

’deep enough’ in the positive Weyl chamber is proved in the following Theorem.

Theorem 1.5. Let π′ = σ′1 ⊗ . . .⊗ σ′n be a cuspidal automorphic representation of the Levi factor
M ′

0(A) ∼= GL′1(A) × . . . × GL′1(A) of the group G′
n(A) or H ′

n(A) such that σ′i are either all not
one–dimensional or all one–dimensional. Then, for every w ∈ W ′, the global normalizing factor

r(s, π′, w)

is a meromorphic function of s. If all σi are not one–dimensional then the global normalized
operator

N(s, π′, w)

is holomorphic and non–vanishing for s in the closure of the positive Weyl chamber

Re(s1) > . . . > Re(sn) > 0.

If all σi are one–dimensional then the global normalized operator

N(s, π′, w)

is holomorphic and non–vanishing for s in the positive open Weyl chamber

Re(s1) > . . . > Re(sn) > 0.

Proof. The local normalizing factors r(s, π′v, w) are defined in terms of the local L–functions and
ε–factors. At all split places v 6∈ S these are the L–functions and ε–factors of the same global
cuspidal automorphic representation of a split classical group. Therefore, the product over all
split places of the normalizing factors converges absolutely for s deep enough in the positive Weyl
chamber and its analytic continuation is given using the partial L–functions and ε–factors which
are meromorphic. Since the normalizing factors at the remaining finite number of non–split places
v ∈ S are meromorphic, the global normalizing factor r(s, π′, w) is meromorphic.

The global normalized intertwining operator decomposes into the tensor product of the local
ones. At almost all places the representation π′v is spherical, and therefore, the local normalized
intertwining operator N(s, π′v, w) just sends the suitably normalized invariant vector of I(s, π′v) for
the fixed maximal compact subgroup to the suitably normalized invariant one of I(w(s), w(π′v)).
At the remaining finite number of places the local normalized intertwining operator is holomorphic
and non–vanishing in the required region by Propositions 1.1, 1.2, 1.3 and 1.4 of the preceding
Subsections. Hence, the global normalized intertwining operator N(s, π′, w) is holomorphic and
non–vanishing in the required region. ¤

At the end of every Subsection above we collected the local normalizing factors for the max-
imal proper parabolic subgroup cases. Here we collect the global normalizing factors for those
cases. First, assume that all σ′i are not one–dimensional representations of GL′1(A). Then, by
our definition at the beginning of this Section, the local lift σi,v of σ′i,v from GL′1(kv) to GL2(kv)
is compatible with the global lift σi. Moreover, σi is a cuspidal automorphic representation of
GL2(A). Therefore, the product over all places of the local normalizing factors in equations (2),
(3), (4) and (9) can be written using the global L–functions and ε–factors attached to cuspidal
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automorphic representations. For the case GL′1 ×GL′1 ⊂ GL′2 the global normalizing factor of the
standard global intertwining operator A((s1, s2), σ′1 ⊗ σ′2, w) acting on the induced representation

I((s1, s2), σ′1 ⊗ σ′2) = IndGL′2(A)

GL′1(A)×GL′1(A)

(
σ′1ν

s1 ⊗ σ′2ν
s2

)

equals

(14) r((s1, s2), σ′1 ⊗ σ′2, w) =
L(s1 − s2, σ1 × σ̃2)

L(1 + s1 − s2, σ1 × σ̃2)ε(s1 − s2, σ1 × σ̃2)

where the L–functions and ε–factors are the global Rankin–Selberg ones of pairs. For the case
GL′1 ⊂ G′

1 the global normalizing factor of the standard global intertwining operator A(s, σ′, w)
acting on the induced representation

I(s, σ′) = IndG′1(A)

GL′1(A)

(
σ′νs

)

equals

(15) r(s, σ′, w) =
L(2s, ωσ)

L(1 + 2s, ωσ)ε(2s, ωσ)

where the L–functions and ε–factors are the global Hecke ones for the central character ωσ of σ.
For the case GL′1 ⊂ H ′

1 the global normalizing factor of the standard global intertwining operator
A(s, σ′, w) acting on the induced representation

I(s, σ′) = IndH′
1(A)

GL′1(A)

(
σ′νs

)

equals

(16) r(s, σ′, w) =
L(s, σ)

L(1 + s, σ)ε(s, σ)
· L(2s, ωσ)
L(1 + 2s, ωσ)ε(2s, ωσ)

where the L–functions and ε–factors are the global principal Jacquet ones for σ and the Hecke ones
for the central character ωσ of σ.

Next, assume that all σ′i are one–dimensional cuspidal automorphic representations of GL′1(A),
i.e. σ′i = χi ◦ det′, where χi are unitary characters of A×/k×. Now, the local and global lift are
not compatible, and hence, the local normalizing factors at split places in equations (6), (7) and
(8) are not of the same form as the local normalizing factors at non–split places in equations (10),
(11) and (12). Therefore, in the global normalization factors for maximal proper parabolic cases,
along with global Hecke L–functions and ε–factors, the local Hecke L–functions appear.

For the case GL′1×GL′1 ⊂ GL′2 the global normalizing factor of the standard global intertwining
operator A((s1, s2), (χ1 ◦ det′)⊗ (χ2 ◦ det′), w) acting on the induced representation

I((s1, s2), (χ1 ◦ det′)⊗ (χ2 ◦ det′)) = IndGL′2(A)

GL′1(A)×GL′1(A)

(
(χ1 ◦ det′)νs1 ⊗ (χ2 ◦ det′)νs2

)

equals

(17) r((s1, s2), (χ1 ◦ det′)⊗ (χ2 ◦ det′), w) = r(s1 − s2, χ1χ
−1
2 ),

where, for s ∈ C and a unitary character χ of A×/k×,

r(s, χ) =
L(s, χ)L(s− 1, χ)

L(s + 2, χ)L(s + 1, χ)ε(s + 1, χ)ε(s, χ)2ε(s− 1, χ)

∏

v∈S

L(s + 1, χv)L(s, χv)
L(1− s, χ−1

v )L(−s, χ−1
v )

,
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and the L–functions and ε–factors are the global and local Hecke ones. For the case GL′1 ⊂ G′
1 the

global normalizing factor of the standard global intertwining operator A(s, χ ◦ det′, w) acting on
the induced representation

I(s, χ ◦ det′) = IndG′1(A)

GL′1(A)

(
(χ ◦ det′)νs

)

equals

(18) r(s, χ ◦ det′, w) =
L(2s, χ2)

L(1 + 2s, χ2)ε(2s, χ2)

where the L–functions and ε–factors are the global Hecke ones. For the case GL′1 ⊂ H ′
1 the

global normalizing factor of the standard global intertwining operator A(s, χ ◦ det′, w) acting on
the induced representation

I(s, χ ◦ det′) = IndH′
1(A)

GL′1(A)

(
(χ ◦ det′)νs

)

equals
(19)

r(s, χ◦det′, w) =
L(2s, χ2)

L(1 + 2s, χ2)ε(2s, χ2)
L(s− 1/2, χ)

L(s + 3/2, χ)ε(s + 1/2, χ)ε(s− 1/2, χ)

∏

v∈S

L(s + 1/2, χv)
L(1/2− s, χ−1

v )

where the L–functions and ε–factors are the global and local Hecke ones.

2. Construction

In this Section we construct the certain parts of the residual spectrum of the hermitian quater-
nionic classical groups G′

n(A) and H ′
n(A), as well as the split groups SO4n(A) and Sp4n(A). The

residual spectrum of a reductive algebraic group is decomposed using the Langlands spectral the-
ory developed in [20]. See also [25]. Briefly stated, the decomposition of the part of the residual
spectrum of a reductive algebraic group supported in a proper parabolic subgroup is realized as the
sum of the spaces of automorphic forms obtained after the iterated cancellation of the poles inside
the closure of the positive Weyl chamber of the Eisenstein series attached to cuspidal automorphic
representations of the Levi factor. The constant term map shows that the analytic properties of
the Eisenstein series such as the position and order of the poles coincide with the properties of the
constant term of the Eisenstein series. On the other hand, the constant term equals the sum of the
standard intertwining operators

(20)
∑

w∈W (M)

A(s, π, w),

where M is the Levi factor of a selfconjugate parabolic subgroup, W (M) the normalizer of M
modulo M , π a cuspidal automorphic representation of M(A) and s ∈ a∗M,C. The assumption that
a parabolic subgroup is selfconjugate simplifies the notation and makes no harm since in our case
M ′

0 is the Levi factor of a selfconjugate parabolic subgroup of G′
n or H ′

n. In order to study the
poles inside the positive Weyl chamber of the sum (20) we use the normalization of the standard
intertwining operators of Section 1.

Before passing to the calculation of the residual spectrum in Theorem 2.2 below, we collect the
well known analytic properties of the global and local L–functions involved. The proof for the
Hecke L–functions can be found in [37], for the principal Jacquet L–functions for GL2 in [12] and
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for the Rankin–Selberg L–functions of pairs for GL2 ×GL2 in [10]. Observe that the global Hecke
L–function L(s,1) for the trivial character 1 of A×/k× is nothing else than the complete ζ–function
of the algebraic number field k.

Lemma 2.1. The global Rankin–Selberg L–function L(s, π1 × π2) of cuspidal automorphic repre-
sentations π1 and π2 of GL2(A) has the simple poles at s = 0 and s = 1 if π1

∼= π̃2 and it is entire
otherwise. It has no zeroes for Re(s) > 1.

The global principal Jacquet L–function L(s, π) of a cuspidal automorphic representation π of
GL2(A) is entire. It has no zeroes for Re(s) > 1.

The global Hecke L–function L(s, µ) of a unitary character µ of A×/k× has the simple poles at
s = 0 and s = 1 if µ is trivial and it is entire otherwise. It has no zeroes for Re(s) > 1. The local
Hecke L–function L(s, µv) of a unitary character µv of k×v has the real simple pole at s = 0 if µv is
trivial and it is entire otherwise. It has no zeroes.

Theorem 2.2. Let
π′ ∼= σ′1 ⊗ . . .⊗ σ′n

be a cuspidal automorphic representation of the Levi factor M ′
0(A) ∼= GL′1(A)× . . .×GL′1(A) of the

minimal parabolic subgroup of the group G′
n(A) or H ′

n(A) such that one of the following holds:
(i) all σ′i are not one–dimensional cuspidal automorphic representations of GL′1(A) with the

unitary central character,
(ii) all σ′i ∼= χi ◦ det′ are one–dimensional cuspidal automorphic representations of GL′1(A),

where χi is a unitary character of A×/k× and for the group H ′
n the character χn is non-

trivial,
(iii) the group is H ′

n, all σ′i ∼= χi◦det′ are one–dimensional cuspidal automorphic representations
of GL′1(A), where χi is a unitary character of A×/k× and χn is trivial.

Let s0 ∈ a∗C be

s0 =





(n− 1/2, . . . , 3/2, 1/2), in case (i),
(2n− 3/2, . . . , 5/2, 1/2), in case (ii),
(2n− 1/2, . . . , 7/2, 3/2), in case (iii),

and we consider only the part of the residual spectrum obtained as the iterated residue of the Eisen-
stein series at s0. The Eisenstein series attached to π′ has the simple iterated pole at s0 if and only
if





in case (i) for the group G′
n all σ′i are isomorphic and have the trivial central character,

in case (i) for the group H ′
n all σ′i are isomorphic, have the trivial central character and

L(1/2, σi) 6= 0, where σi is the global lift of σ′i,
in case (ii) for the group G′

n all χi are equal and χ2
i is trivial,

in case (ii) for the group H ′
n all χi are equal, χ2

i is trivial and
χi,v is nontrivial at every place v ∈ S,

in case (iii) all χi are trivial.

The space of automorphic forms spanned by the iterated residue at s0 is a constituent of the residual
spectrum which is denoted by A(π′). In all cases, by the constant term map, A(π′) is isomorphic
to the image of the normalized intertwining operator

N(s0, π
′, wl),
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where wl ∈ W ′ is the longest Weyl group element. The image is irreducible except for the group
H ′

n in case (ii) when the image is the sum of the irreducible representations of the form

⊗vΠ′v,

where Π′v is the irreducible image of N(s0, π
′
v, wl) for v ∈ S and Π′v is one of at most two non–

isomorphic irreducible components of the image of N(s0, π
′
v, wl) for v 6∈ S and it is unramified for

almost all v.

Proof. The poles of the Eisenstein series coincide with the poles of its constant term, i.e. the sum
(20) of the standard intertwining operators

(21)
∑

w∈W ′
A(s, π′, w),

where s ∈ a∗C. In Section 1 we normalized the standard intertwining operators using the scalar
meromorhic normalizing factors r(s, π′, w). The main result is Theorem 1.5 showing that the
normalized intertwining operators are holomorphic and non–vanishing in the positive open Weyl
chamber of a∗C, i.e. for all s = (s1, . . . , sn) ∈ a∗C such that

Re(s1) > Re(s2) > . . . > Re(sn) > 0.

Observe that s0 is in the positive open Weyl chamber and hence the poles of the terms in (21) are
the poles of their normalizing factors.

The normalizing factor r(s, π′, w) is given as a product of the normalizing factors for the maxi-
mal proper parabolic cases appearing in the decomposition of the standard intertwining operator
A(s, π′, w) as in Section 2.1 of [31] according to a reduced decomposition of the Weyl group ele-
ment w into simple reflections. Although the reduced decomposition of the Weyl group element is
not unique, the obtained normalizing factor is independent of the chosen reduced decomposition.
Therefore, let us fix an algorithm for decomposing the elements of the Weyl group W ′ by specifying
its action on a∗C and on representations of M ′

0(A). It is well–known that W ′ ∼= Sn nC2
n, where Sn

is the group of permutations of n letters and C2 the multiplicative group {±1}. The action of the
Weyl group element w = (p, c), where p ∈ Sn and c = (c1, . . . , cn) ∈ C2

n, on s = (s1, . . . , sn) ∈ a∗C
is given by

w(s) =
(
cp−1(1)sp−1(1), . . . , cp−1(n)sp−1(n)

)
,

and on a representation π′ ∼= σ′1 ⊗ . . .⊗ σ′n of M ′
0(A) by

w(π′) = σ′
cp−1(1)

p−1(1)
⊗ . . .⊗ σ′

cp−1(n)

p−1(n)
,

where σ′1i = σ′i and σ′−1
i = σ̃′i. Let

I+
w = {j ∈ {1, . . . , n} : cj = 1} and I−w = {j ∈ {1, . . . , n} : cj = −1} .

The simple reflections in the Weyl group W ′ correspond to the transpositions wj = (j, j + 1) ∈ Sn

for j = 1, . . . , n − 1 and the element w0 = (1, . . . , 1,−1) ∈ C2
n. The algorithm for a reduced

decomposition of w = (p, c) ∈ W ′ is as follows:
(1) Using the transpositions wj move the representation with the maximal index in I−w to the

most right position. In this step transpositions interchange the position of a representa-
tion with the index in I−w and either a representation with the higher index in I+

w or the
contragredient of a representation with the higher index in I−w
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(2) Apply w0 to take the contragredient of the representation moved to the most right position
in step (1).

(3) Repeat steps (1) and (2) with all the other elements of I−w always choosing the maximal
element not used in the previous steps. As a result we obtain the representations with indices
in I+

w on the left with increasing indices and the contragredients of the representations with
indices in I−w on the right with decreasing indices.

(4) Using the minimal number of the transpositions wj arrange the representations with indices
in I+

w to be ordered as required by the action of w but still all of them on the left, i.e.
keeping the contragredients of the representations with indices in I−w fixed. In this step
every transposition interchanges the position of a representation with index in I+

w and a
representation with the higher index in I+

w

(5) As in step (4), using the minimal number of the transpositions wj arrange the contragre-
dients of the representations with indices in I−w to be ordered as required by the action
of w but still all of them on the right, i.e. keeping the representations with indices in I+

w

fixed. In this step every transposition interchanges the position of the contragredient of a
representation with index in I−w and the contragredient of a representation with the lower
index in I−w

(6) Using the minimal number of the transpositions wj arrange all the indices as required by the
action of w. In this step every transposition interchanges the position of a representation
with the index in I+

w and the contragredient of a representation with the index in I−w
Now, the normalizing factors appearing in the maximal proper parabolic cases corresponding

to the simple reflections in the above steps are given at the end of Subsection 1.4 in equations
(14), (15) and (16) for case (i) and in equations (17), (18) and (19) for cases (ii) and (iii). Using
the analytic properties of the L–functions involved given in Lemma 2.1, we see that the possible
singular hyperplanes of the normalization factors in case (i) are

si − sj = 1, for 1 6 i < j 6 n,

si + sj = 1, for 1 6 i < j 6 n,

2si = 1, for 1 6 i 6 n,

and in cases (ii) and (iii)

si − sj = 2, for 1 6 i < j 6 n,

si + sj = 2, for 1 6 i < j 6 n,

2si = bi, for 1 6 i 6 n,

where bi = 3 if the group is H ′
n and χi is trivial, while bi = 1 otherwise. At all the possible singular

hyperplanes the pole is at most simple. Observe that s0 in all cases is the intersection of precisely
n among the possible singular hyperplanes. Moreover, it is the so called regular point since there
are no possible poles of the Eisenstein series deeper in the positive Weyl chamber. The hyperplanes
intersecting at s0 in case (i) are

si − si+1 = 1, for i = 1, . . . , n− 1
2sn = 1,
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in case (ii)

si − si+1 = 2, for i = 1, . . . , n− 1
2sn = 1,

and in case (iii)

si − si+1 = 2, for i = 1, . . . , n− 1
2sn = 3.

In order to have the iterated pole of the Eisenstein series at s0, all n possible singular hyperplanes
intersecting at s0 have to be singular. The hyperplane of the form si − si+1 = a, where a ∈ {1, 2},
is singular for the intertwining operator A(s, π′, w) if and only if σ′i ∼= σ′i+1 and in the reduced
decomposition of w the interchange of the positions of either σ′i and σ′i+1, or σ̃′i+1 and σ̃′i, occurs.
The hyperplane 2sn = 1 in case (i) for the group G′

n is singular for the intertwining operator
A(s, π′, w) if and only if σ′n has the trivial central character and cn = −1, where w = (p, c). The
hyperplane 2sn = 1 in case (i) for the group H ′

n is singular for the intertwining operator A(s, π′, w)
if and only if σ′n has the trivial central character, the global L–function L(1/2, σn) 6= 0 for the global
lift σn of σ′n and cn = −1, where w = (p, c). The hyperplane 2sn = 1 in case (ii) for the group G′

n

is singular for the intertwining operator A(s, π′, w) if and only if χ2
n is trivial and cn = −1, where

w = (p, c). The hyperplane 2sn = 1 in case (ii) for the group H ′
n is singular for the intertwining

operator A(s, π′, w) if and only if χ2
n is trivial, χn,v is nontrivial for all places v ∈ S and cn = −1,

where w = (p, c). The hyperplane 2sn = 3 in case (iii) is singular for the intertwining operator
A(s, π′, w) if and only if χn is trivial and cn = −1, where w = (p, c). Therefore, the necessary
conditions for the pole of the Eisenstein series at s0 are as claimed in the Theorem.

Assume that the necessary condition for the pole holds. Looking at the reduced decomposition
algorithm we see that, in order to get the singular hyperplane of the form si − si+1 = a for the
intertwining operator corresponding to w ∈ W ′, both i and i + 1 have to be elements of the same
set I+

w or I−w . Since cn = −1 in order to get the singular hyperplane 2sn = b, we conclude n ∈ I−w .
Therefore, I−w = {1, . . . , n} and I+

w is empty, i.e. if w = (p, c) then c = (−1, . . . ,−1). For such w,
during the first three steps of the reduced decomposition algorithm the singular hyperplanes of the
form si − si+1 = a do not occur. Afterwards, in step (5) we have to obtain all such hyperplanes
and hence p must be the identity permutation id.

Therefore, if the necessary condition for the pole holds, the Eisenstein series indeed has the
pole at s0 and the only element of the Weyl group W ′ such that the corresponding intertwining
operator in (21) has the iterated pole at s0 is the longest element wl = (id, (−1, . . . ,−1)). The
iterated residue of the constant term is, up to the nonzero constant, equal to the image of the
normalized intertwining operator N(s0, π

′, wl).
The square integrability of the obtained space of automorphic forms follows from the Langlands

square integrability criterion from page 104 of [20] because

wl(s0) =





(−(n− 1/2), . . . ,−3/2,−1/2), in case (i),
(−(2n− 3/2), . . . ,−5/2,−1/2), in case (ii),
(−(2n− 1/2), . . . ,−7/2,−3/2), in case (iii),
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and, by the criterion, if wl(s0) = (s′1, . . . , s
′
n), then the square integrability condition is

j∑

i=1

s′i < 0 ∀j = 1, . . . , n.

Thus the iterated residue at s0 of the Eisenstein series attached to π′ gives a constituent A(π′) of
the residual spectrum.

It remains to describe the image of N(s0, π
′, wl) which is done for every place v of k separately. If

π′v is tempered then the image of N(s0, π
′
v, wl) is irreducible by the Langlands classification since s0

is in the open positive Weyl chamber and wl is the longest element of the Weyl group W ′. Observe
that this is always the case if v ∈ S.

Let v 6∈ S and assume π′v is not tempered. Since all σ′i are isomorphic, in case (i) this means
that σi,v is a complementary series representation of GL2(kv), i.e. the fully induced representation
of the form

σi,v
∼= IndGL2(kv)

GL1(kv)×GL1(kv)

(
χv| · |−r ⊗ χv| · |r

)
,

where χv is a unitary character of k×v and 0 < r < 1/2. In cases (ii) and (iii), σi,v
∼= χv ◦ detv is

an one–dimensional representation of GL2(kv), i.e. the unique irreducible subrepresentation of the
induced representation

IndGL2(kv)
GL1(kv)×GL1(kv)

(
χv| · |−r ⊗ χv| · |r

)
,

where r = 1/2. If we denote by
τv
∼= χv ⊗ . . .⊗ χv

the representation of the maximal split torus T (kv) ∼= GL1(kv) × . . . × GL1(kv) of SO4n(kv) or
Sp4n(kv),

s′0 = (r,−r, r,−r, . . . , r,−r) ∈ a∗T,C and w′ = (1, 2)(3, 4) . . . (n− 1, n) ∈ S2n

the element of the absolute Weyl group of SO4n(kv) or Sp4n(kv), then the image of

N(s0 + s′0, τv, w
′)

is isomorphic to I(s0, π
′). Therefore, the image of N(s0, π

′
v, wl) is isomorphic to the image of

N(s0 + s′0, τv, wlw
′).

Now, τv is tempered and wlw
′ is the longest element of the Weyl group for SO4n(kv) or Sp4n(kv).

Hence, if s0 + s′0 is in the open positive Weyl chamber the image is irreducible by the Langlands
classification. This is the case except for the group Sp4n(kv) in case (ii).

Finally, let the group be Sp4n(kv) in case (ii). Then

s0 + s′0 = (2n− 1, 2n− 2, . . . , 1, 0)

which is not in the open positive Weyl chamber for Sp4n. Writing the longest Weyl group element
wlw

′ for the Weyl group of Sp4n as wlw
′ = w1w0 where w1 is the longest element of the Weyl group

modulo the Levi factor isomorphic to GL1 × . . . × GL1 × SL2 and w0 = (1, . . . , 1,−1) the simple
reflection corresponding to the root 2e2n of Sp4n, the normalized intertwining operator decomposes
into

N(s0 + s′0, τv, wlw
′) = N(s0 + s′0, τv, w1)N(s0 + s′0, τv, w0).
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The operator N(s0 +s′0, τv, w0) is actually the SL2(kv) intertwining operator acting on the induced
representation

IndSL2(kv)
GL1(kv)χv

∼= τ+
v ⊕ τ−v ,

which is the sum of at most two irreducible tempered components τ±v where the sign in the super-
script denotes the sign of the action of N(s0 +s′0, τv, w0) and τ−v is trivial if and only if χv is trivial.
Then, the image of N(s0 + s′0, τv, wlw

′) is the sum of the images of N(s0 + s′0, τv, w1) acting on the
two induced representations

IndSp4n(kv)
GL1(kv)×...×GL1(kv)×SL2(kv)

(
χv| · |2n−1 ⊗ χv| · |2n−2 ⊗ . . .⊗ χv| · |2 ⊗ χv| · | ⊗ τ±v

)

which we denote by Π±v , and Π−v is trivial if and only if χv is trivial. These images are irreducible by
the Langlands classification since w1 is the longest Weyl group element modulo GL1× . . .×GL1×
SL2, χv⊗ . . .⊗χv⊗τ±v is tempered and (2n−1, 2n−2, . . . , 1) is in the open positive Weyl chamber.
Observe that Π+

v is unramified at unramified places. Therefore, the irreducible representation Π′v
in the statement of the Theorem is one of the representations Π±v and it is Π+

v for almost all v. ¤

Theorem 2.2 in fact gives the decomposition of the parts of the residual spectrum of G′
n(A)

and H ′
n(A) obtained as the iterated residues at s0 of the Eisenstein series attached to cuspidal

automorphic representations π′ of the Levi factor M ′
0(A) of the minimal parabolic subgroup such

that either all σ′i are not one–dimensional, or all σ′i are one–dimensional. Denote those parts of the
residual spectrum by L2 for both G′

n(A) and H ′
n(A). It will be clear from the context to which

group we refer. Then L2 decomposes according to the cases in Theorem 2.2 into

L2 ∼=
{

L2
(i) ⊕ L2

(ii), for the group G′
n,

L2
(i) ⊕ L2

(ii) ⊕ L2
(iii), for the group H ′

n.

where every component denotes the part of the residual spectrum at s0 coming from the cuspidal
automorphic representations of the corresponding case. Now, Theorem 2.2 gives the decompositions
of the following Corollary.

Corollary 2.3. In the notation as above,

L2
(i)
∼= ⊕π′A(π′),

where the sum is over all case (i) cuspidal automorphic representations π′ of M ′
0(A) such that for

the group G′
n all σ′i are isomorphic and have the trivial central character, while for the group H ′

n

all σ′i are isomorphic, have the trivial central character and L(1/2, σi) 6= 0 where σi is the global
lift of σ′i.

L2
(ii)
∼= ⊕π′A(π′),

where the sum is over all case (ii) cuspidal automorphic representations π′ of M ′
0(A) such that for

the group G′
n all χi are equal and χ2

i is trivial, while for the group H ′
n all χi are equal, χ2

i is trivial
and χi,v is nontrivial for every v ∈ S.

L2
(iii)

∼= A(1M ′
0
),

where 1M ′
0

∼= (1 ◦ det′)⊗ . . .⊗ (1 ◦ det′) is the trivial representation of M ′
0(A).
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Next, we introduce a similar notation for the split groups SO4n and Sp4n. Let L2
M0

be just the
part of the residual spectrum of SO4n(A) and Sp4n(A) obtained as the iterated residue at

t0 = (n− 1/2, . . . , 3/2, 1/2) ∈ a∗M0,C
of the Eisenstein series attached to cuspidal automorphic representations of the Levi factor M0(A) ∼=
GL2(A)× . . .×GL2(A). Note that L2

M0
is not the full residual spectrum with the cuspidal support

in M0(A). For the group SO4n let L2
T (SO4n) be the part of the residual spectrum obtained as the

iterated residue at
t0 = (2n− 1, . . . , 1, 0) ∈ a∗T,C

of the Eisenstein series attached to cuspidal automorphic representations of the maximal split torus
T (A) ∼= GL1(A)× . . .×GL1(A). For the group Sp4n let L2

T (Sp4n) denote the part of the residual
spectrum obtained as the iterated residue at one of the points

t0 =
{

(2n− 1, . . . , 1, 0) ∈ a∗T,C,

(2n, . . . , 2, 1) ∈ a∗T,C,

of the Eisenstein series attached to cuspidal automorphic representations of the maximal split torus
T (A) ∼= GL1(A)× . . .×GL1(A). Again, note that L2

T (SO4n) and L2
T (Sp4n) are not the full residual

spectra supported in the torus.

Theorem 2.4. In the notation as above, the part L2
M0

of the residual spectrum of SO4n(A) or
Sp4n(A) decomposes into

L2
M0

∼= ⊕πA(π),
where the sum is over all cuspidal automorphic representations π ∼= σ1⊗ . . .⊗σn of the Levi factor
M0(A) such that for the group SO4n all σi are isomorphic and have the trivial central character,
while for the group Sp4n all σi are isomorphic, have the trivial central character and L(1/2, σi) 6= 0.
The irreducible space of automorphic forms A(π) is isomorphic to the image of the normalized
intertwining operator

N(t0, π, wl,M0)
where

t0 = (n− 1/2, . . . , 3/2, 1/2) ∈ a∗M0,C
and wl,M0 is the longest element of the Weyl group modulo M0.

The part L2
T (SO4) of the residual spectrum of SO4n(A) decomposes into

L2
T (SO4) ∼= ⊕τA(τ),

where the sum is over all cuspidal automorphic representations τ ∼= χ1 ⊗ . . . ⊗ χ2n of the torus
T (A) such that all χi are equal and χ2

i is trivial. The irreducible space of automorphic forms A(τ)
is isomorphic to the image of the normalized intertwining operator

N(t0, τ, wl,T ),

where
t0 = (2n− 1, . . . , 1, 0) ∈ a∗T,C.

and wl,T is the longest element of the Weyl group.
The part L2

T (Sp4n) of the residual spectrum of Sp4n(A) decomposes into

L2
T (Sp4n) ∼= (⊕τA(τ))⊕A(1T (A)),
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where the sum is over all cuspidal automorphic representations τ ∼= χ1⊗ . . .⊗χ2n of the torus T (A)
such that all χi are equal, quadratic and nontrivial, while the character 1T (A) is just the trivial
character of T (A). For the nontrivial τ , the space of automorphic forms A(τ) is isomorphic to the
sum of the irreducible representations of the form

⊗vΠv,

where in the notation of the proof of Theorem 2.2, Πv is one of at most two irreducible components
Π±v of the image of the normalized intertwining operator

N(t0, τ, wl,T ),

where
t0 = (2n− 1, . . . , 1, 0) ∈ a∗T,C

and wl,T is the longest element of the Weyl group, such that Πv = Π+
v for almost all v and the

product of all the signs equals 1. The irreducible space of automorphic forms A(1T (A)) is isomorphic
to the image of the normalized intertwining operator

N(t0,1T (A), wl,T ),

where
t0 = (2n, . . . , 1) ∈ a∗T,C

and wl,T is the longest element of the Weyl group.

Proof. The proof of this Theorem for the split groups goes along the same lines as the proof of
Theorem 2.2 for their inner forms above except for the decomposition of L2

T (Sp4n) for a nontrivial
τ . Therefore, we first comment the split global normalization factors appearing in the calculation
and then explain the result in that exceptional case.

The normalization factors for the local intertwining operators are at all places defined using
the Langlands–Shahidi method for the generic representations at split places as in Section 1.1.
Therefore, the global normalization factors needed for the decomposition of L2

M0
are the same as

for the groups G′
n and H ′

n in case (i). For the torus instead of the complicated normalization factor
(19) in the GL′1 ⊂ H ′

1 case, now we have just the split GL1 ⊂ SL2 case where

r(s, χ, w) =
L(s, χ)

L(1 + s, χ)ε(s, χ)
,

and instead of (17) in GL′1 ×GL′1 ⊂ GL′2 case we have the split GL1 ×GL1 ⊂ GL2 case where

r((s1, s2), χ1 ⊗ χ2, w) =
L(s1 − s2, χ1χ

−1
2 )

L(1 + s1 − s2, χ1χ
−1
2 )ε(s1 − s2, χ1χ

−1
2 )

.

Observe that for the group SO4n all the simple reflections correspond to GL1 × GL1 ⊂ GL2 case
and that is the reason of a simpler decomposition.

For the group Sp4n and a nontrivial τ , the character χ is nontrivial and hence the global nor-
malizing factor r(s, χ, w) is holomorphic and non–vanishing for Re(s) > 0. Thus, the hyperplane
2sn = 1 is not singular and besides the usual singular hyperplanes si− si+1 = 1 for i = 1, . . . , n− 1
appearing for χ = χi = χi+1, we need the singular hyperplane sn−1 + sn = 1 occuring if and only
if χ = χn−1 = χ−1

n , i.e. χ2 is trivial. The iterated pole at t0 = (2n− 1, . . . , 1, 0) indeed occurs for
the intertwining operators corresponding to the Weyl group elements wl,T and w1, where w1 is as
in the proof of Theorem 2.2. Since χ2 is trivial, by the global functional equation, r(s, χ, w0) = 1
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where wl,T = w1w0. Therefore, up to the nonzero constant, the iterated residue of the sum of the
intertwining operators (20) equals

N(t0, τ, w1) + N(t0, τ, wl,T ).

Decomposing according to the restricted tensor product over all places shows that the residue can
be written as

N(t0, τ, w1)[Id + N(t0, τ, w0)],
where N(t0, τ, w0) is in fact SL2(A) intertwining operator acting on the induced representation
IndSL2(A)

GL1(A)χ. Now, the rest of the proof is the same as the end of the proof of Theorem 2.2. The
parity condition on the product of the signs of the representations Πv is just the non–vanishing
condition for the term in square–brackets above. ¤

In the next Corollary we compare the parts of the residual spectrum of G′
n(A) and H ′

n(A)
obtained in Theorem 2.2 with the corresponding parts of the residual spectrum for the split groups
SO4n(A) and Sp4n(A) obtained in Theorem 2.4. We use the notation of Theorems 2.2 and 2.4.

Corollary 2.5. In case (i) let π be a cuspidal automorphic representation of the Levi factor M0(A)
of the split group SO4n(A) or Sp4n(A) which is the global lift of π′. For one–dimensional π′ in cases
(ii) and (iii) let τ denote the one–dimensional cuspidal automorphic representation of the maximal
split torus T (A) of SO4n(A) or Sp4n(A) such that the global lift π is the unique irreducible quotient
of the induced representation

I
M0(A)
T (A) ((1/2,−1/2, . . . , 1/2,−1/2), τ).

Then the map

ı : A(π′) 7→



A(π), if π′ is in case (i),
A(τ), if π′ is in case (ii),
A(1T (A)), if π′ is in case (iii),

is an injective map from the set of constituents A(π′) of the part L2 of the residual spectrum of
G′

n(A) or H ′
n(A) to the set of constituents of the part L2

M0
⊕ L2

T (SO4n) or L2
M0
⊕ L2

T (Sp4n) of the
residual spectrum of the split group SO4n(A) or Sp4n(A). The image of the map ı consists of

(a) all constituents A(π) of L2
M0

such that πv is square–integrable at every place v ∈ S, and
(b1) for the group G′

n, all constituents A(τ) of L2
T (SO4n),

(b2) for the group H ′
n, all constituents A(τ) of L2

T (Sp4n) such that τv is nontrivial at every place
v ∈ S and the constituent A(1T (A)).

Proof. The Corollary is a direct consequence of Theorems 2.2 and 2.4. For the description of the
image of ı, let us just recall the global lift to GL2(A) of cuspidal automorphic representations of
GL′1(A) defined at the beginning of Section 1. By Theorem (8.3) of [7] the global lift is a bijection
between the cuspidal automorphic representations of GL′1(A) which are not one–dimensional and
the cuspidal automorphic representations of GL2(A) having a square–integrable local component
at all places v ∈ S. That gives condition in part (a) of the image of ı. The global lift, as defined in
Section 1 is also a bijection between the one–dimensional cuspidal automorphic representations of
GL′1(A) and the residual automorphic representations of GL2(A). Hence, there is no reason for the
conditions in (b1) and (b2) due to the global lift. However, the condition in (b2) is a consequence
of the decomposition of L2 for H ′

n where the same local condition appears. The reason for such
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local condition lies in the fact that the local normalizing factors in the case GL′1 ⊂ H ′
1 are not of

the same form for split and non–split places. ¤
Remark 2.6. Observe that by our definition the map ı sends irreducible constituents to irreducible.
But if A(π′) is not irreducible, i.e. π′ is in case (ii) for the group H ′

n, then ı (A(π′)) is also not
irreducible. In Theorems 2.2 and 2.4 these spaces of automorphic forms are described more precisely.
The choice of the local components Π′v and Πv at split places is the same, while at non–split places
there is just one Π′v and exactly two choices for Πv since χv is nontrivial. Moreover, the product
of all the signs of Πv must be equal to one, thus reducing the freedom of the choice. Therefore, we
can not refine the map ı to get matching of the irreducible constituents. The best we can do is to
define ı(⊗vΠ′v) to be the sum of all ⊗vΠv such that Π′v ∼= Πv at all split places. Thus we obtained
matching of the irreducible constituent of A(π′) with the sum of 2|S|−1 irreducible constituents of
ı(A(π′)).

Finally, let F be a local field of characteristic zero and DF the quaternion algebra central over
F with the reduced norm det′F . The group of invertible elements of DF is denoted by GL′1(F ). Let
G′

n(F ) and H ′
n(F ) be the groups of isometries of the hermitian form on the 2n–dimensional right

vector space over DF defined at the beginning of Section 1.
Now, we prove using the global method that the dual under the Aubert–Schneider–Stuhler

involution defined in [4] and [34] of the principal series Steinberg representation of G′
n(F ) and

H ′
n(F ) is unitarizable. The proof is based on Theorem 2.2 where the parts of the residual spectrum

of groups G′
n(A) and H ′

n(A) for an arbitrary global quaternion algebra D central over an algebraic
number field k are constructed. In fact, we show that the Aubert–Schneider–Stuhler dual of the
principal series Steinberg representation is a local component of an automorphic representation
belonging to the residual spectrum of G′

n(A) or H ′
n(A) for a suitably chosen D and k, and thus

unitarizable.
The principal series Steinberg representation of G′

n(F ) or H ′
n(F ) is the Steinberg representation

supported in the minimal parabolic subgroup with the Levi factor M ′
0(F ) ∼= GL′1(F ) × . . . ×

GL′1(F ). For the group G′
n(F ) it is the unique irreducible subrepresentation of one of the induced

representations

I
(
(n− 1/2, . . . , 3/2, 1/2), ρ′ ⊗ . . .⊗ ρ′

)
= IndG′n(F )

M ′
0(F )

(
ρ′νn−1/2 ⊗ . . .⊗ ρ′ν3/2 ⊗ ρ′ν1/2

)
,

where ρ′ is not one–dimensional unitary irreducible representation of GL′1(F ) with the trivial central
character, and

I
(
(2n− 3/2, . . . , 5/2, 1/2), (µ ◦ det′F )⊗ . . .⊗ (µ ◦ det′F )

)
=

= IndG′n(F )
M ′

0(F )

(
(µ ◦ det′F )ν2n−3/2 ⊗ . . .⊗ (µ ◦ det′F )ν5/2 ⊗ (µ ◦ det′F )ν1/2

)
,

where µ is a unitary character of F×, µ2 is trivial and µ ◦ det′F an one–dimensional unitary repre-
sentation of GL′1(F ). For the group H ′

n it is the unique irreducible subrepresentation of one of the
induced representations

I
(
(n− 1/2, . . . , 3/2, 1/2), ρ′ ⊗ . . .⊗ ρ′

)
= IndH′

n(F )
M ′

0(F )

(
ρ′νn−1/2 ⊗ . . .⊗ ρ′ν3/2 ⊗ ρ′ν1/2

)
,

where ρ′ is not one–dimensional unitary irreducible representation of GL′1(F ) with the trivial central
character,

I
(
(2n− 3/2, . . . , 5/2, 1/2), (µ ◦ det′F )⊗ . . .⊗ (µ ◦ det′F )

)
=
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= IndH′
n(F )

M ′
0(F )

(
(µ ◦ det′F )ν2n−3/2 ⊗ . . .⊗ (µ ◦ det′F )ν5/2 ⊗ (µ ◦ det′F )ν1/2

)
,

where µ is a nontrivial unitary quadratic character of F× and µ◦det′F a nontrivial one–dimensional
unitary representation of GL′1(F ), and

I
(
(2n− 1/2, . . . , 7/2, 3/2), (1F ◦ det′F )⊗ . . .⊗ (1F ◦ det′F )

)
=

= IndH′
n(F )

M ′
0(F )

(
(1F ◦ det′F )ν2n−1/2 ⊗ . . .⊗ (1F ◦ det′F )ν7/2 ⊗ (1F ◦ det′F )ν3/2

)
,

where 1F is the trivial character of F× and 1F ◦ det′F the trivial representation of GL′1(F ). The
Aubert–Schneider–Stuhler dual of these Steinberg representations is the unique irreducible quotient
of the induced representations. It is in fact the Langlands quotient since the representations of
M ′

0(F ) are supercuspidal and all s are in the positive Weyl chamber.

Corollary 2.7. The Aubert–Schneider–Stuhler dual of the principal series Steinberg representation
of G′

n(F ) and H ′
n(F ) is unitarizable, where for the group H ′

n we assume that representation ρ′ of
GL′1(F ) satisfies assumption (∗) of the proof below.

Proof. Let k be an algebraic number field such that at a place w the completion kw of k is isomorphic
to F . Let D be a quaternion algebra central over k such that w is one of the places of k where D
does not split, i.e. w ∈ S. Then D ⊗k kw

∼= DF .
For not one–dimensional unitary irreducible representation ρ′ of GL′1(DF ) ∼= D×

F let ρ be its local
lift to GL2(F ) defined using the Jacquet–Langlands correspondence at the beginning of Section 1.
By Lemma 2.1 of [30] there exists a cuspidal automorphic representation σ ∼= ⊗vσv of GL2(A)
having the trivial central character and such that

σw
∼= ρ.

For the group H ′
n we assume that ρ′ is such that there is a choice of σ satisfying the assumption

(∗) L(1/2, σ) 6= 0,

for a suitable algebraic number field k. Let σ′ ∼= ⊗vσ
′
v be the cuspidal automorphic representation

of GL′1(A) with the global lift σ. Then
σ′w ∼= ρ′.

Similarly, for the nontrivial one–dimensional unitary representation µ◦det′F of GL′1(F ) ∼= D×
F there

exists a nontrivial unitary quadratic character χ of A×/k× such that

χw
∼= µ

and χv is nontrivial at every place v ∈ S. For the trivial one–dimensional representation 1F ◦ det′F
of GL′1(F ) ∼= D×

F , where 1F is the trivial character of F×, we take χ = 1, where 1 is the trivial
character of A×/k×.

Now, by Theorem 2.2, for the representations π′ ∼= σ′⊗ . . .⊗σ′ and π′ ∼= (χ◦det′)⊗ . . .⊗(χ◦det′)
of the Levi factor M ′

0(A) and the corresponding s0 as in Theorem 2.2, the image of the normalized
intertwining operator N(s0, π

′, wl) is isomorphic to a constituent of the residual spectrum of G′
n(A)

or H ′
n(A). Therefore, the image is unitary and specially at the place w of k the image of the local

normalized intertwining operator
N(s0, π

′
w, wl)

is unitary. But in Theorem 2.2 we have also proved that the image of that local normalized
intertwining operator is irreducible. More precisely, for different π′, it is precisely the Langlands
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quotient of the induced representations defining the Steinberg representations above. As mentioned
there the Langlands quotients for those principal series representations are in fact the Aubert–
Schneider–Stuhler duals of the Steinberg representation. ¤

References

[1] J. Arthur, Intertwining Operators and Residues I. Weighted Characters, J. Funct. Anal. 84 (1989), 19–84
[2] J. Arthur, An Introduction to the Trace Formula, in Harmonic Analysis, the Trace Formula and Shimura

Varieties, Clay Mathematics Proceedings 4 (2005), 1–263
[3] J. Arthur, L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Ann.

of Math. Studies 120, Princeton Univ. Press, 1989
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[28] G. Muić, A Proof of Casselman–Shahidi’s Conjecture for Quasi–split Classical Groups, Canad. Math. Bull. 44

(2001), 298–312
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