
ON THE RESIDUAL SPECTRUM OF SPLIT CLASSICAL GROUPS
SUPPORTED IN THE SIEGEL MAXIMAL PARABOLIC SUBGROUP

NEVEN GRBAC

Abstract. For the split symplectic and special orthogonal groups over a number field, we de-
compose the part of the residual spectrum supported in the maximal parabolic subgroup with the
Levi factor isomorphic to GLn. The decomposition depends on the analytic properties of the sym-
metric and exterior square automorphic L–functions, but seems sufficient for the computation of
the corresponding part of the Eisenstein cohomology. We also prove that if one assumed Arthur’s
conjectural description of the discrete spectrum for the considered groups, then one would be able
to find the poles of the L–functions in question, and would make the decomposition more precise.

Introduction

In the spectral decomposition of the space of square–integrable automorphic forms on the adelic
points of a reductive group defined over a number field the continuous part of the spectrum was
described by Langlands in [12]. It remains to understand the discrete part of the spectrum which
consists of the cuspidal and residual part. The Langlands spectral theory of [12] (see also [14])
describes the residual spectrum in terms of iterated residues at the poles of the Eisenstein series
attached to cuspidal automorphic representations of Levi factors of proper parabolic subgroups.
We recall briefly the strategy in Section 1 referring to [14] for more details. However, determining
the poles of the Eisenstein series depends on the analytic properties of the automorphic L–functions
and possible cancellations among summands in the iterated residue of the constant term.

In his work, Arthur develops the trace formula in order to describe the discrete spectrum without
distinguishing the cuspidal and residual part. Thus, he avoids the problems concerning the poles
and zeros of the automorphic L–functions. In [1], [2], [3] he gives conjectures on the discrete
spectrum for split connected classical groups over a number field. Here we use the statement of
the conjectures given in Section 30 of [3]. Since all the required variants of the fundamental lemma
are now at hand (proved by Ngô in [15] and Chaudouard and Laumon in [6]), it seems that the
proof of Arthur’s conjectures for split connected classical groups is now within reach. Based on
Arthur’s conjectural description, Mœglin in [13] explains a way to determine the residual spectrum
for classical groups assuming further conjectures on the L–functions and the images of intertwining
operators.

In this paper we compare the two approaches for the part of the residual spectrum supported in
the Siegel maximal parabolic subgroup of split connected classical groups Gn = Sp2n, SO2n+1, SO2n

over a number field k. The Siegel maximal parabolic subgroup is the parabolic subgroup corre-
sponding to the set of simple roots with the last root removed (see Section 1). Along the way,
we study the analytic properties of the symmetric and exterior square L–functions attached to a
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cuspidal automorphic representation of GLn(A). In fact, we relate the poles of those L–functions
to the considered part of the residual spectrum.

In Section 1 the approach is that of Langlands, and we do not use Arthur’s work. The obtained
results are thus unconditional. The main result concerning the residual spectrum is Theorem 1.5,
where the decomposition of the considered part of the residual spectrum is given in terms of the
poles of the symmetric and exterior square L–functions. This is a consequence of Shahidi’s work on
the normalization of intertwining operators ([19], see also [23] and [7, Section 11]), and the analytic
properties of the relative rank one Eisenstein series ([14, Section IV.3.12]).

Although depending on the analytic properties of automorphic L–functions, the decomposition
of the part of the residual spectrum obtained in Theorem 1.5 is sufficient for the application in
computing the corresponding part of the Eisenstein cohomology. This line of thought was pursued
in a preprint [8] in the case of symplectic group Spn split over the field Q of rational numbers. It
turns out that the non–vanishing conditions for the cohomology class rule out from the consideration
all parts of the decomposition which depend on the unknown poles of the L–functions, and thus we
obtain unconditional results for the Eisenstein cohomology (except for the non–vanishing condition
for the principal L–function at s = 1/2).

In Section 2 we briefly recall Arthur’s conjectural description of the discrete spectrum for Gn(A)
following Section 30 of [3]. Then, in Section 3, we compare the conjectures with the results obtained
using the approach of Langlands. The two consequences of Arthur’s conjectures are Theorem 3.1,
in which a more precise decomposition of the considered part of the residual spectrum is given, and
its Corollary 3.2, in which we prove that, assuming the conjectures, the symmetric and exterior
square L–functions are holomorphic inside the critical strip 0 < Re(s) < 1. The result on the
holomorphy of the L–functions inside 0 < Re(s) < 1 is one of the possible consequences of Arthur’s
conjectures listed without proofs in [5].

At the end of this Introduction we would like to thank G. Muić for his help and many fruitful
discussions on the subject. We are grateful to M. Tadić for his support and interest in our work.
We are also grateful to C. Mœglin for very useful conversations on Arthur’s conjectures, and for
important comments and advice concerning the earlier version of the paper. We would like to
thank W.T. Gan for explaining to us Arthur’s parameters. We are also grateful to the referee
whose comments helped in improving the presentation considerably. Finally, I wish to thank my
wife Tiki for always shining so brightly.

1. Decomposition of the Residual Spectrum

In order to fix the notation we recall very briefly the approach to the residual spectrum through
the Langlands spectral theory as explained in [14] and [12]. See [14] for more details. The exposition
is adjusted to the special case considered in this paper, i.e. the Siegel maximal parabolic subgroup
of a split classical group.

Let k be an algebraic number field, kv its completion at a place v and A the ring of adèles
of k. For a positive integer n, let Gn denote either the k–split symplectic group Sp2n given as
the group of isometries of a 2n–dimensional symplectic space over k, or one of the k–split special
orthogonal groups SO2n and SO2n+1 given by the group of determinant one isometries of a 2n and
2n+1–dimensional orthogonal space over k, respectively. Throughout this paper we assume n > 2.

Let T be the maximal k–split torus of Gn, and we fix once for all the choice of the Borel subgroup
B with the unipotent radical U . This choice determines the set of positive roots Σ+ inside the set
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of roots Σ of Gn with respect to T . Let

∆ = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn}
be the set of simple roots, where ei is the projection of T to its ith coordinate and αn = 2en if
Gn = Sp2n, αn = en−1 + en if Gn = SO2n, and αn = en if Gn = SO2n+1. Let W be the Weyl group
of Gn with respect to T .

Let P be the maximal standard parabolic k–subgroup of Gn corresponding to the subset ∆\{αn}
of the set of simple roots ∆. We call P the Siegel maximal parabolic subgroup of Gn. In its Levi
decomposition P = MN , the Levi factor is M ∼= GLn, and N is the unipotent radical. By [20], P
is self–associate, unless Gn = SO2n and n is odd. Let W (M) be the set of Weyl group elements
w ∈ W , of minimal length in their left coset modulo the Weyl group of M , such that wMw−1 is
the Levi factor of a standard parabolic k–subgroup of Gn. Then, W (M) = {1, w0}, where w0 is
the unique Weyl group element such w0(∆ \ {αn}) ⊂ ∆.

Let a∗M,C be the complexification of the Z–module of k–rational characters of M . Since P is
maximal, a∗M,C is one–dimensional, and we identify s ∈ C with det⊗s. For s ∈ a∗M,C and a cuspidal
automorphic representation π of the Levi factor M(A) ∼= GLn(A), realized on a subspace Vπ of the
space of cusp forms on M(A), we form a parabolically induced representation

I(s, π) = IndGn(A)
P (A) (π|det |s) ,

where | · | is the adèlic absolute value, and the induction is normalized.
We proceed as in Section II.1 of [14]. Choosing a section fs of the induced representation, we

define the Eisenstein series by the analytic continuation from the domain of convergence of the
series

(1.1) E(s, g; fs, π) =
∑

γ∈P (k)\Gn(k)

fs(γg).

By Section IV.1 of [14], the Eisenstein series is a meromorphic function of s with finitely many
poles in the region Re(s) > 0, and all other singularities in the region Re(s) < 0. The poles in the
region Re(s) > 0 of the Eisenstein series attached to π determine the part of the residual spectrum
of Gn supported in the cuspidal datum of a cuspidal automorphic representation π of M(A).

If P is self–associate, the poles coincide with the poles of its constant term

(1.2) EP (s, g; fs, π) =
∫

N(k)\N(A)
E(s, ng; fs, π)dn

along the parabolic subgroup P . On the other hand, by Section II.1.7 of [14], the constant term
equals

(1.3) EP (s, g; fs, π) = fs(g) + M(s, π, w0)fs(g),

where M(s, π, w0) is the standard intertwining operator defined in Section II.1.6 of [14], where the
representative w̃0 for w0 in Gn(k) used in the defining integral is chosen as in [17]. Away from its
poles, it intertwines I(s, π) and I(w0(s), w0(π)), where the action of w0 on a∗M,C and π is given by
conjugation with w̃0 on M . Note that w0(s) = −s. In order to understand the singularities of the
Eisenstein series, one has to study the singularities of the standard intertwining operators.

If P is not self–associate, i.e. Gn = SO2n and n is odd, the constant term of the Eisenstein series
is non–trivial along P and Q, where Q is the standard parabolic subgroup with the Levi factor
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M ′ = w̃0Mw̃−1
0

∼= GLn. Observe that Q corresponds to ∆ \ {αn−1}. Those constant terms are
given by

(1.4) EP (s, g; fs, π) = fs(g),

and

(1.5) EP (s, g; fs, π) = M(s, π, w0)fs(g),

by Section II.1.7 of [14].
Let π ∼= ⊗vπv. At every place v, for the local unitary irreducible representation πv, the local

standard intertwining operator, denoted by A(s, πv, w0), is defined by the analytic continuation of
the local version of the integral defining the global ones. Then, by [12], one can define a scalar
meromorphic normalizing factor r(s, πv, w0) at all places v where πv is unramified. It is given in
terms of the local L–functions attached to the unramified representation πv. The main property of
the normalizing factor for places v where πv is unramified is that

A(s, πv, w0)f◦s,v = r(s, πv, w0)f̃◦−s,v,

where f◦s,v and f̃◦−s,v are the unique suitably normalized spherical vectors in the induced represen-
tations I(s, πv) and I(−s, w0(πv)).

Let fs = ⊗vfs,v be a decomposable section in I(s, π). Let S be a finite set of places containing
all the archimedean places such that for all v 6∈ S we have πv is unramified and fs,v = f◦s,v is the
unique suitably normalized spherical vector in I(s, πv). Let

rS(s, π, w0) =
∏

v 6∈S

r(s, πv, w0).

It is given in terms of the partial L–functions attached to π. Then the global standard intertwining
operator decomposes into

(1.6) M(s, π, w0)fs(g) = [⊗v∈SA(s, πv, w0)fs,v(g)]⊗ rS(s, π, w0)
[
⊗v 6∈S f̃◦−s,v(g)

]
.

Since every cuspidal automorphic representation of GLn(A) is generic, one can define as in [19] a
scalar meromorphic normalizing factor r(s, πv, w0) given in terms of the local L–functions attached
to πv at the remaining places. The precise formulas for the normalizing factors in our cases will be
given later when required. Let N(s, πv, w0) be the local normalized intertwining operator defined
at all places by

(1.7) A(s, πv, w0) = r(s, πv, w0)N(s, πv, w0).

Then, at places v where πv is unramified, we have

(1.8) N(s, πv, w0)f◦s,v = f̃◦−s,v.

The global normalizing factor r(s, π, w) is defined as the product of the local ones over all places.
It is given in terms of the global L–functions attached to π. Then, the global intertwining operator
(1.6) can be rewritten as

(1.9) M(s, π, w0)fs(g) = r(s, π, w0)
[
(⊗v∈SN(s, πv, w0)fs,v(g))⊗

(
⊗v 6∈S f̃◦−s,v(g)

)]
.

In view of (1.8), the square bracket is in fact

⊗vN(s, πv, w0)fs,v(g),



RESIDUAL SPECTRUM SUPPORTED IN SIEGEL MAXIMAL PARABOLIC SUBGROUP 5

and we denote by N(s, π, w0) the global normalized intertwining operator obtained in this way. In
other words

(1.10) N(s, π, w0)fs(g) =
[
(⊗v∈SN(s, πv, w0)fs,v(g))⊗

(
⊗v 6∈S f̃◦−s,v(g)

)]
,

and we usually write
M(s, π, w0) = r(s, π, w0)N(s, π, w0).

By (1.10), the holomorphy and non–vanishing of the global normalized intertwining operators
N(s, π, w0) in a certain region of a∗M,C reduces to the holomorphy and non–vanishing of the local
normalized operator at a finite number of places v ∈ S.

Theorem 1.1. Let Gn and P = MN be as above. Let π be a cuspidal automorphic representation
of M(A). Then, for the non–trivial element w0 ∈ W (M), the Langlands–Shahidi normalizing factor
r(s, π, w0) is given as

r(s, π, w0) =





L(s,π)
L(1+s,π)ε(s,π)

L(2s,π,∧2)
L(1+2s,π,∧2)ε(2s,π,∧2)

, for Gn = Sp2n,
L(2s,π,Sym2)

L(1+2s,π,Sym2)ε(2s,π,Sym2)
, for Gn = SO2n+1,

L(2s,π,∧2)
L(1+2s,π,∧2)ε(2s,π,∧2)

, for Gn = SO2n,

where the global L–functions and ε–factors are the products of the local ones which are defined
in [19]. The L–functions L(s, π,∧2) and L(s, π, Sym2) are the exterior and symmetric square L–
functions, respectively, and the L–function L(s, π) is the principal L–function.

The normalized intertwining operator N(s, π, w0) obtained using the Langlands–Shahidi normal-
izing factor r(s, π, w0) is holomorphic and non–vanishing for Re(s) ≥ 0. Hence, the poles inside
Re(s) ≥ 0 of the Eisenstein series attached to π coincide with the poles inside Re(s) ≥ 0 of the
normalizing factor r(s, π, w0).

Proof. The formula for r(s, π, w0) is given in [20]. The holomorphy and non–vanishing of N(s, π, w0)
for Re(s) ≥ 0 follows from the tempered case in [23] using the classification of the generic unitary
dual of GLn(kv) ([22], [21]). Therefore, the poles inside Re(s) ≥ 0 of the standard intertwining
operator M(s, π, w0), and thus of the Eisenstein series attached to π (cf. [14, Sect. IV.3.10]), coincide
with the poles of the normalizing factor r(s, π, w0). ¤

On the other hand, Section IV.3.12 of [14] provides a necessary condition for the existence
of a pole in the region Re(s) ≥ 0 for the Eisenstein series attached to a cuspidal automorphic
representation of the Levi factor of a maximal parabolic subgroup. We recall this condition in the
following Lemma. For the proof see [14, Sect. IV.3.12].

Lemma 1.2. Let Gn and P = MN be as above. Let π be a cuspidal automorphic representation
of M(A). If

• either P is not self–associate,
• or P is self–associate, but w0(π) and π do not belong to the same cuspidal datum,

then the Eisenstein series attached to π, and thus the standard intertwining operator M(s, π, w0),
has no poles in the region Re(s) ≥ 0.

In the following theorem we recall the well–known analytic properties of the symmetric and ex-
terior L–functions L(s, π, Sym2) and L(s, π,∧2) attached to a cuspidal automorphic representation
π of GLn(A). Except for the behavior inside the strip 0 < Re(s) < 1 in part (3) of the theorem,
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which follows from Lemma 1.2, these properties are independent of the spectral decomposition.
Note that for π as in part (2) of the theorem the possible poles of the symmetric and exterior L–
functions inside 0 < Re(s) < 1 are not known. In Section 3 we prove that if one assumed Arthur’s
conjectures, then it would follow that those L–functions are holomorphic inside that strip.

Theorem 1.3. Let π be a cuspidal automorphic representation of GLn(A).

(1) The L–functions L(s, π, Sym2) and L(s, π,∧2), as well as the principal L–function L(s, π),
are non–zero for Re(s) ≥ 1 and Re(s) ≤ 0. In particular, the denominators of the normal-
izing factors r(s, π, w0) given in Theorem 1.1 are non–zero for Re(s) ≥ 0.

(2) If π̃ ∼= π ⊗ | det |it, with i =
√−1 and t ∈ R (such t is unique if it exists), then exactly one

of the L–functions L(s, π, Sym2) and L(s, π,∧2) is holomorphic in the region Re(s) ≥ 1
and Re(s) ≤ 0, while the only poles in that region of the other L–function are simple poles
at s = 1 + it and s = it.

(3) If there is no t ∈ R such that π̃ ∼= π ⊗ |det |it, with i =
√−1, then the L–functions

L(s, π, Sym2) and L(s, π,∧2) are both entire.

Proof. We give a sketch of proof for each claim separately.

(1) This is the non–vanishing result of [18]. The second claim follows, since the argument of
the L–functions in denominators are of the form 1 + s or 1 + 2s.

(2) Let π̃ ∼= π ⊗ |det |it, with t ∈ R. Write the Rankin–Selberg L–function as

L(s, π × π) = L(s, π,∧2)L(s, π, Sym2).

The analytic properties of L(s, π×π) follow from the integral representation for the Rankin–
Selberg L–functions developed in [9], [10], [11]. It has simple poles at s = 1 + it and s = it,
and is holomorphic elsewhere. Since by (1), i.e. [18], both L–functions on the right hand
side are non–zero for Re(s) ≥ 1 and Re(s) ≤ 0, they are both holomorphic in that region
except at s = 1 + it and s = it where exactly one of them has a simple pole.

(3) Since in this case the Rankin–Selberg L–function L(s, π × π) is entire, the same argument
as in the proof of (2) gives holomorphy in the region Re(s) ≥ 1 and Re(s) ≤ 0. However,
for the strip 0 < Re(s) < 1, one needs Lemma 1.2. Since there is no t ∈ R such that
π̃ ∼= π ⊗ | det |it, and w0(π) ∼= π̃, it follows that w0(π) and π do not belong to the same
cuspidal datum. Hence, by Lemma 1.2, the Eisenstein series attached to π for any Gn(A)
has no poles inside Re(s) > 0. However, by Theorem 1.1 and taking into account property
(1) i.e. [18], the poles of the Eisenstein series inside Re(s) > 0 coincide with the poles of
the numerator of the normalizing factors r(s, π, w0). Taking Gn = SO2n+1 and Gn = SO2n

shows that the symmetric and exterior square L–functions, respectively, are holomorphic
for Re(s) > 0. Then, by the functional equation, they are entire.

¤

The following definition is based on Theorem 1.3. Namely, part (2) of that Theorem assures that
every π such that π̃ ∼= π is either symplectic or orthogonal.

Definition 1.4. Let π be a selfdual cuspidal automorphic representation of GLn(A), i.e. its contra-
gredient π̃ is isomorphic to π. Then, we say that π is symplectic (resp. orthogonal) if the exterior
(resp. symmetric) square L–function has a pole at s = 1 and s = 0.
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When decomposing the residual spectrum, it is convenient to assume that a cuspidal automorphic
representation π of M(A) used to define the Eisenstein series is normalized in such a way that all
the poles inside Re(s) > 0 of the Eisenstein series are real. This assumption is not restricting
since it can be achieved by replacing π with an appropriate element of the same cuspidal datum.
Namely, there is a real number t ∈ R such that π⊗|det |it satisfies that assumption, where i =

√−1.
Therefore, in what follows we assume that π is chosen in such a way. In the following theorem,
combining properties of L–functions with the condition of Lemma 1.2, we obtain the decomposition
of the part of residual spectrum supported in a Siegel maximal parabolic subgroup of Gn.

Theorem 1.5. Let P = MN be the Siegel maximal parabolic k–subgroup of Gn, with n ≥ 2. Let
L2

res,P (Gn) denote the part of the residual spectrum spanned by the residues of the Eisenstein series
attached to cuspidal automorphic representations of M(A) at the poles inside Re(s) > 0 (which
are all real by our assumption on cuspidal automorphic representations of M(A)). Then, unless
Gn = SO2n with n odd, the space L2

res,P (Gn) decomposes into

L2
res,P (Gn) ∼=

⊕

eπ∼=π

⊕

0<s0≤1/2
L(2s0,π,r)=∞

L(s0,π)6=0 if Gn=Sp2n

A(s0, π),

with π̃ the contragredient of π, and r = ∧2 if Gn = Sp2n, SO2n, and r = Sym2 if Gn = SO2n+1,
where A(s0, π) is the space of automorphic forms on Gn(A) spanned by the residues

(s− s0)E(s, g; fs, π)
∣∣∣
s=s0

at s = s0 of the Eisenstein series attached to π. The space of automorphic forms A(s0, π) is
isomorphic to the image of the normalized intertwining operator N(s0, π, w0). If Gn = SO2n and
n is odd, then L2

res,P (SO2n) is trivial.

Proof. By Lemma 1.2, i.e. [14, Sect. IV.3.12], if P is not self–associate, then the Eisenstein series
attached to any cuspidal automorphic representation of M(A) does not have a pole inside Re(s) > 0.
Thus, in the case Gn = SO2n and n odd, L2

res,P (SO2n) is trivial.
Hence, let us assume that P is self–associate, i.e. for Gn = SO2n we have n is even. Since

w0(π) ∼= π̃, again by Lemma 1.2, i.e. [14, Sect. IV.3.12], the Eisenstein series attached to π has no
pole inside s > 0 if π̃ 6∼= π. This implies the condition π̃ ∼= π in the first sum of the decomposition.

Let π̃ ∼= π. For the conditions in the second sum we refer to the normalization of intertwining
operators discussed in this section. By Theorem 1.1, the poles inside s > 0 of the Eisenstein series
are the same as the poles of the normalizing factors r(s, π, w0). The normalizing factors are given
in Theorem 1.1, and since the denominators are holomorphic and non–zero at s inside Re(s) > 0 by
Theorem 1.3(1), their poles at s > 0 are given by the poles of the numerators. This is precisely what
the conditions in the second sum provide. There are no poles for s > 1/2 because the L–functions
are holomorphic inside Re(s) > 1.

The Langlands square–integrability criterion (Section I.4.11 of [14]) is always satisfied because
w0(s0) = −s0 < 0 for every s0 > 0. From equation (1.3), the constant terms of the residues of the
Eisenstein series spanning the space of automorphic forms A(s0, π) are equal to N(s0, π, w0)fs up
to a non–zero constant. Hence, A(s0, π) is isomorphic to the image of N(s0, π, w0). ¤
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2. Arthur’s Conjectures

In this Section we recall Arthur’s conjectural description of the discrete spectrum for the split
connected classical groups. In particular, we study possible Arthur’s parameters for the residual
representations supported in the Siegel maximal parabolic subgroup P of Gn obtained in Section
1. The main references are certainly [1], [2], [3], but see also [4] and [13]. Here we follow Section
30 of [3].

Let Gn be one of the split connected classical groups defined over an algebraic number field k as
in Section 1. Let Ĝn be the Langlands dual group of Gn, and let

(2.1) N =
{

2n + 1, if Gn = Sp2n,
2n, if Gn = SO2n+1 or Gn = SO2n.

Then,

(2.2) Ĝn =
{

SON (C), if Gn = Sp2n or Gn = SO2n,
SpN (C), if Gn = SO2n+1.

In the former case we say Ĝn is orthogonal or of the orthogonal type, and in the latter Ĝn is
symplectic or of symplectic type.

In Definition 1.4 the concept of symplectic and orthogonal for a selfdual cuspidal automorphic
representation π of GLn(A) is defined in terms of the poles at s = 1 and s = 0 of the exterior and
symmetric square L–functions L(s, π,∧2) and L(s, π, Sym2), respectively. The following Theorem,
which is a part of Arthur’s conjectural description of the discrete spectrum for Gn (Section 30 of
[3]), relates those concepts with the symplectic or orthogonal type of the dual group of the twisted
endoscopic group associated to π. The global induction hypothesis (page 240 of [3]), which is also
a part of Arthur’s conjectures, implies that the dual of the twisted endoscopic group associated
to π is indeed either symplectic or orthogonal group. Moreover, it is an orthogonal group if ωπ is
nontrivial or n is odd.

Theorem 2.1 (Arthur, Thm 30.3.(a) of [3]). A selfdual cuspidal automorphic representation π
of GLn(A) is symplectic (resp. orthogonal) if and only if the dual of the twisted endoscopic group
associated to π is a symplectic (resp. orthogonal) group. In particular, if the central character ωπ

is nontrivial or n is odd, then π is orthogonal.

For Arthur’s description of the discrete spectrum, we first introduce Arthur’s parameters for Gn.

Definition 2.2 (Arthur’s parameters for Gn). Let S(Gn) be the set of formal sums of formal tensor
products

ψ = (σ1 £ ν(m1)) ¢ . . . ¢ (σ` £ ν(m`))

such that
(i) σi is a selfdual irreducible cuspidal automorphic representation of GLni(A) for a positive

integer ni,
(ii) mi is a positive integer, and ν(mi) is the unique mi–dimensional irreducible algebraic rep-

resentation of SL2(C),
(iii) N = n1m1 + . . . n`m`, where N is given by (2.1),
(iv) for i 6= j we have σi � σj or mi 6= mj,
(v) the product

∏`
i=1 ωmi

σi
is trivial, where ωσi : k×\A× → C× is the central character of σi,
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(vi) • if Ĝn is orthogonal, then, for every i, either σi is orthogonal and mi odd, or σi is
symplectic and mi even,

• if Ĝn is symplectic, then, for every i, either σi is orthogonal and mi even, or σi is
symplectic and mi odd.

Two such formal sums ψ = ¢`
i=1(σi £ ν(mi)), ψ′ = ¢`′

j=1(σ
′
j £ ν(m′

j)) ∈ S(Gn) are equivalent if
and only if ` = `′ and there is a permutation p of {1, . . . , `} such that σ′j ∼= σp(i) and m′

j = mp(i).
Arthur’s parameter for Gn is an equivalence class in S(Gn), and abusing the notation we denote
by ψ the equivalence class of an element ψ ∈ S(Gn). The set of all Arthur’s parameters for Gn we
denote by Ψ2(Gn).

Arthur attaches in Theorem 30.2.(a) of [3] to every A–parameter ψ ∈ Ψ2(Gn) a global A–packet
Π̃ψ of nearly equivalent representations of Gn(A). Roughly speaking a global A–packet is built
up of the local A–packets Π̃ψv attached to ψ at every place v in Theorem 30.1 of [3]. At almost
all non–Archimedean places, where the local components σi,v of all σi in the A–parameter ψ are
unramified, Π̃ψv contains the unramified representation denoted by π◦v with the Satake parameter

c(ψv) = (c(σ1,v)⊗ c(ν(m1)))⊕ . . .⊕ (c(σ`,v)⊗ c(ν(m`))) ∈ Ĝn,

where c(σi,v) ∈ GLni(C) is the Satake parameter of the unramified representation σi,v of GLni(kv),
and

c(ν(mi)) = diag
(

q
mi−1

2
v , q

mi−3

2
v , . . . , q

−mi−1

2
v

)
,

with qv the number of elements of the residue field of kv. Then all the members of the global
A–packet Π̃ψ, as defined in Theorem 30.2.(a) of [3], are representations of Gn(A) of the form
π ∼= ⊗vπv where πv ∈ Π̃ψv and πv

∼= π◦v at almost all v. The representations in the global A–packet
are just possible representations appearing in the discrete spectrum L2

disc(Gn). Theorem 30.2.(b)
gives the precise condition required of π ∈ Π̃ψ to belong to L2

disc(Gn). However, we do not recall
it here because we are interested in the A–parameters of the residual representations obtained in
Section 1 which certainly belong to the discrete spectrum. These A–parameters are given in the
following proposition. See Section 1 for the notation concerning the structure of Gn and the induced
representations.

Proposition 2.3. Let n > 2 be an integer, and let P be the Siegel maximal proper standard
parabolic k–subgroup of Gn (corresponding to ∆ \ {αn}). Let s0 > 0 be a real number, and π a
selfdual cuspidal automorphic representation of the Levi factor M(A) ∼= GLn(A) of P (A). If the
induced representation

IndGn(A)
P (A) (π| det |s0)

has a constituent in the discrete spectrum of Gn(A) with the A–parameter ψ ∈ Ψ2(Gn), then
s0 = 1/2, π and Ĝn are of the opposite type, and

ψ =
{

(π £ ν(2)) ¢ (1 £ ν(1)) , if Gn = Sp2n,
π £ ν(2), if Gn = SO2n+1 or Gn = SO2n,

where 1 is the trivial character of k×\A×.
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Proof. Let v be a place of k where πv is unramified and let c(πv) ∈ GLn(C) be its Satake parameter.
The unramified constituent of the local component at v of the induced representation

IndGn(A)
P (A) (π| det |s0)

is given by the Frobenius–Hecke conjugacy class in Ĝn{
(c(πv)⊗ diag (qs0

v , q−s0
v ))⊕ 1, for Gn = Sp2n,

c(πv)⊗ diag (qs0
v , q−s0

v ) , for Gn = SO2n+1 or Gn = SO2n.

At almost all places, the A–parameter ψ of a constituent of the induced representation should give
the same conjugacy class in Ĝn. Hence, ψ is of the form

ψ =
{

(π £ ν(m)) ¢ (χ £ ν(1)) , for Gn = Sp2n,
π £ ν(m), for Gn = SO2n+1 or Gn = SO2n,

where m = 2s0 + 1. Since m = 2 by condition (iii) in Definition 2.2, the real number s0 > 0 is
equal to s0 = 1/2. The character χ must be trivial due to (v) in Definition 2.2. The condition on
the type of π comes from (vi) in Definition 2.2. ¤

3. Consequences of Arthur’s Conjectures

All the results of this Section depend on Arthur’s conjectural description of the discrete spectrum
of Gn(A) which we recalled in Section 2 following Section 30 of [3].

Theorem 3.1. Let n > 2 be an integer, and P the Siegel maximal parabolic k–subgroup of Gn

(corresponding to ∆ \ {αn}). Assume Arthur’s conjectural description of the discrete spectrum of
Gn(A) as stated in Section 2. Then, in the notation of Theorem 1.5, the part L2

res,P (Gn) of the
residual spectrum of Gn(A) decomposes into

L2
res,P (Gn) =

⊕

eπ∼=π
π and bGn of opposite type
L(1/2,π)6=0 if Gn=Sp2n

A(1/2, π).

In particular, if n is odd and Ĝn orthogonal (i.e. Gn = Sp2n or Gn = SO2n), then L2
res,P (Gn) is

trivial.

Proof. If the space A(s0, π) for 0 < s0 ≤ 1/2 appears in the decomposition of L2
res,P (Gn), then

it is isomorphic to a constituent of the induced representation IndGn(A)
P (A) (π| det |s0). However, by

Proposition 2.3, Arthur’s conjectural description of the discrete spectrum of Gn(A) implies that
s0 = 1/2, and π and Ĝn are of the opposite type. Since π is of the opposite type of Ĝn, the L–
function L(s, π, r) appearing in the decomposition of Theorem 1.5 has a pole at s = 1 by Definition
1.4. The condition L(1/2, π) 6= 0 if Gn = Sp2n is already in the decomposition of Theorem 1.5, and
assures that the pole is not cancelled by the zero of the principal L–function.

If n is odd, π is always orthogonal (see Theorem 2.1). Hence, if Ĝn is also orthogonal, the
condition on the type of π and Gn is never satisfied. Thus, L2

res,P (Gn) is trivial. ¤

As mentioned just before Theorem 1.3, the analytic behavior of the symmetric and exterior square
L–functions inside the strip 0 < Re(s) < 1 are not known. However, comparing the unconditional
spectral decomposition of Theorem 1.5, with the spectral decomposition of Theorem 3.1 which
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depends on Arthur’s conjectures, and having in mind the relation of the poles of the Eisenstein
series and those of L–functions, one obtains the following corollary. Although this corollary does
not provide new information on the spectral decomposition, it shows that once Arthur’s conjectures
are proved, the analytic behavior of the symmetric and exterior L–functions, which is of importance
itself, would be an immediate consequence.

Corollary 3.2. Let n ≥ 2 be an integer, and let π be a cuspidal automorphic representation of
GLn(A) such that π̃ ∼= π ⊗ |det |it with t ∈ R. Assume Arthur’s conjectural description of the
discrete spectrum of Gn(A) as stated in Section 2. Then, the exterior and symmetric square L–
functions L(s, π,∧2) and L(s, π, Sym2) are holomorphic inside the strip 0 < Re(s) < 1.

Proof. Assume that the L–function L(s, π, r), where r = ∧2 or r = Sym2, has a pole at s0 with
0 < Re(s0) < 1. Let π0

∼= π ⊗ |det |it/2. Then, π0 is selfdual, and by equation (3.12) of [19] and
Section 6 of [20], the L–function L(s, π0, r) has a pole at s = Re(s0).

Consider first the case r = Sym2. Then, by Theorem 1.1 and Theorem 1.1, the Eisenstein
series for Gn = SO2n+1 attached to π0 has a pole at s = Re(s0)/2. Taking the residue at s =
Re(s0)/2 gives the space A(Re(s0)/2, π) in the part L2

res,P (SO2n+1) of the residual spectrum of
SO2n+1(A). It is non–trivial since it is isomorphic to the image of the normalized intertwining
operator N(Re(s0)/2, π, w0) which is holomorphic and non–vanishing. However, the decomposition
of Theorem 3.1 shows that, assuming Arthur’s conjectures, the space A(Re(s0)/2, π) with 0 <
Re(s0)/2 < 1/2 does not appear. This is a contradiction, and thus we have proved that, assuming
Arthur’s conjectures, the symmetric square L–function has no poles inside the strip 0 < Re(s) < 1.

For the case r = ∧2, we have already proved in part (3) of Theorem 1.3, without assuming
Arthur’s conjectures, that L(s, π,∧2) is entire if n is odd. Hence, it remains to consider n is even.
In that case, taking Gn = SO2n instead of Gn = SO2n+1, the same argument as above applies. ¤
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