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Abstract. The cohomology of an arithmetically defined subgroup of the symplectic Q–group Spn

is closely related to the theory of automorphic forms. This paper gives a structural account of that
part of the cohomology which is generated by residues or derivatives of Eisenstein series of relative
rank one. In particular we determine a set of conditions subject to which residues of Eisenstein
series may give rise to non-vanishing cohomology classes. A non-vanishing condition on the value
at s = 1/2 of certain automorphic L-functions which naturally appear in the constant terms of the
Eisenstein series plays a major role.

1. Introduction

The cohomology of an arithmetically defined subgroup Γ of the algebraic Q–group G = Spn of
symplectic transformations on Q2n with its standard alternating form can be interpreted in terms
of the automorphic spectrum of Γ. With this framework in place, there is a sum decomposition
of the cohomology into the cuspidal cohomology (i.e. classes represented by cuspidal automorphic
forms) and the so–called Eisenstein cohomology constructed as the span of appropriate residues
or derivatives of Eisenstein series. These are attached to cuspidal automorphic forms π on the
Levi components of proper parabolic Q–subgroups of G. The main objective of this paper is to
give a structural account of the building blocks of the Eisenstein cohomology which correspond to
maximal parabolic Q–subgroups.

Given a class {P} of associate maximal parabolic Q–subgroups of G we describe in detail which
types (in the sense of [30]) of Eisenstein cohomology classes occur and how their actual construction
is related to the analytic properties of certain Euler products (or automorphic L–functions) attached
to π. We exactly determine in which way residues of the Eisenstein series in question may give
rise to non–trivial classes in the cohomology of Γ. The very existence of these residual Eisenstein
cohomology classes is subject to a quite restrictive set of arithmetic conditions on the automorphic
L–functions involved. In particular, a non–vanishing condition on the value of a certain Euler
product L(s, π) at s = 1/2 plays an important role in this discussion. These L–functions naturally
appear in the constant terms of the Eisenstein series under consideration. Determining these
conditions in an explicit form and viewing them in the cohomological context form the focal points
of our investigation.

This work may be viewed as a contribution to the program, initiated by Harder in the case of GL2

over a number field [11], [13], to understand that part of the cohomology of an arithmetic group
which is related to the theory of Eisenstein series. The existence of these classes, in particular,
their arithmetic nature and close relation to the theory of L–functions are the core issues of these
investigations. There are some results for groups G of small Q-rank other than GL2 or very specific
types of Eisenstein series [12], [8], [24], [30], [32], [33]. In describing in the case of the symplectic
group Spn that part in the cohomology which is attached to relative rank one Eisenstein series this
work concerns an algebraic group of an arbitrary Q-rank, the case n = 2 being already treated in
[31], [34].

Second author’s work supported in part by FWF Austrian Science Fund, grant number P 21090 - N13.
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We describe more precisely the results of this paper. As is the case in the theory of automorphic
representations, the relation between the cohomology of arithmetically defined groups and the
corresponding theory of automorphic forms for G are best understood in terms of the cohomology
H∗(G, E) of G defined as the inductive limit over congruence subgroups of G(Q). The coefficient
system E is given by a finite–dimensional representation of G(C) in a complex vector space. This
cohomology group has an interpretation in relative Lie algebra cohomology. By [7, Theorem 18],
this takes the form

H∗(G,E) = H∗(spn,KR;AE ⊗C E),
where AE denotes the space of automorphic forms on G(Q)\G(A) with respect to (ν, E) as defined
in Section 2.

By a decisive result, first proved by Langlands [21], [3], and its refinement [8], the space AE of
automorphic forms permits a decomposition (as a direct sum of (spn,KR)–modules) along their
cuspidal support. More precisely, let C denote the set of classes of associate parabolic Q–subgroups
of G. Then we have

AE =
⊕

{P}∈C

⊕

φ∈ΦE,{P}

AE,{P},φ,

where the second sum ranges over the set ΦE,{P} of classes φ = {φP }P∈{P} of associate irre-
ducible cuspidal automorphic representations of the Levi components of elements of {P}. The
space AE,{P},φ consists of all functions of uniform moderate growth whose constant term along
each P ∈ {P} belongs to the isotypic component attached to π ∈ φP . This decomposition induces
a direct sum decomposition

H∗(G,E) =
⊕

{P}∈C

⊕

φ∈ΦE,{P}

H∗(spn,KR;AE,{P},φ ⊗C E)

in cohomology. The summand in this decomposition indexed by {G} is called the cuspidal co-
homology of G with coefficients in E, to be denoted H∗

cusp(G, E). Due to the results in [7], the
cohomology classes in the summands indexed by {P} ∈ C, P 6= G, can be described by suitable
derivatives of Eisenstein series or residues of these. These classes span the so called Eisenstein
cohomology, to be denoted H∗

Eis(G,E).
Our objects of concern are the families of summands H∗(spn,KR;AE,{P},φ ⊗ E) with {P} an

associate class of maximal parabolic Q–subgroups of G = Spn. Up to conjugacy, a maximal
parabolic Q–subgroup has the form Pr = LrNr, r = 1, . . . , n, with Levi component Lr

∼= GLr ×
Spn−r if r < n, and Ln

∼= GLn if r = n, and Nr the unipotent radical of Pr. Since such a maximal
parabolic subgroup Pr is conjugate to its opposite parabolic subgroup P opp

r , the conjugacy class Pr

of Pr is self–opposite, and the associate class {Pr} coincides with Pr.
Given an associate class {Pr} ∈ C, with Pr maximal parabolic, r = 1, . . . , n, and φ ∈ ΦE,{Pr},

the space AE,{Pr},φ has a two step filtration by the space LE,{Pr},φ consisting of square integrable
automorphic forms in AE,{Pr},φ. For a given automorphic realization Vπ of an irreducible cuspidal
representation π of the Levi factor of Pr, we introduce a subspace LE,{Pr},φ,Vπ

of LE,{Pr},φ. For a
precise definition of these subspaces see Section 5. Note that in the case r = n, due to multiplicity
one for GLn(A), the spaces LE,{Pn},φ and LE,{Pr},φ,Vπ

coincide.
We are ready now to state the main results of the paper. They give a set of necessary conditions

for non–vanishing of the Eisenstein cohomology classes in H∗(spn,KR;LE,{Pn},φ,Vπ
⊗ E). These

conditions are a subtle combination of arithmetic and geometric conditions. The former assure
that the Eisenstein series in question has a pole, and the latter are the necessary conditions for the
cohomology class so obtained to be non–vanishing. The first of the two theorems below refers to
the case P = Pn (cf. Theorem 8.2), and the second one to the case P = Pr with r < n (cf. Theorem
8.5).
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Theorem A. Let E be the irreducible representation of Spn(C) of highest weight

Λ = λ1e1 + λ2e2 + . . . + λnen,

where all λk are integers and λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Let {Pn} be the associate class of the standard
maximal proper parabolic Q–subgroup Pn of Spn, with the Levi decomposition Pn = LnNn, where
the Levi factor Ln

∼= GLn. Let φ be the associate class of a cuspidal automorphic representation τ
of Ln(A).

The cohomology space
H∗(spn,KR;LE,{Pn},φ ⊗C E)

is trivial except possibly in the case where the following conditions are satisfied:
(1) a cuspidal automorphic representation τ is selfdual, L(s, τ,∧2) has a pole at s = 1, and

L(1/2, τ) 6= 0,
(2) the Q–rank n of the algebraic group Spn/Q is even,
(3) the highest weight Λ of the irreducible representation E satisfies λ2l−1 = λ2l for all l =

1, 2, . . . , n/2,
(4) the infinite component τ∞ of τ has the infinitesimal character

χτ∞ =
n/2∑

l=1

[
− (

µl + (n + 3/2− 2l)
)
el +

(
µl + (n + 3/2− 2l)

)
en+1−l

]
,

where µl = λ2l−1 = λ2l, i.e. τ∞ is a tempered representation fully induced from n/2 unitary
discrete series representations of GL2(R) having the lowest O(2)–types 2µl +2n− 4l +4 for
l = 1, . . . , n/2.

In the case of an associate class {Pr}, r 6= n, the situation is even slightly more complicated.
Thus we only consider the case of the trivial coefficient system E = C, since this is the most
interesting case in view of the results in [33].

Theorem B. Let E = C be the trivial representation of Spn(C). Let r < n, and let {Pr} be
the associate class of the standard maximal proper parabolic Q–subgroup Pr of Spn, with the Levi
decomposition Pr = LrNr, where the Levi factor Lr

∼= GLr ×Spn−r. Let φ be the associate class of
a cuspidal automorphic representation π ∼= τ ⊗ σ of Lr(A) such that a fixed realization Vπ of π in
the space of cusp forms on Lr(A) is globally ψ–generic (with respect to a fixed non–trivial additive
character ψ of A/Q).

Let

χπ∞ =
br/2c∑

l=1

(−xlel + xler+1−l)−
n−r∑

l′=1

yl′er+l′

be the infinitesimal character of the Archimedean component π∞ of π, where bxc denotes the greatest
integer not greater than x. Then, the cohomology space

H∗(spn,KR;LC,{Pr},φ,Vπ
)

is trivial except possibly in the case where one of the following two sets of conditions is satisfied:
(A) (a1) a cuspidal automorphic representation τ is selfdual, L(s, τ,∧2) has a pole at s = 1, and

L(1/2, τ ×Πj) 6= 0 for all Πj appearing in the global functorial lift of σ,
(a2) r is even,
(a3) the coefficients xl of the infinitesimal character χπ∞ belong to the set

xl ∈ {3/2, 5/2, . . . , n− 1/2},
and |xl1 − xl2 | 6= 0, 1 for l1 6= l2,
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(a4) the coefficients yl′ of the infinitesimal character χπ∞ are uniquely determined (up to
sign) by the coefficients xl through the formula

yl′ = n + 1− kl′ ,

for l′ = 1, . . . , n− r, where

kl′ ∈ Sn \ {n− xl + 1/2, n− xl + 3/2 : l = 1, . . . , r/2}.
(B) (b1) a cuspidal automorphic representation τ is isomorphic to one of Πj appearing in the

global functorial lift of σ (this implies that τ is selfdual, and r ≤ 2n+1
3 ),

(b2) the coefficients xl of the infinitesimal character χπ∞ belong to the set

xl ∈
{ {2, 3, . . . , n}, if r is even,
{3, 4, . . . , n}, if r is odd,

and |xl1 − xl2 | 6= 0, 2 for l1 6= l2,
(b3) the coefficients yl′ of the infinitesimal character χπ∞ are uniquely determined (up to

sign) by the coefficients xl through the formula

yl′ = n + 1− kl′

for l′ = 1, . . . , n− r, where

kl′ ∈
{

Sn \ {n− xl, n− xl + 2 : l = 1, . . . , r/2}, if r is even,
Sn \ {n, n− xl, n− xl + 2 : l = 1, . . . , br/2c}, if r is odd.

Let us say a few words about the techniques applied in the proof of these theorems. The
arithmetic conditions which provide a pole of the Eisenstein series are (1) in Theorem A, and (a1)
and (b1) in Theorem B. Determination of the poles of the Eisenstein series relies on the Langlands
spectral theory [20], [28]. The arithmetic conditions on the automorphic L–functions attached to π
are obtained by passing to the constant term of the Eisenstein series, and applying the Langlands–
Shahidi method for the normalization of intertwining operators in terms of L–functions [37] (see
also [5, Section 11]). This method assumes that π is globally ψ–generic, and this is the only reason
for such assumption in Theorem B.

However, the Langlands decomposition depends on the analytic properties of the L–functions
involved. Those properties are not known for all the L–functions, but the geometric conditions
reduce the consideration to the region where they are known. This seems to be a consequence of
the subtle interplay between arithmetic and geometry.

The geometric conditions follow from the non–vanishing conditions for the Eisenstein cohomology
space H∗(spn, KR;AE,{Pr},φ ⊗C E). They give the remaining conditions in the theorems, and as
already mentioned reduce the study of the poles of the Eisenstein series to the region where the
poles of the automorphic L–functions in question are known. The geometric conditions are derived
from the study of the way in which the Eisenstein series may give rise to a non–trivial cohomology
class [24, Section 3], [33, Remark 4.12]. These are reduced to certain abstract equations involving
the Weyl group and the root system. In unfolding the conditions the main tool is a variant of [40,
Lemma 4.3] giving explicitly the action of the Weyl group.

In the case of P = Pn, we also obtain in Theorem 8.3 that the cohomology classes coming from
LE,{Pn},φ are separated from the ones coming from AE,{Pn},φ/LE,{Pn},φ by the degree in which they
occur. More precisely, the residual cohomology classes (i.e. those coming from LE,{Pn},φ) occur
only in degrees strictly lower than half the dimension of the space XSpn(R) = Spn(R)/KR, while
the non-residual Eisenstein cohomology classes only occur in higher degrees.

Finally, let us describe the organization of the paper. In Section 2 the spaces of automorphic
forms required in the sequel are introduced. In Section 3, we define the automorphic cohomology,
and recall its decomposition along the cuspidal support. In Section 4 we turn our attention to the
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symplectic group by reviewing its structure in order to fix the notation. Section 5 deals with the
analytic properties of the Eisenstein series in question, and describes them in terms of the analytic
properties of certain automorphic L–functions. Section 6 recalls the construction of Eisenstein
cohomology classes and gives the non–vanishing conditions for those classes. Section 7 makes the
non–vanishing conditions explicit for the case of maximal parabolic subgroups of the symplectic
group. Finally, in Section 8 we combine the results of previous sections to obtain the main results
of the paper, namely the theorems discussed above.

Notation

(1) Let Q be the field of rational numbers. We denote by V the set of places of Q, and by
Vf the set of finite places. The Archimedean place is denoted by v = ∞. Let Qv be the
completion of Q at v, and Zv the ring of integers of Qv for v ∈ Vf . Let A (resp. I) be the
ring of adeles (resp. the group of ideles) of Q. We denote by Af the finite adeles.

(2) Let G be a connected reductive algebraic group defined over Q. Suppose that a minimal
parabolic Q–subgroup P0 of G and a Levi decomposition P0 = L0N0 of P0 over Q have been
fixed. By definition, a standard parabolic Q–subgroup of G is a parabolic Q–subgroup P
of G with P0 ⊂ P . Then P has a unique Levi decomposition P = LP NP over Q such that
LP ⊃ L0. When the dependency on the parabolic subgroup is clear from the context, we
suppress the subscript P from the notation.

Let AP be the maximal Q–split torus in the center of LP . In the case of the minimal par-
abolic Q–subgroup P0 we write A0 = AP0 . Then there is a unique Langlands decomposition
P = MP AP NP with MP ⊃ M0 and AP ⊂ A0.

Two standard parabolic Q-subgroups P and Q of G are called associate if AP and AQ

are conjugate in G under an element in G(Q).
Let g, p, ... denote the Lie algebras of G(R), P (R), . . . . The Lie algebras of the factors in

the Langlands decomposition of P will be denoted by mP , aP , nP , and lP = mP +aP . We put
ǎ0 = X∗(P0)⊗R, where X∗ denotes the group of Q–rational characters, and similarly for a
given standard parabolic Q–subgroup P ⊃ P0, ǎP = X∗(P ) ⊗ R. Then aP = X∗(AP ) ⊗ R,
where X∗ denotes the group of Q–rational cocharacters, and a0 = X∗(A0) ⊗ R are in a
natural way in duality with ǎP and ǎ0; the pairing is denoted by 〈 , 〉. In particular, aP

and a0 are independent of the Langlands decomposition up to canonical isomorphism. The
inclusion AP ⊂ A0 defines aP → a0, and the restriction of characters of P to P0 defines
ǎP → ǎ0 which is inverse to the dual of the previous map. Thus, one has direct sum
decompositions a0 = aP ⊕ aP

0 and ǎ0 = ǎP ⊕ ǎP
0 respectively. Let a

Q
P be the intersection

of aP and a
Q
0 in a0. Similar notation is used for ǎ. By mG we denote the intersection

∩ker(dχ) of the kernels of the derivatives of all rational characters χ ∈ X∗(G). Then we
put aG

P := aP ∩mG; its dimension is called the rank of P . We denote by Φ ⊂ X∗(A0) ⊂ ǎ0

the set of roots of A0 in g; it is a root system in the vector space ǎ0. The ordering on Φ is
fixed so that Φ+ coincides with the set of roots of A0 in P0. Let ∆ ⊂ Φ be the set of simple
positive roots. If P is a standard parabolic Q–subgroup of G the Weyl group of A0 in LP

is denoted by WP . In particular, we write W = WG for the Weyl group of the root system
Φ. Note that WP is a subgroup of W .

(3) Let U(g) be the universal enveloping algebra of g, and let Z(g) be the center of U(g).
Any element D in U(g) defines a differential operator on the space C∞(AG(R)0 \G(A)) of
smooth complex valued functions on AG(R)0 \G(A) by right differentiation with respect to
the real component of g ∈ G(A). This operator is denoted by f 7→ Df . It commutes with
the action of G(R) given by left translation. If D ∈ Z(g) this operator also commutes with
the action of G(R) by right translation.
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2. Spaces of Automorphic Forms

2.1. Parabolic subgroups. Let G be a connected reductive algebraic group defined over Q. Fix
a minimal parabolic subgroup P0 of G defined over Q and a Levi subgroup L0 of P0 defined over
Q. One has the Levi decomposition P0 = L0N0 with unipotent radical N0. By definition, a
standard parabolic subgroup P of G is a parabolic subgroup P of G defined over Q that contains
P0. Analogously, a standard Levi subgroup L of G is a Levi subgroup of any standard parabolic
subgroup P of G such that L contains L0. A given standard parabolic subgroup P of G has a
unique standard Levi subgroup L. We denote by P = LN the corresponding Levi decomposition
of P over Q.

2.2. Maximal compact subgroup. By definition, the adele group G(A) of the group G is the
restricted product G(A) =

∏′
v∈V

G(Qv) with respect to the maximal compact subgroups G(Zv) ⊂
G(Qv), v ∈ Vf . The group G(A) is the direct product of the group G(R) of real points of G and
the restricted product

∏′
v∈Vf

G(Qv) =: G(Af ). We fix a maximal compact subgroup K of G(A)
subject to the following condition. Since it is of the form K =

∏
v∈V Kv where Kv is a maximal

compact subgroup of G(Qv), v ∈ V , we suppose (as we may) that Kv = G(Zv) for almost all finite
places v ∈ Vf . If v is archimedean we write KR instead of Kv, and we write Kf =

∏
v∈Vf

Kv.
We may assume that the group K is in good position relative to P0, that is, K satisfies the

following requirements:

• G(A) = P0(A)K,
• given a standard parabolic subgroup P = LN of G one has P (A)∩K = (L(A)∩K)(N(A)∩

K) and L(A) ∩K is a maximal compact subgroup of L(A).

For a given standard parabolic subgroup P = LN of G one has the Iwasawa decomposition
G(A) = L(A)N(A)K. Then we can define the standard height function HP : G(A) → aP on G(A)
by

∏
v∈V |χ(l)|v = e<χ,HP (lnk)> for any character χ ∈ X∗(L) ⊂ a∗P .

2.3. Lie algebras. We denote by MG the connected component of the intersection of the kernels
of all Q - rational characters of G, and by mG = Lie(MG(R)) the corresponding Lie algebra. Note
that the maximal Q - split torus AG in the center of G reduces to the identity if G is a semi-simple
group. In such a case, mG = Lie(G(R)). In general, the Lie algebra g = Lie(G(R)) decomposes
as a direct sum of Lie algebras g = aG ⊕ mG where aG denotes the Lie algebra of AG(R). In
particular, mG coincides with Lie(AG(R)0 \ G(R)). The maximal compact subgroup KR of G(R)
may be viewed as a subgroup of AG(R)0 \G(R). A character χ ∈ X∗(G) defines a homomorphism
G(A) → I of G(A) into the group of ideles, also denoted by χ. We denote by G(A)1 the subgroup
{g ∈ G(A)||χ(g)|A = 1, χ ∈ X∗(G)} of G(A). One has a decomposition G(A) = AG(R)0 × G(A)1

as a product, and the group G(A)1 can be identified with AG(R)0\G(A). In an analogous way, mG

can be identified with Lie(AG(R)0 \ (G(A) ∩G(R))).

2.4. Automorphic forms. We fix a height || || on the adele group G(A). By definition, a C∞–
function f : G(A) → C is of uniform moderate growth on G(Q)\G(A) if

• f is K–finite (i.e. the set {fk, k ∈ K}, where fk(g) = f(gk), spans a finite–dimensional
space)

• there exists a constant c > 0, c ∈ R, such that for all elements D ∈ U(g) there is rD ∈ R
with |Df(g)| ≤ rD||g||c for all g ∈ G(A).

• f is invariant under left translation by elements of G(Q).

We denote the space of such functions by Vumg(G).
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Let AG denote the maximal Q - split torus in the center ZG of G. We write

VG = C∞
umg(G(Q)AG(R)0\G(A))

for the space of smooth complex-valued functions of uniform moderate growth on G(Q)AG(R)0\G(A).
The space VG carries in a natural way the structure of a (g,KR; G(Af ))–module.

Let Z(g) be the center of the universal enveloping algebra U(g) of g. We call an element
f ∈ Vumg(G) an automorphic form on G(A) if there exists an ideal J ⊂ Z(g) of finite codimension
that annihilates f . We denote the space of automorphic forms on G(A) by A(G).

2.5. Constant term. Let P = LN be a standard parabolic Q–subgroup of G. For a measurable
locally integrable function f on G(Q)\G(A), the constant term of f along P is the function fP on
N(A)L(Q)\G(A) defined by

fP : g 7−→
∫

N(Q)\N(A)
f(ng)dn , g ∈ G(A)

where the Haar measure dn on N(A) is normalized in such a way that one has voldn (N(Q)\N(A)) =
1. The assignment f 7−→ fP is compatible with the actions of g,KR and G(Af ) on these functions
(if they are defined). If f is smooth (or has moderate growth) then fP is smooth (or has moderate
growth).

For an automorphic form f ∈ A(G) we say that f is cuspidal if fP ≡ 0 for all proper standard
parabolic Q - subgroups of G.

2.6. Decomposition over associate classes of parabolic subgroups. Two parabolic sub-
groups P and P ′ of G are said to be associate if their reductive components are conjugate by
an element in G(Q). This is equivalent to the condition that their split components are G(Q)-
conjugate. This notion induces an equivalence relation on the set P(G) of parabolic Q-subgroups
of G. Given P ∈ P(G), we denote its equivalence class by {P}, to be called the associate class of
P . Let C be the set of classes of associate parabolic Q–subgroups of G. For {P} ∈ C denote by
VG({P}) the space of elements in VG that are negligible along Q for every parabolic Q–subgroup
Q in G, Q /∈ {P}, that is, given Q = LQNQ, for all g ∈ G(A) the function l 7→ fQ(lg) is orthogonal
to the space of cuspidal functions on AG(R)0LQ(Q) \ LQ(A).

The space VG({P}), {P} ∈ C, is a submodule in VG with respect to the (g,KR; G(Af ))–module
structure. It is known that the

∑
VG({P}), {P} ∈ C, forms a direct sum. Finally, one has a

decomposition as a direct sum of (g,KR; G(Af ))–modules

VG =
⊕

{P}∈C
VG({P})).

This was first proved in [21], see [3, Theorem 2.4], for a variant of the original proof.

3. Automorphic cohomology

3.1. Eisenstein cohomology. We retain the notation of section 2. Let (ν, E) be a finite-di-
mensional algebraic representation of G(C) in a complex vector space. We suppose that AG(R)0

acts by a character on E, to be denoted by χ−1. Let JE ⊂ Z(g) be the annihilator of the dual
representation of E in Z(g). Let AE ⊂ VG = C∞

umg (G(Q)AG(R)◦\G(A)) be the subspace of
functions f ∈ VG which are annihilated by a power of JE . Then the spaces AE ⊗C E and VG ⊗C E
both are naturally equipped with a (mG, KR) - module structure. By [7, Theorem 18], the inclusion
AE ⊗C E −→ VG ⊗C E of the space of automorphic forms on G (with respect to (ν, E)) in the
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space of functions of uniform moderate growth induces an isomorphism on the level of (mG,KR) -
cohomology, that is,

(3.1) H∗(mG,KR,AE ⊗C E)−̃→H∗(mG,KR, VG ⊗C E).

Both cohomology spaces carry a G(Af )-module structure induced by the one on AE and VG re-
spectively, and the isomorphism is compatible with this G(Af )-module structure. We define the
automorphic cohomology of G with coefficients in E by

(3.2) H∗(G,E) := H∗(mG,KR,AE ⊗C E)

As explained in [8] we keep in mind that these cohomology groups have an interpretation as the
inductive limit of the deRham cohomology groups H∗(XC , E) of the orbit space

XC := G(Q)AG(R)0 \G(A)/KRC

with coefficients in the local system given by the representation (ν,E) where C ranges over the
open compact subgroups of G(Af ).

With this general framework in place, given a class {P} ∈ C of associate parabolic Q-subgroups
of G, one can set AE,{P} = AE ∩ VG({P}). The spaces AE,{P}, {P} ∈ C, form a direct sum, and
one has a decomposition as a direct sum of (g,KR, G(Af ))–modules

(3.3) AE =
⊕

{P}∈C
AE,{P}.

This direct sum decomposition where the sum ranges over the set C of classes of associate parabolic
Q - subgroups of G induces a direct sum decomposition

(3.4) H∗(G,E) =
⊕

{P}∈C
H∗(mG,KR;AE,{P} ⊗ E)

in cohomology. The summand in the direct sum decomposition of the cohomology H∗(G,E) that
is indexed by the full group {G} will be called the cuspidal cohomology of G with coefficients in E,
to be denoted H∗

cusp(G, E).
The decompostion of H∗(G,E) according to the set C of classes of associate parabolic Q -

subgroups of G exhibits a natural complement to the cuspidal cohomology, namely the summands
indexed by {P} ∈ C, {P} 6= {G}. Due to the results in [7] that these cohomology classes can be
described by suitable derivatives of Eisenstein series or residues of these, one calls this complement

H∗
Eis(G,E) :=

⊕

{P}∈C,P 6=G

H∗(mG,KR;AE,{P} ⊗ E)

the Eisenstein cohomology of G with coefficients in E. In addition, one can take into account the
cuspidal support of each of these Eisenstein series. This results in an even finer decomposition of
H∗

Eis(G,E) to be discussed below.

3.2. Decomposition along the cuspidal support. Let {P} be a class of associate parabolic
Q-subgroups of G, and let φ = {φP }P∈{P} be a class of associate irreducible cuspidal automorphic
representations of the Levi components of elements of {P} as defined in [8, Section 1.2.].

The set of all such collections φ = {φP }P∈{P} is denoted by ΦE,{P}. Given a class {P} of
associate parabolic Q-subgroups of G, and any φ ∈ ΦE,{P}, we let

AE,{P},φ = {f ∈ VG({P})|fP ∈
⊕

π∈φP

L2
cusp,π(LP (Q) \ LP (A))χπ ⊗ S(ǎG

P )}

be the space of functions of uniform moderate growth whose constant term along each P ∈ {P}
belongs to the isotypic components attached to the elements π ∈ φP . Finally, we have the following
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Theorem 3.1. The automorphic cohomology H∗(G,E) has a direct sum decomposition

H∗(G,E) =
⊕

{P}∈C

⊕

φ∈ΦE,{P}

H∗(mG,KR,AE,{P},φ ⊗C E)

where, given {P} ∈ C, the second sum ranges over the set ΦE,{P} of classes of associate irreducible
cuspidal automorphic representations of the Levi components of elements of {P}.

For a proof of this result we refer to [8, Theorem 1.4 resp. 2.3], or [28, Theorem in III, 2.6], where
a different approach to the decomposition of the space of automorphic forms along the cuspidal
support is given.

4. The Symplectic Group

In the rest of the paper we consider the Q–split simple simply connected symplectic group Spn

of Q–rank n, where n ≥ 2. Let P0 be a minimal parabolic Q–subgroup, and P0 = L0N0 its Levi
decomposition, which are fixed throughout the paper. The maximal split torus L0 is isomorphic
to a product of n copies of Gm/Q, and N0 is the unipotent radical. Let Φ, Φ+, ∆ denote the
corresponding sets of roots, positive roots, simple roots, respectively. If ei is the projection of L0

to its ith component, then

∆ = {α1 = e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en, αn = 2en}.
The half–sum of the positive roots equals

ρP0 =
1
2

∑

β∈Φ+

β = ne1 + (n− 1)e2 + . . . + 2en−1 + en.

Let W be the Weyl group of G with respect to L0.
The standard parabolicQ–subgroups of Spn are in bijection with the subsets of the set ∆ of simple

roots. For Θ ⊂ ∆, we denote by PΘ the corresponding parabolic Q–subgroup. Let PΘ = LΘNΘ

be its Levi decomposition, where LΘ is the Levi factor, i.e. the centralizer of SΘ = (∩α∈ΘKer(α))◦,
and NΘ is the unipotent radical.

The bijection with the subsets of ∆ gives rise to a bijection between standard parabolic Q–
subgroups of Spn and the l–tuples of positive integers (r1, r2, . . . , rl), where ri ≥ 1 for i = 1, . . . , l,
and r1 + . . . + rl ≤ n. Let r0 = n −∑l

i=1 ri ≥ 0. The standard parabolic Q–subgroup P(r1,r2,...,rl)

corresponding to the l–tuple (r1, r2, . . . , rl) is given by the subset ∆ \ {αr1+r2+...+ri : i = 1, 2, . . . , l}
of ∆. Its Levi factor is isomorphic to GLr1 ×GLr2 × . . .×GLrl

× Spr0 .
In particular, for r = 1, 2, . . . , n, the maximal proper standard parabolic Q–subgroup P∆\{αr}

corresponding to the subset ∆ \ {αr} of ∆ is denoted shortly by Pr, and its Levi decomposition
by Pr = LrNr, where Lr is the Levi factor, and Nr the unipotent radical. For r < n we have
Lr

∼= GLr × Spn−r, and for r = n we have Ln
∼= GLn. Observe that the parabolic subgroups Pr

are self–associate, i.e. Pr itself is the only standard parabolic subgroup which is associate to Pr (see
Section 1.6). However, Pr is conjugate to its opposite parabolic subgroup P opp

r by a representative
of the unique non–trivial Weyl group element w0 ∈ W with the property that w0(∆ \ {αr}) ⊂ ∆.

For r = 1, 2, . . . , n, let ρPr be the half–sum of positive roots not being the positive roots of Lr.
Then,

ρPr =
2n + 1− r

2

r∑

i=1

ei.

As a convenient basis for ǎPr,C ∼= C we choose

ρ̃Pr = 〈ρPr , α
∨
r 〉−1ρPr =

r∑

i=1

ei,
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motivated by the work of Shahidi [37], where 〈·, ·〉 is the natural pairing of ǎP0,C and aP0,C, and we
always identify accordingly s ∈ C with λs = ρ̃Pr ⊗ s ∈ ǎPr,C.

For later use we recall that the standard parabolicQ–subgroups of a general linear group GLN/Q,
split over Q, are in bijection with the set of all partitions of N into positive integers. The parabolic
Q–subgroup corresponding to partition (d1, . . . , dm), where

∑m
l=1 dl = N , we denote by P(d1,...,dm),

and its Levi factor is isomorphic to GLd1 × . . .×GLdm .

5. Eisenstein Series of Relative Rank One

In this section, following the Langlands spectral theory [20] and [28], we study in some detail
the main analytic properties of Eisenstein series attached to cuspidal automorphic representations
on the Levi components of maximal proper parabolic Q–subgroups of Spn (for the approach to
the residual spectrum via Arthur’s conjectures see [26], [27]). Although the arguments and results
apply over any number field, we work over Q having in mind the cohomological application. We
retain the notation introduced in Section 4. In particular, Pr, for r = 1, . . . , n, denotes the standard
maximal parabolic Q–subgroup of Spn which corresponds to ∆ \ {αr}. We write Pr = LrNr for its
Levi decomposition.

5.1. Eisenstein series. Let π ∼= τ ⊗ σ be a cuspidal automorphic representation of Lr(A), where
τ is a cuspidal automorphic representation of GLr(A) and σ a cuspidal automorphic representation
of Spn−r(A). For r = n, we write π ∼= τ , where τ is a cuspidal automorphic representation of
GLn(A). Throughout the paper by a cuspidal automorphic representation of G(A), where G is a
Q–split reductive group defined over Q, we mean an irreducible (g,KR;G(Af ))–module realized on
a subspace of the space of cusp forms on G(Q)\G(A) (see [28, Section I.2.17]). We denote by Vπ

the subspace of the space of cusp forms of Lr(Q)\Lr(A) on which π acts.
When computing the Eisenstein cohomology, one considers only the real poles of the Eisenstein

series. Hence, we make the following convention. We assume that π is normalized in such a way
that the differential of the restriction of the central character of π to APr(R)+ is trivial. This
assumption is just a convenient choice of coordinates, which makes the poles of the Eisenstein
series attached to π real. As explained in [8, Section 1.3], it can be achieved by replacing π by an
appropriate twist. The twist just moves the poles of the Eisenstein series along the imaginary axis.

As in [8, Section 1.3], consider the space Wπ of right K–finite smooth functions

f : Nr(A)Lr(Q)\Spn(A) → C

such that for every g ∈ Spn(A) the function fg(l) = f(lg) on Lr(Q)\Lr(A) belongs to the subspace
Vπ of the space of cusp forms on Lr(A). Then, for f ∈ Wπ, and λs ∈ ǎPr,C, and for each g ∈ Spn(A),
one defines (at least formally) the Eisenstein series as

ESpn

Pr
(f, λs)(g) =

∑

γ∈Pr(k)\Spn(k)

e〈HPr (γg),λs+ρPr 〉f(γg) =
∑

γ∈Pr(k)\Spn(k)

fs(γg),

where fs(g) = f(g)e〈HPr (g),λs+ρPr 〉. This Eisenstein series converges absolutely and uniformly in
g if Re(s) > 2n+1−r

2 , and the assignment s 7−→ ESpn

Pr
(f, λs)(g) defines a map that is holomorphic

in the region of absolute convergence of the defining series and has a meromorphic continuation
to all of ǎPr,C. It has a finite number of simple poles at in the real interval 0 < λs ≤ ρPr , i.e.
0 < s ≤ 2n+1−r

2 in the coordinate ρ̃Pr . All the remaining poles lie in the region Re(s) < 0. The
reference for these facts is [28, Section IV.1].
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5.2. Franke’s filtration. The space AE,{Pr} introduced in Section 2 has a two–step filtration
defined in [7, Section 6]. However, we use a slight modification as in [8, Section 5.2]. According
to the decomposition of AE,{Pr} along the cuspidal support as in Section 2, it suffices to give the
filtration of the spaces AE,{Pr},φ, where φ is the associate class of π. Then, the filtration is given by
LE,{Pr},φ ⊂ AE,{Pr},φ, where LE,{Pr},φ is the subspace of AE,{Pr},φ consisting of square integrable
automorphic forms. The space LE,{Pr},φ is spanned by the residues at s > 0 of the Eisenstein
series attached to a function f such that for every g ∈ Spn(A) functions fg defined above belong to
the π–isotypic subspace of the space of cusp forms on Lr(A). Those residues are square–integrable
automorphic forms by the Langlands criterion [28, Section I.4.11]. The quotient AE,{Pr},φ/LE,{Pr},φ
is spanned by the principal value of the derivatives of such Eisenstein series at Re(s) ≥ 0.

We also consider a subspace of LE,{Pr},φ spanned by the residues at poles s > 0 of the Eisenstein
series ESpn

Pr
(f, λs)(g) attached as above to a fixed (irreducible) realization Vπ of a cuspidal auto-

morphic representation π of Lr(A). We denote that subspace by LE,{Pr},φ,Vπ
. In the case r = n,

i.e. Ln
∼= GLn, due to the multiplicity one theorem for cuspidal automorphic representations of

GLn(A) (see [38], [29]), the π–isotypic subspace of the space of cusp forms on Ln(A) is irreducible.
Hence, if r = n, then LE,{Pn},φ and LE,{Pn},φ,Vπ

coincide. Otherwise, if r < n, it might not be the
case.

5.3. Normalization of intertwining operators. Since Pr is self–associate, the poles of the
Eisenstein series coincide with the poles of its constant term ESpn

Pr
(f, λs)Pr along Pr (see [28,

Section II.1.7]). The constant term along Pr is given by

(5.1) ESpn

Pr
(f, λs)Pr(g) = fs(g) + M(λs, π, w0)fs(g),

where w0 ∈ W is the unique non–trivial Weyl group element such that w0(∆ \ {αr}) ⊂ ∆, and
M(λs, π, w0) is the standard intertwining operator defined as the analytic continuation from the
domain of convergence of the integral

(5.2) M(λs, π, w0)fs(g) =
∫

Nr(A)
fs(w̃−1

0 ug)du,

where w̃0 is the representative for w0 in Spn(Q) chosen as in [35]. Away from the poles it intertwines
the induced representation

I(λs, π) = IndSpn(A)
Pr(A)

(
τe〈HPr (·),λs〉 ⊗ σ

)

∼=
{

fs = f · e〈HPr (·),λs+ρPr 〉 : f ∈ Wπ

}

and I(λ−s, w0(π)), where the action of w0 on π is given by w0(π)(l) = π(w̃−1
0 lw̃0) for l ∈ Lr(A).

Let τ̃ denote the contragredient of τ . If r = n, then σ does not appear in the above equation, and
w0(π) = w0(τ) ∼= τ̃ . If r < n, then w0(π) ∼= w0(τ ⊗ σ) ∼= τ̃ ⊗ σ. Observe that in our notation
IndSpn(A)

Pr(A) includes the normalization by ρPr , and thus ρPr does not appear in the first line but
appears in the second line of the above equation.

The poles of the constant term ESpn

Pr
(f, λs)Pr(g) of the Eisenstein series coincide with the poles

of M(λs, π, w0)fs(g). As explained below, for a globally ψ–generic cuspidal automorphic repre-
sentation π, the poles of the standard intertwining operator M(λs, π, w0) for s ≥ 0 coincide with
the poles of certain automorphic L–functions. Therefore, in what follows we assume that π, as a
cuspidal automorphic representation on a subspace Vπ of the space of cusp forms on Lr(Q)\Lr(A),
is globally generic with respect to a fixed non–trivial continuous additive character ψ of Q\A. In
other words, there exists a cusp form in Vπ such that its ψ–Fourier coefficient along the minimal
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parabolic Q–subgroup is non–trivial. Since all cuspidal automorphic representations of GLr(A) are
globally generic, this assumption applies only for r < n, and is in fact a condition on σ.

Let π ∼= ⊗vπv
∼= ⊗v (τv ⊗ σv) be the decomposition into a restricted tensor product as in [6],

where πv
∼= τv⊗σv is a unitary irreducible representation of Lr(Qv), and τv and σv are unitary irre-

ducible representations of GLr(Qv) and Spn−r(Qv), respectively. At almost all non–Archimedean
places v ∈ Vf , πv is unramified, and we denote by f◦s,v the unique Kv–invariant vector in I(λs, πv)
normalized by the condition f◦s,v(e) = 1, where e is the identity in Spn(Qv). By [19, Section 5], the
standard local intertwining operator A(λs, πv, w0), defined as the analytic continuation of the local
analogue of the integral (5.2), acts at an unramified place v ∈ Vf on f◦s,v as

A(λs, πv, w0)f◦s,v = r(λs, πv, w0)f̃◦−s,v,

where r(λs, πv, w0) is the local normalizing factor given as a certain ratio of the local L–functions,
and f̃◦−s,v is the normalized Kv–invariant vector in I(λ−s, w0(πv)). If fs = ⊗vfs,v is decomposable,
let S be the finite set of places which contains all Archimedean places V∞ and such that fs,v = f◦s,v
for all v ∈ Vf \ S. Then the global standard intertwining operator acts on fs as

M(λs, π, w0)fs = [⊗v∈SA(λs, πv, w0)fs,v]⊗ rS(λs, π, w0)
[
⊗v 6∈S f̃◦−s,v

]
,

where
rS(λs, π, w0) =

∏

v 6∈S

r(λs, πv, w0)

is a certain ratio of partial L–functions attached to π.
In [37], the local normalizing factors r(λs, πv, w0) are defined at all places for a ψv–generic

representation πv. Let N(λs, πv, w0) be the local normalized intertwining operator defined by

A(λs, πv, w0) = r(λs, πv, w0)N(λs, πv, w0).

It intertwines the induced representations I(λs, πv) and I(λ−s, w0(πv)). Note that at a place v ∈ Vf

where πv is unramified N(λs, πv, w0) maps f◦s,v to f̃◦−s,v. Hence,

(5.3) M(λs, π, w0)fs = r(λs, π, w0) [⊗v∈SN(λs, πv, w0)fs,v]⊗
[
⊗v 6∈S f̃◦−s,v

]
,

where
r(λs, π, w0) =

∏
v

r(λs, πv, w0)

is the global normalizing factor given as a certain ratio of automorphic L–functions attached to π.
This ratio is made precise in Theorem 5.1 below.

Theorem 5.1. Let r ≤ n be a positive integer, and Pr = LrNr the maximal proper standard
parabolic Q–subgroup of Spn. Let π ∼= τ ⊗ σ be a cuspidal automorphic representation of the Levi
factor Lr(A), where σ does not appear if r = n. If r < n, assume that σ is globally generic with
respect to ψ. Then:

(1) There is a global functorial lift Π of σ to GL2(n−r)+1(A), where Π is an automorphic rep-
resentation of GL2(n−r)+1(A) such that there exists a standard parabolic subgroup Pd =
P(d1,d2,...,dm) of GL2(n−r)+1, where d1 + d2 + . . . + dm = 2(n− r) + 1, and cuspidal automor-
phic representations Πj of GLdj (A) satisfying the following:

• Π ∼= Ind
GL2(n−r)+1(A)

Pd(A) (Π1 ⊗Π2 ⊗ . . .⊗Πm),

• each Πj is selfdual, i.e. Π̃j
∼= Πj, where Π̃j denotes the contragredient representation

of Πj,
• Πj 6∼= Πj′ for j 6= j′, i.e. Πj are pairwise non–isomorphic,
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• the symmetric square L–function L(s,Πj , Sym2) has a simple pole at s = 1 for all
j = 1, . . . , m,

• the central character of Π is trivial.
(2) The Rankin–Selberg L–function for τ and σ equals

L(s, τ × σ) =
m∏

j=1

L(s, τ ×Πj),

where the L–functions on the right hand side are the Rankin–Selberg ones for τ and Πj.
(3) The local normalized intertwining operator N(λs, πv, w0) is holomorphic and non–vanishing

for s ≥ 0, and thus the possible poles of the standard intertwining operator M(λs, π, w0) for
s ≥ 0 coincide with the poles of the global normalizing factor which is given by

r(λs, π, w0) =

{
L(s,τ×σ)

L(1+s,τ×σ)ε(s,τ×σ) ·
L(2s,τ,∧2)

L(1+2s,τ,∧2)ε(2s,τ,∧2)
, for r < n,

L(s,τ)
L(1+s,τ)ε(s,τ) ·

L(2s,τ,∧2)
L(1+2s,τ,∧2)ε(2s,τ,∧2)

, for r = n,

where L(s, τ,∧2) is the exterior square L–function, and for r = 1 we make a convention
that L(s, τ,∧2) ≡ 1 for any Hecke character τ of Q×\I.

All these L–functions are defined as the product over all places of the local ones, which are defined
in [37] for generic representations.

Proof. All the assertions are given in [5]. The first one is Theorem 7.2 of [5] describing the image of
the global functorial lift of the globally generic representation of a split symplectic group. In fact,
that image was already described in [9] and [39] before its construction in [5]. The second assertion
follows from the proof of Lemma 7.1 of [5]. The claim on the local normalized intertwining operator
in the third assertion is Theorem 11.1 of [5], and the rest follows from (5.3). The formula for the
global normalizing factor r(λs, π, w0) is given in [36]. ¤

Remark 5.2. The non–vanishing of N(λs, πv, w0) at s = s0 means that its image is non–trivial,
i.e. there is a section fs,v ∈ I(λs, πv) such that N(λs0 , πv, w0)fs0,v 6≡ 0. This assures that the
residues of the Eisenstein series in Theorems 5.6 and 5.7 below are non–trivial.

5.4. Analytic properties of automorphic L–functions. Next we recall the analytic properties
of the L–functions appearing in the normalizing factors.

Theorem 5.3. Let r and r′ be positive integers. Let τ and τ ′ be cuspidal automorphic represen-
tations of GLr(A) and GLr′(A), respectively. We assume, as explained above, that τ and τ ′ are
normalized to be trivial on AGLr(R)+ and AGLr′ (R)+. Then:

(1) If r = 1, i.e. τ is a Hecke character of Q×\I, then the Hecke L–function L(s, τ) is entire if
τ is non–trivial, while it has simple poles at s = 0 and s = 1 and is holomorphic elsewhere
if τ is trivial.

(2) If r > 1, then the principal L–function L(s, τ) is entire.
(3) If either r 6= r′, or r = r′ and τ 6∼= τ̃ ′, then the Rankin–Selberg L–function L(s, τ × τ ′)

is entire, while if r = r′ and τ ∼= τ̃ ′, then it has simple poles at s = 0 and s = 1 and is
holomorphic elsewhere.

(4) If r > 1 and τ is not selfdual, then the exterior square L–function L(s, τ,∧2) is entire, while
if r > 1 and τ is selfdual, then it is holomorphic for s > 1 and s < 0, and has simple
poles at s = 0 and s = 1 if and only if the symmetric square L–function L(s, τ, Sym2) is
holomorphic at s = 0 and s = 1.

(5) All the L–functions involved are non–zero for Re(s) ≥ 1 and Re(s) ≤ 0.
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Proof. Most of the analytic properties of the theorem are well–known. Property (1) is obtained in
[41], and (2) and (3) follow from the integral representations for the L–functions developed in [14],
[15], [16]. The property (5), i.e. non–vanishing for Re(s) ≥ 1 and Re(s) ≤ 0 of all the L–functions
involved, follows from [36]. The analytic properties in that region for the exterior and symmetric
square L–functions follow from the relation L(s, τ × τ) = L(s, τ,∧2)L(s, τ, Sym2) and properties
(3) and (5). The holomorphy of L(s, τ,∧2) inside the strip 0 < s < 1 for non–selfdual τ follows
from section IV.3.12 of [28], thus giving property (4). ¤

5.5. Residues of Eisenstein series. Before discussing the poles of the Eisenstein series we intro-
duce some more notation. We consider the local normalized intertwining operator N(λs0 , πv, w0)
acting on the induced representation I(λs0 , πv), where either s0 = 1/2, or r < n and s0 = 1. Let
W (λs0 , πv) ⊂ I(λs0 , πv) denote its kernel, and J(λs0 , πv) its image.

Proposition 5.4. Let either s0 = 1/2, or r < n and s0 = 1. Let π∞ ∼= τ∞⊗σ∞ be the Archimedean
local component of a globally generic (with respect to ψ) cuspidal automorphic representation π of
Lr(A). Assume that τ∞ is tempered. Then, the image J(λs0 , π∞) of the local normalized intertwin-
ing operator N(λs0 , π∞, w0) is irreducible.

Proof. Since τ∞ is tempered, there are a standard parabolic Q–subgroup P(r1,r2,...,rk) of GLr, and
irreducible unitary square–integrable representations δi of GLri(R) (thus ri = 1 or ri = 2) such
that τ∞ is the fully induced representation

τ∞ ∼= IndGLr(R)
P(r1,r2,...,rk)(R) (δ1 ⊗ δ2 ⊗ . . .⊗ δk) .

On the other hand, with regard to the representation σ∞ of Spn−r(R), in Section 10 of [5] a bound
on the exponents of the local components of a globally generic cuspidal automorphic representation
is given. More precisely, following the description of the generic unitary dual given in [23], there
are

• a standard parabolic Q–subgroup P(r′1,r′2,...,r′l)
of Spn−r, where r′1 + r′2 + . . . + r′l ≤ n− r,

• irreducible unitary square integrable representations δ′j of GLr′j (R) (thus r′j = 1 or r′j = 2),

• an irreducible tempered representation σ0 of Spr0(R), where r0 = n− r −∑l
j=1 r′j ,

• and real exponents tj , where 1/2 > t1 ≥ t2 ≥ . . . ≥ tl > 0,
such that σ∞ is the fully induced representation

σ∞ ∼= IndSpn−r(R)
P(r′1,r′2,...,r′

l
)(R)

(
δ′1| det |t1 ⊗ δ′2| det |t2 ⊗ . . .⊗ δ′l| det |tl ⊗ σ0

)
.

By induction in stages, the induced representation I(λs0 , π∞) on which N(λs0 , π∞, w0) acts is the
fully induced representation

I(λs0 , π∞) ∼= IndSpn(R)
Q(R)

(
δ1| det |s0 ⊗ . . .⊗ δk| det |s0 ⊗ δ′1| det |t1 ⊗ . . .⊗ δ′l|det |tl ⊗ σ0

)
,

where Q = P(r1,...,rk,r′1,...,r′l)
is a standard parabolic Q–subgroup of Spn. Denote by δ the represen-

tation of the Levi factor LQ(R) of Q(R) appearing on the right hand side.
Let s = (s0, . . . , s0, t1, t2, . . . , tl) ∈ ǎQ,C. Observe that s0 > t1 ≥ t2 ≥ . . . ≥ tl > 0, i.e. s satisfies

the condition of the Langlands classification for Spn(R) (see [22]). Let wl be the longest element in
the Weyl group WLr of the Levi factor Lr modulo the Weyl group WLQ

of the Levi LQ of Q. Then
the local normalized intertwining operator N(s, δ, wl) is an isomorphism because it is in fact an
intertwining operator for the group Lr(R) acting on the irreducible induced representation. Hence,
by the decomposition of local intertwining operators according to a decomposition of the Weyl
group element, the image J(λs0 , πv) is isomorphic to the image of the composition

N(λs, πv, w0)N(s, δ, wl) = N(s, δ, w0wl).
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However, w0wl is the longest element of the Weyl group W of Spn modulo the Weyl group WLQ
,

and s satisfies the inequality of the Langlands classification. Therefore, the image of N(s, δ, w0wl)
is irreducible by the Langlands classification. Thus J(λs0 , πv) is indeed irreducible. ¤

Remark 5.5. For any place v, if we assume that τv is tempered, the proof of the Lemma applies
showing J(λs0 , πv) is irreducible. However, since the Ramanujan conjecture for cuspidal auto-
morphic representations of GLr(A) is not proved, the assumption of temperedness might not be
satisfied. It is not difficult to see, using the theory of R groups of [17], [10] (see also [23]), that
there are non–tempered unitary generic representations of GLr(Qv) such that J(λs0 , πv) is not
irreducible.

Nevertheless, the cuspidal automorphic representations of GLr(A) having a non–tempered local
component at an Archimedean place are of no interest in the application to automorphic cohomol-
ogy. The reason is that only cuspidal representations having tempered τv may give a non–trivial
cohomology class ([32, Section §3]).

Theorem 5.6 (Case r = n). Let r = n, π ∼= τ as above, and s0 ≥ 1/2.

(1) The Eisenstein series ESpn

Pn
(f, λs) is holomorphic at s = s0 unless s0 = 1/2, τ is selfdual,

L(s, τ,∧2) has a pole at s = 1, and L(1/2, τ) 6= 0. In this case, the map

f · e〈HPn (·),λs0+ρPn 〉 7→ ESpn

Pn
(f, λs0)

is an embedding of the induced representation I(λs0 , τ) into the space of automorphic forms
on Spn(Q)\Spn(A).

(2) Moreover, if s0 = 1/2, τ is selfdual, L(s, τ,∧2) has a pole at s = 1, and L(1/2, τ) 6= 0,
but f = ⊗vfv has at least one local component fv in the kernel W (λ1/2, τv) of the local
normalized intertwining operator N(λ1/2, τv, w0), then the Eisenstein series ESpn

Pn
(f, λs) is

holomorphic at s = s0 = 1/2 as well.
(3) Finally, if s0 = 1/2, τ is selfdual, L(s, τ,∧2) has a pole at s = 1, and L(1/2, τ) 6= 0,

and f = ⊗vfv is such that for all places v its local component fv is not in the kernel
W (λ1/2, τv) of the local normalized intertwining operator N(λ1/2, τv, w0), then the Eisenstein
series ESpn

Pn
(f, λs) has a simple pole at s = s0 = 1/2. The map

f · e〈HPn(·),λ1/2+ρPn 〉 7→ (s− 1/2)ESpn

Pn
(f, λs)

∣∣∣
s=1/2

is an intertwining of the induced representation I(λ1/2, τ) and the space of automorphic
forms on Spn(Q)\Spn(A). Its image is non–trivial, isomorphic to J(λ1/2, τ) ∼= ⊗vJ(λ1/2, τv),
and consists of square integrable automorphic forms.

Theorem 5.7 (Case r < n). Let r < n, π ∼= τ ⊗ σ as above, and s0 ≥ 1/2.

(1) The Eisenstein series ESpn

Pr
(f, λs) is holomorphic at s = s0 unless

• either s0 = 1/2, τ is selfdual, L(s, τ,∧2) has a pole at s = 1, and L(1/2, τ × Πj) 6= 0
for all Πj appearing in the global functorial lift of σ,

• or s0 = 1, and τ ∼= Πj for some Πj appearing in the global functorial lift of σ.
In this case, the map

f · e〈HPr (·),λs0+ρPr 〉 7→ ESpn

Pr
(f, λs0)

is an embedding of the induced representation I(λs0 , π) into the space of automorphic forms
on Spn(Q)\Spn(A).

(2) Moreover, if
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• either s0 = 1/2, τ is selfdual, L(s, τ,∧2) has a pole at s = 1, and L(1/2, τ × Πj) 6= 0
for all Πj, but f = ⊗vfv has at least one local component fv in the kernel W (λ1/2, πv)
of the local normalized intertwining operator N(λ1/2, πv, w0),

• or s0 = 1 and τ ∼= Πj for some Πj, but f = ⊗vfv has at least one local component fv

in the kernel W (λ1, πv) of the local normalized intertwining operator N(λ1, πv, w0),
then the Eisenstein series ESpn

Pr
(f, λs) is holomorphic at s = s0 as well.

(3) Finally, if
• either s0 = 1/2, τ is selfdual, L(s, τ,∧2) has a pole at s = 1, and L(1/2, τ × Πj) 6= 0

for all Πj, and f = ⊗vfv is such that for all places v its local component fv is not in
the kernel W (λ1/2, πv) of the local normalized intertwining operator N(λ1/2, πv, w0),

• or s0 = 1, τ ∼= Πj for some Πj, and f = ⊗vfv is such that for all places v its
local component fv is not in the kernel W (λ1, πv) of the local normalized intertwining
operator N(λ1, πv, w0),

then the Eisenstein series ESpn

Pr
(f, λs) has a simple pole at s = s0. The map

f · e〈HPr (·),λs0+ρPr 〉 7→ (s− s0)E
Spn

Pr
(f, λs)

∣∣∣
s=s0

is an intertwining of the induced representation I(λs0 , π) and the space of automorphic forms
on Spn(Q)\Spn(A). Its image is non–trivial, isomorphic to J(λs0 , π) ∼= ⊗vJ(λs0 , πv), and
consists of square–integrable automorphic forms.

Proof. We prove Theorems 5.6 and 5.7. By claim (3) of Theorem 5.1 and the expression (5.1) for
the constant term of the Eisenstein series which relates the poles of the Eisenstein series to the poles
of the standard intertwining operator, the poles of the Eisenstein series ESpn

Pr
(f, λs) at s = s0 ≥ 0

coincide with those of the normalizing factor r(λs, π, w0), unless there is a place v where fv is in
the kernel of the local normalized intertwining operator. Then, claim (2) of Theorem 5.1, and the
analytic properties of L–functions of Theorem 5.3, imply the conditions for the pole given in the
theorems. The description of the spaces of automorphic forms so obtained follows by looking at
the expression (5.1) for the constant term. The space J(λs0 , π) is non–trivial because J(λs0 , πv)
is non–trivial for all places v due to the non–vanishing of the normalized intertwining operator
N(λs0 , πv, w0) in claim (3) of Theorem 5.1 (see also Remark 5.2). ¤

Remark 5.8. Observe that if r < n, the two poles s0 = 1/2 and s0 = 1 cannot both occur for a
fixed selfdual representation τ . Indeed, for the pole at s0 = 1/2 it is necessary that L(s, τ,∧2) has
a pole at s = 1, while for the pole at s0 = 1 it is necessary that τ ∼= Πj for some j, which implies
L(s, τ, Sym2) = L(s,Πj , Sym2) has a pole at s = 1 by claim (1) of Theorem 5.1. However, by (4) of
Theorem 5.3, the exterior and symmetric square L–functions L(s, τ,∧2) and L(s, τ, Sym2) cannot
both have a pole at s = 1.

Remark 5.9. In both Theorems we consider only s0 ≥ 1/2 because the condition for the non–
vanishing of the cohomology studied in Section 6 excludes the strip 0 ≤ s0 < 1/2 as possible
evaluation points. However, the proof of the Theorems applies for s0 > 0 up to the analytic
properties of the exterior square L–function L(s, τ,∧2) inside the strip 0 < s < 1. The holomorphy
of that L–function inside 0 < s < 1 would follow from Arthur’s conjectural description, given in
section 30 of [1], of the discrete spectrum for Q–split connected classical groups.

Corollary 5.10. Let Ls0≥1/2
E,{Pr},φ,Vπ

be the subspace of LE,{Pr},φ,Vπ
spanned by the square integrable au-

tomorphic forms which are obtained as the residues at s0 ≥ 1/2 of the Eisenstein series ESpn

Pr
(f, λs0)

attached to Vπ. In the case r = n, we use the notation Ls0≥1/2
E,{Pn},φ.
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(1) In the case r = n, the space Ls0≥1/2
E,{Pn},φ is non–trivial if and only if τ is selfdual, L(s, τ,∧2)

has a pole at s = 1, and L(1/2, τ) 6= 0. If non–trivial, Ls0≥1/2
E,{Pn},φ is spanned by the residues

of the Eisenstein series attached to τ at the pole s0 = 1/2, and it is isomorphic to the image
J(λ1/2, τ) of the normalized intertwining operator N(λ1/2, τ, w0).

(2) In the case r < n, the space Ls0≥1/2
E,{Pr},φ,Vπ

is non–trivial if and only if
(a) either τ is selfdual, L(s, τ,∧2) has a pole at s = 1, and L(1/2, τ × Πj) 6= 0 for all Πj

appearing in the lift of σ (see Theorem 5.1); in this case Ls0≥1/2
E,{Pr},φ,Vπ

is spanned by the
residues of the Eisenstein series attached to Vπ at the pole s0 = 1/2, and it is isomorphic
to the image J(λ1/2, π) of the normalized intertwining operator N(λ1/2, τ, w0),

(b) or τ is selfdual, and τ ∼= Πj for some Πj appearing in the lift of σ; in this case
Ls0≥1/2

E,{Pr},φ,Vπ
is spanned by the residues of the Eisenstein series attached to Vπ at the

pole s0 = 1, and it is isomorphic to the image J(λ1, π) of the normalized intertwining
operator N(λ1, π, w0).

6. Evaluation Points and Non–vanishing Conditions

Given an associate class {Pr} ∈ C of maximal parabolic Q–subgroups in Spn, we now analyze the
actual construction of cohomology classes in the corresponding summand H∗(spn,KR,AE,{Pr}⊗CE)
of the Eisenstein cohomology H∗

Eis(Spn, E). By Theorem 3.1, the latter space decomposes as

H∗(spn,KR,AE,{Pr} ⊗C E) =
⊕

φ∈ΦE,{Pr}

H∗(spn,KR,AE,{Pr},φ ⊗C E),

where the sum ranges over the set ΦE,{Pr} of classes φ = {φQ}Q∈{Pr} of associate irreducible
cuspidal automorphic representations of the Levi components of elements of {Pr}.

Suppose π ∈ φPr is an irreducible cuspidal automorphic representation of the Levi component
Lr(A) on the subspace Vπ of the space of cusp forms on Lr(A). By carrying through the construc-
tion of residues or derivatives of Eisenstein series attached to (π, Vπ) (as in [24], Section 3), the
corresponding contribution to H∗(spn,KR,AE,{Pr},φ ⊗C E) is embodied in the cohomology

H∗
(
spn,KR; IndSpn(Af )

Pr(Af ) Ind(spn,KR)
(spn∩pr,KR∩Lr(R))

(
Vπ ⊗ E ⊗ S(ǎSpn

Pr
)
))

,

where S(ǎSpn

Pr
) is the symmetric algebra of ǎ

Spn

Pr
with the (spn,KR)–module structure as defined on

page 218 of [7] (see also Section 3.1 of [24]).
Using Frobenius reciprocity, the study of this space is reduced to an analysis of the Spn(Af )–

module

(6.1) IndSpn(Af )

Pr(Af ) H∗
(
lr,KR ∩ Lr(R);Vπ ⊗H∗(nr, E)⊗ S(ǎSpn

Pr
)
)

.

Following Kostant ([18], Thm. 5.13), the Lie algebra cohomology H∗(nr, E) of nr with coefficients
in the irreducible representation (ν, E) of Spn(C) is given as a (lr,KR ∩Lr(R))–module as the sum

H∗(nr, E) =
⊕

w∈W Pr

Fµw

where the sum ranges over w in the set WPr of the minimal coset representatives for the left cosets
of W modulo the Weyl group WPr of the Levi factor Lr of Pr, and Fµw denotes the irreducible
finite–dimensional (lr,KR ∩ Lr(R))–module of highest weight

(6.2) µw = w(Λ + ρP0)− ρP0 ,
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where Λ ∈ ǎP0,C is the highest weight of (ν,E). The weights µw are all dominant and distinct and,
given a fixed degree q, only the weights µw with length `(w) = q occur in the decomposition of
Hq(nr, E) into irreducibles. As in [30, Section 3.2], we call a cohomology class in (6.1) which gives
rise to a non–trivial class in

H∗ (lr,KR ∩ Lr(R);Vπ∞ ⊗ Fµw)
a class of type (π, w), w ∈ WPr . If the infinitesimal character χπ∞ of the Archimedean component
π∞ of π does not coincide with the infinitesimal character of the representation contragredient to
Fµw , the cohomology space H∗ (lr,KR ∩ Lr(R);Vπ∞ ⊗ Fµw) vanishes, that is, there are no classes
of type (π, w).

Moreover, if Fµw is not isomorphic to its complex conjugate contragredient F
∗
µw

, then the co-
homology space H∗ (lr,KR ∩ Lr(R);Vπ∞ ⊗ Fµw) = (0), since this condition implies that the com-
plex contragredient of Fµw and Vπ have distinct infinitesimal character. Following [2, Section §1],
Fµw 6∼= F

∗
µw

is equivalent to the condition that −wl,Lr(µw

∣∣
ǎPr

P0

) is distinct from µw

∣∣
ǎPr

P0

, where wl,Lr is

the longest element in the Weyl group WPr of the Levi component Lr. We recall that the transfor-
mation −wl,Lr maps the highest weight of an irreducible lr,C–module into that of the contragredient
one.

Suppose there is a non–trivial cohomology class of type (π, w), w ∈ WPr . In order to understand
the cohomological contribution of the corresponding Eisenstein series ESpn

Pr
(f, λs) or a residue of

such in H∗(spn, KR,AE,{Pr},φ ⊗C E), following [30, Corollary 3.5], we have to analyze the analytic
behaviour of ESpn

Pr
(f, λs) at the point

(6.3) λw = −w(Λ + ρP0)
∣∣∣
ǎPr

.

This evaluation point is real and uniquely determined by the datum (π, w). It only depends on
w and the highest weight Λ ∈ ǎP0,C. As a consequence of the description of the space AE,{Pr},φ
of automorphic forms in Section 1.3 of [8], only the points λw with 〈λw, α∨r 〉 ≥ 0 matter in our
analysis. In other words, it suffices to consider only the evalution points λw such that in the basis
ρ̃Pr of ǎPr we have λw = λsw = ρ̃Pr ⊗ sw with sw ≥ 0.

In the following, under the assumption that H∗ (lr,KR ∩ Lr(R);Vπ∞ ⊗ Fµw) is non–trivial for a
given {Pr} ∈ C, and a pair (π,w), we make explicit the two necessary conditions this assumption
implies by the discussion above, namely:

(6.4) −wl,Lr

(
µw

∣∣∣
ǎPr

P0

)
= µw

∣∣∣
ǎPr

P0

,

and

(6.5) χπ∞ = −w (Λ + ρP0)
∣∣∣
ǎPr

P0

.

In a next step, given a non–trivial cohomology class of type (π, w), w ∈ WPr , we determine the
corresponding evaluation point λw = ρ̃Pr ⊗ sw. Finally, this allows us to decide for which minimal
coset representatives w ∈ WPr , the corresponding point λw takes the value sw = 1/2 or sw = 1.
In Section 7 it will turn out that the condition (6.4) is never satisfied for w ∈ WPr such that
0 ≤ sw < 1/2. Therefore, in view of the results in Section 5 concerning the analytic behaviour of
the Eisenstein series in question, the evaluation points sw = 1/2 and sw = 1 (the latter in the case
of Pr with r < n) are decisive for the eventual construction of residues of Eisenstein series and
related cohomology classes.

For later use we introduce the following notation. As before, let (ν,E) be an irreducible represen-
tation of Spn(C) with highest weight Λ ∈ ǎP0,C. If we write Λ =

∑n
i=1 λiei, with ei the projection
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of L0 to its ith component as in Section 4 then all λi are integers and λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. On
the other hand, if we write Λ =

∑n
i=1 ciωi, where ωi =

∑i
j=1 ej is the ith fundamental weight, then

all ci are non–negative integers. The relationship between the two expressions for Λ is given by

λi =
n∑

j=i

cj and ci =
{

λi − λi+1, for i = 1, 2, . . . , n− 1,
λn, for i = n.

7. Non–vanishing Cohomology for Maximal Parabolic Subgroups

Let (ν, E) be a finite–dimensional irreducible representation of Spn(C) of highest weight Λ ∈
ǎP0,C. For r = 1, . . . , n, let Pr = LrNr be the Levi decomposition of the standard parabolic Q–
subgroup of Spn corresponding to the subset ∆ \ {αr} of the set of simple roots. Recall that we
assume n ≥ 2.

Let π ∼= τ ⊗ σ be a cuspidal automorphic representation of Lr(A) ∼= GLr(A) × Spn−r(A). In
this section we explicitly determine, for w ∈ WPr such that the corresponding evaluation point is
sw = 1/2 or sw = 1, the two necessary conditions (6.4) and (6.5) implied by the assumption that
the space H∗ (lr,KR ∩ Lr(R);Vπ∞ ⊗ Fµw) is non–trivial. We also show that for w ∈ WPr such that
0 ≤ sw < 1/2 that space is trivial since the condition (6.4) is never satisfied.

7.1. Action of elements of WPr . The calculations in this section are based on Lemma 7.1 which
gives the explicit formula for the action of w ∈ WPr on ǎP0 . This Lemma is a variant of [40, Lemma
4.3].

Lemma 7.1. In the case of the maximal proper parabolic subgroup Pr with r = 1, . . . , n, there is a
bijection

(I, J) 7→ wI,J

between the family S of all ordered pairs (I, J) of disjoint subsets I and J of the set Sn =
{1, 2, . . . , n} such that their union I ∪ J contains exactly r elements, and the set WPr of mini-
mal coset representatives for WPr \W . The bijection is defined as follows: let

I = {i1, i2, . . . , i|I|}, where i1 < i2 < . . . < i|I|,
J = {j1, j2, . . . , j|J |}, where j1 < j2 < . . . < j|J |,

Sn \ (I ∪ J) = {k1, k2, . . . , kn−r}, where k1 < k2 < . . . < kn−r,

where |I| and |J | denote the cardinality of I and J , respectively. Then, wI,J is defined by its action
on e1, e2, . . . , en ∈ X∗(A0) as

wI,J(eil1
) = −er+1−l1 , for l1 = 1, 2, . . . , |I|,

wI,J(ejl2
) = el2 , for l2 = 1, 2, . . . , |J |,

wI,J(ekl3
) = er+l3 , for l3 = 1, 2, . . . , n− r.

In other words,

wI,J

(
n∑

l=1

slel

)
=

|J |∑

l2=1

sjl2
el2 −

|I|∑

l1=1

si|I|+1−l1
e|J |+l1 +

n−r∑

l3=1

skl3
er+l3 ,

where sl ∈ C. In particular, in the case r = n, we have J = Sn \ I for any pair (I, J) ∈ S.

Proof. The assignment (I, J) 7→ wI,J obviously defines an injective map S → W . However, one
needs to check that wI,J ∈ WPr . By [18, Theorem 5.13], the set WPr consists of all w ∈ W such
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that w−1 (∆ \ {αr}) ⊂ Φ+, i.e. w−1(α) is a positive root for all simple roots α in the subset ∆\{αr}
of ∆ corresponding to the parabolic subgroup Pr. The action of w−1

I,J is given by

w−1
I,J(el) =





ejl
, for l = 1, . . . , |J |,

−eir+1−l
, for l = |J |+ 1, . . . , r

ekl−r
, for l = r + 1, . . . , n.

Hence,

w−1
I,J(αm) =





ejm − ejm+1 , for m = 1, . . . , |J | − 1,
ej|J| + ei|I| , for m = |J |,
eir−m − eir−m+1 , for m = |J |+ 1, . . . , r − 1,
ekm−r − ekm−r+1 , for m = r + 1, . . . , n− 1,
2ekn−r , for m = n,

and all the roots on the right hand side are positive. Note that for r = n the last two cases do not
exist.

For surjectivity we prove that S and WPr have the same cardinality. The number of ordered
pairs (I, J) of disjoint subsets of Sn such that I ∪J has exactly r elements is counted as follows. In
the first step we choose a subset of r elements inside Sn to be I ∪ J . This step can be done in

(
n
r

)
ways. Next, in the second step, we choose I to be any subset of already chosen I ∪ J . This step
can be done in 2r ways, since that is the number of subsets of a set of r elements. Hence, there are(
n
r

) · 2r ordered pairs (I, J). On the other hand, the number of representatives in WPr is obtained
as the quotient of |W | = n! · 2n and |WPr | = r! · (n− r)! · 2n−r, which is the same. ¤

Lemma 7.2. Let the notation be as in the previous Lemma. For a ∈ Sn, let

SI,J(a) = {x ∈ Sn \ (I ∪ J) : x < a} ,

and mI,J(a) the cardinality of SI,J(a). Then, the length of wI,J is given by

`(wI,J) =
∑

i∈I

(n + 1− i) +
∑

j∈J

mI,J(j) + |I|(n− r).

In particular, for r = n, we have `(wI,Sn\I) =
∑

i∈I (n + 1− i).

Proof. We compute the length of wI,J by writing its reduced decomposition in simple reflections.
This is achieved in three steps.

In the first step we move the ei with i ∈ I to the end and change the sign starting with the
largest index in I. This step is in fact the only step in the r = n case. For every i ∈ I we apply
n − i simple transpositions and one sign change which gives the total of

∑
i∈I (n + 1− i) simple

reflections.
In the second step we move the ej with j ∈ J to the beginning, starting with the smallest index

in J , but without changing their order. Since the elements of I are already at the end, for every
j ∈ J one has to apply as many simple transpositions as there are indices smaller than j which
are neither in I nor in J . That number is denoted by mI,J(j), and hence in this step we use∑

j∈J mI,J(j) simple reflections.
Finally, in the third step, we move the ei with i ∈ I, without changing their order, from their

position at the end to the places just after the elements ej of J which occupy the first |J | places.
During this step we apply for every i ∈ I as many simple transpositions as there are indices outside
both I and J which is n− r. Hence, in this step we use |I| · (n− r) simple reflections.

Summing up the total number of simple reflections used in each step gives precisely the formula
for the length given in the Lemma. ¤
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7.2. Evaluation point.

Lemma 7.3. Let E be an irreducible representation of Spn(C) with highest weight Λ =
∑n

k=1 λkek ∈
ǎP0,C, where λk are integers, and λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Then

−wI,J (Λ + ρP0) = −
|J |∑

l2=1

[
λjl2

+ (n + 1− jl2)
]
el2

+
|I|∑

l1=1

[
λi|I|+1−l1

+ (n + 1− i|I|+1−l1)
]
e|J |+l1

−
n−r∑

l3=1

[
λkl3

+ (n + 1− kl3)
]
er+l3 ,

where the notation is as in Lemma 7.1.

Proof. This is a straightforward computation using the formula for the action of wI,J given in
Lemma 7.1. ¤

Corollary 7.4. In the notation of Lemma 7.1, the evaluation point λwI,J = λswI,J
for wI,J ∈ WPr

corresponds to the real number

swI,J =
1
r


∑

i∈I

λi −
∑

j∈J

λj −
∑

i∈I

i +
∑

j∈J

j + (|I| − |J |) (n + 1)


 .

Moreover, rswI,J is always an integer. In particular, if swI,J = 1/2, then r is necessarily even.

Proof. The restriction to ǎPr in the formula (6.3) for λwI,J is obtained by replacing every ek for
k = 1, 2, . . . , r by 1

r

∑r
l=1 el = 1

r ρ̃Pr ∈ ǎPr , and every ek for k = r + 1, . . . , n by 0. In other
words, swI,J is the arithmetic mean of the first r coefficients in the expression for −wI,J(Λ + ρP0)
obtained in Lemma 7.3. These are in fact the coefficients appearing in the first two sums. Thus, a
straightforward computation gives the formula. Finally, rswI,J is an integer because all the terms
in the square bracket are integers. ¤

7.3. Non–vanishing condition.

Lemma 7.5. Let E be as in Lemma 7.3. Then, in the notation of Lemma 7.1,

µwI,J = wI,J (Λ + ρP0)− ρP0 ∈ ǎP0

is given by the formula

µwI,J =
|J |∑

l2=1

[
λjl2

− jl2 + l2

]
el2

−
|I|∑

l1=1

[
λi|I|+1−l1

+
(
n + 1− i|I|+1−l1

)
+ (n + 1− |J | − l1)

]
e|J |+l1

+
n−r∑

l3=1

[
λkl3

− kl3 + r + l3

]
er+l3 .

Proof. This is a direct computation using Lemma 7.1. ¤
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Proposition 7.6. Let E be of highest weight Λ =
∑n

l=1 λlel as above. Let wI,J ∈ WPr be such
that swI,J = 1/2. Thus, by Corollary 7.4, r is necessarily even. Let π ∼= τ ⊗ σ be a cuspidal auto-
morphic representation of Lr(A) ∼= GLr(A) × Spn−r(A), where τ and σ are cuspidal automorphic
representations of GLr(A) and Spn−r(A), respectively. Then, if a non–trivial cohomology class in
H∗(lr,KR ∩ Lr(R);Vπ ⊗H∗(nr, E)) of type (π,wI,J) exists, the following holds:

• wI,J corresponds to a pair of disjoint subsets (I, J) of the form

I = {i1, i2, . . . , ir/2},
J = {i1 + 1, i2 + 1, . . . , ir/2 + 1},

where the form of I and J implies that neither of them contains a pair of consecutive
integers,

• the coefficients of Λ satisfy λi = λi+1 for all i ∈ I,
• the infinitesimal character χπ∞ of the infinite component π∞ of π equals

χπ∞ =
r/2∑

l=1

[
− (µl + (n + 1/2− il)) el + (µl + (n + 1/2− il)) er+1−l

]

−
n−r∑

l′=1

(
λkl′ + (n + 1− kl′)

)
er+l′ ,

where µl = λil = λil+1 for l = 1, 2, . . . , r/2.
In particular, for r = n, there is a unique wI0,Sn\I0 ∈ WPn satisfying those conditions. It corre-
sponds to I0 = {1, 3, . . . , n− 1}. Here n is necessarily even.

Proof. We first make the non–vanishing condition (6.4) more explicit. Let
∑n

l=1 slel ∈ ǎP0 . As in
the proof of Corollary 7.4, its restriction to ǎPr is just

∑r
l=1 sel = sρ̃Pr ∈ ǎPr , where s = 1

r

∑r
l=1 sl

is the arithmetic mean of the coefficients s1, s2, . . . , sr. Note that here s is the arithmetic mean of
the first r coefficients. Hence, the restriction to ǎPr

P0
equals

r∑

l=1

(sl − s) el +
n∑

k=r+1

skek.

Since Lr
∼= GLr × Spn−r, the longest Weyl group element wl,Lr ∈ WPr acts as

wl,Lr

(
r∑

l=1

(sl − s) el +
n∑

k=r+1

skek

)
=

r∑

l=1

(sr+1−l − s) el −
n∑

k=r+1

skek.

Therefore, condition (6.4) is in fact

(7.1) sl + sr+1−l = 2s

for l = 1, 2, . . . , r. Observe that the condition is only on the first r coefficients of µwI,J .
From this point on, let sl denote the coefficient of el in the expression for µwI,J in Lemma 7.5,

and s the arithmetic mean of the first r coefficients. Direct computation gives that

s =
1
r


∑

j∈J

λj −
∑

i∈I

λi +
∑

i∈I

i−
∑

j∈J

j +
r(r + 1)

2
− 2|I|(n + 1)


 ,

which can be written in terms of the evaluation point swI,J using the formula of Corollary 7.4 as

s = −
(

swI,J + n− r − 1
2

)
.
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In this Proposition we study the case swI,J = 1/2. Hence,

2s = −2n + r − 2.

We consider separately the three cases depending on the size of I. Recall that r is even.

Case 1: |I| < r/2. In this case |J | > r/2, and hence there is an index m ∈ Sn such that m ≤ |J |
and r + 1−m ≤ |J |. Thus, the coefficients sm and sr+1−m are both in the first sum in the formula
for µwI,J of Lemma 7.5. Their sum equals

sm + sr+1−m = λjm + λjr+1−m − (jm + jr+1−m) + r + 1.

By (7.1) this sum should be equal to 2s = −2n + r − 2 which gives the condition

λjm + λjr+1−m + 2n + 3 = jm + jr+1−m,

which is never satisfied since the left hand side is at least 2n + 3, while the right hand side is not
greater than 2n.

Case 2: |I| > r/2. In this case |J | < r/2. Hence, for l = 1, 2, . . . , |J | the coefficient sl is in the
first, and the coefficient sr+1−l in the second sum of the formula for µwI,J of Lemma 7.5. Their
sum equals

sl + sr+1−l = (λjl
− jl + l)− (λil + (n + 1− il) + (n− r + l))

= − [(λil − λjl
) + (jl − il)]− 2n + r − 1.

By (7.1), this sum should be equal to 2s = −2n + r − 2, which gives

(λil − λjl
) + (jl − il) = 1.

Recall that il 6= jl, and λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Hence, if il > jl, then λil − λjl
≤ 0, and the

condition is not satisfied since the left hand side is negative. If il < jl, then λil − λjl
≥ 0, and

the left hand side is strictly positive. It equals 1 if and only if jl = il + 1 and λil = λjl
for all

l = 1, 2, . . . , n− |I|. The subsets I and J are of the form

I =
{
i1, i2, . . . , i|J |, i|J |+1, . . . , i|I|

}
,

J =
{
i1 + 1, i2 + 1, . . . , i|J | + 1

}
.

We denote by
Iend =

{
i|J |+1, . . . , i|I|

}

the set containing the last |I| − |J | elements of I. In this case Iend is not empty. Finally, consider
the condition swI,J = 1/2. By Corollary 7.4, it can be written as

∑

i∈I

λi −
∑

j∈J

λj = r/2 +
∑

i∈I

i−
∑

j∈J

j − (|I| − |J |) (n + 1).

Since λil = λjl
for l = 1, . . . , |J |, the left hand side of this condition equals

∑

i∈Iend

λi ≥ 0.

Using jl = il + 1 for l = 1, . . . , |J |, and |I|+ |J | = r, the right hand side becomes

− (|I| − |J |) (n + 1/2) +
∑

i∈Iend

i.

Since |Iend| = |I| − |J | > 0, the right hand side is not greater than

− (|I| − |J |) (n + 1/2) + (|I| − |J |) n = − (|I| − |J |) /2 < 0.

This shows that the condition swI,J = 1/2 and (6.4) are never simultaneously satisfied in this case.
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Case 3: |I| = r/2. The first part of the argument in Case 2 applies to obtain jl = il + 1 and
λil = λjl

for l = 1, 2, . . . , r/2, and the disjoint subsets I and J are of the form

I =
{
i1, i2, . . . , ir/2

}
,

J =
{
i1 + 1, i2 + 1, . . . , ir/2 + 1

}
.

Their disjointness implies that neither of them contains a pair of consecutive integers. All the wI,J

corresponding to such a pair of subsets (I, J) satisfies the condition (6.4) and swI,J = 1/2.

It remains to compute χπ∞ from the condition (6.5) for wI,J as above. The right hand side of
(6.5) equals

−wI,J (Λ + ρP0)−
(
−wI,J (Λ + ρP0)

∣∣∣
ǎP0

)
,

where the first term is given in Lemma 7.3, while the second one is just swI,J ρ̃P0 = 1/2
∑r

l=1 el.
Hence, using the form of I and J , λi = λi+1, and |I| = |J | = r/2 gives the expression for χπ∞ . ¤
Corollary 7.7. In the notation as in Proposition 7.6, assume that, for wI,J ∈ WPr such that
swI,J = 1/2, there exists a non–trivial cohomology class of type (π,wI,J). Then, the length of wI,J

equals

`(wI,J) =
r(4n− 3r + 2)

4
.

Recall that r is necessarily even. In particular, for r = n, we have `(wI0,Sn\I0) = n(n+2)
4 .

Proof. By Proposition 7.6, the existence of a non–trivial cohomology class of type (π, wI,J) implies
the form of the subsets I and J . Thus, using the formula for the length of wI,J obtained in Lemma
7.2, gives the expression for `(wI,J). Note that for jl = il + 1, where l = 1, 2, . . . , r/2, the term
mI,J(j) in the formula equals mI,J(jl) = il − 2l + 1, because there are l elements of I and l − 1
elements of J which are smaller than jl. ¤
Remark 7.8. Observe that the condition of Corollary 7.4 on wI,J ∈ WPr and the highest weight
Λ, which gives swI,J = 1/2 could be in general satisfied for a large number of wI,J . For example,
in the case P = Pn, and the trivial coefficient system, the condition swI,Sn\I

= 1/2 is equivalent to∑
i∈I(n+1− i) = n(n+2)

4 . Since assignment i 7→ n+1− i defines a permutation of Sn, this condition
in fact shows that the number of wI,Sn\I ∈ WPn with swI,Sn\I

= 1/2 for the trivial coefficient

system is the same as the number of ways to write n(n+2)
4 as the sum of different positive integers

not greater than n.
However, as proved in Proposition 7.6, the necessary condition for the existence of a non–trivial

cohomology class of type (τ, wI,Sn\I) singles out at most one among wI,Sn\I such that swI,Sn\I
= 1/2.

Even more, it implies a condition on the highest weight Λ and the infinitesimal character of the
infinite component τ∞ of τ .

Proposition 7.9. Let E be of highest weight Λ =
∑n

l=1 λlel as above. Let wI,J ∈ WPr be such
that 0 ≤ swI,J < 1/2. Then, for any cuspidal automorphic representation π of Lr(A), a non–trivial
cohomology class in H∗(lr,KR ∩ Lr(R);Vπ ⊗H∗(nr, E)) of type (π,wI,J) does not exist.

Proof. Consider first the case r = 1. Then, either I = {i} is a singleton and J = ∅, or I = ∅ and
J = {j} is a singleton. For the two possibilities, using the formula of Corollary 7.4, we compute

swI,J =
{

λi + (n + 1− i) ≥ 1, for I = {i} and J = ∅,
−(λj + (n + 1− j)) ≤ −1, for I = ∅ and J = {j}.

This shows that for r = 1 the evaluation point swI,J is never inside the interval 0 ≤ swI,J < 1/2,
and the claim trivially holds.
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A similar argument shows that for r > 1, if either |I| = r and J = ∅, or I = ∅ and |J | = r, then
the formula for swI,J of Corollary 7.4 gives

swI,J =

{
1
r

[∑
i∈I λi +

∑
i∈I(n + 1− i)

] ≥ 1, for |I| = r and J = ∅,
−1

r

[∑
j∈J λj +

∑
j∈J(n + 1− j)

]
≤ −1, for I = ∅ and |J | = r.

Thus, the claim again trivially holds.
It remains to consider for r > 1 the case when both I and J are not empty. Then, in the

expression for µwI,J in Lemma 7.5 the coefficient s1 of e1 is in the first, while sr of er is in the
second sum. In the notation of the proof of Proposition 7.9, the existence of the cohomology class
of type (π, wI,J) would imply that

s1 + sr = 2s = −2swI,J − 2n + r − 1.

As in Case 2 of the proof of Proposition 7.6 this condition is equivalent to

(λi1 − λj1) + (j1 − i1) = 2swI,J ,

which is impossible for 0 ≤ swI,J < 1/2 since the left hand side is a non–zero integer. ¤

Remark 7.10. The condition of Corollary 7.4 allows the evaluation point swI,J to be less than 1/2,
and moreover, there are several wI,J ∈ WPr giving every such point. However, as in Remark 7.8,
the necessary condition for the existence of a non–trivial cohomology class of type (τ, wI,J) rules
out all those possibilities in the cohomological context. See also Remark 5.9.

Proposition 7.11. Let E be of highest weight Λ =
∑n

l=1 λlel, as above. Consider the case of
the parabolic subgroup Pr with r < n. Let wI,J ∈ WPr be such that swI,J = 1. Let π ∼= τ ⊗ σ
be a cuspidal automorphic representation of Lr(A) ∼= GLr(A) × Spn−r(A), where τ and σ are
cuspidal automorphic representations of GLr(A) and Spn−r(A), respectively. Then, if a non–trivial
cohomology class in H∗(lr,KR ∩Lr(R);Vπ ⊗H∗(nr, E)) of type (π, wI,J) exists the following holds:

• wI,J corresponds to a pair of disjoint subsets (I, J) of the form

I =
{ {i1, i2, . . . , ir/2}, if r is even,
{i1, i2, . . . , ibr/2c, n}, if r is odd,

J = {i1 + ε1, i2 + ε2, . . . , ibr/2c + εbr/2c},
where εl ∈ {1, 2}, and bxc is “the floor” of x, i.e. the greatest integer not strictly greater
than x,

• the coefficients of Λ satisfy λil = λil+εl
+ 2 − εl, for l = 1, . . . , br/2c, and in the case of r

odd λn = 0,
• the infinitesimal character χπ∞ of the infinite component π∞ of π equals

χπ∞ =
br/2c∑

l=1

[
− (λil + n− il) el + (λil + n− il) er+1−l

]

−
n−r∑

l′=1

(
λkl′ + n + 1− kl′

)
er+l′ ,

Proof. The proof goes along the same lines as the proof of Proposition 7.6. Since swI,J = 1, we
have

2s = −2n + r − 3,

and the condition (6.4) is equivalent to

(7.2) sl + sr+1−l = −2n + r − 3,
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for l = 1, . . . , r.
The same argument as in Case 1 in Proposition 7.6 shows that if |I| < r/2, the condition (6.4)

is never satisfied. Hence, let |I| ≥ r/2. As in Case 2 in Proposition 7.6, we obtain

(λil − λjl
) + (jl − il) = 2

for l = 1, . . . , |J |. If jl < il, then λil ≤ λjl
, and the left hand side is negative. If jl > il, then

λil ≥ λjl
, and both brackets in the above equation are non–negative integers. Hence, the solutions

satisfy jl − il = εl ∈ {1, 2}, and λil − λjl
= 2− εl.

Write

I = {i1, . . . , i|J |, i|J |+1, . . . , i|I|},
J = {i1 + ε1, . . . , i|J | + ε|J |},

and let Iend = {i|J |+1, . . . , i|I|}. Inserting swI,J = 1, |Iend| = |I| − |J |, |I|+ |J | = r, and taking into
account the relationship between il and jl, and λil and λjl

for l = 1, . . . , |J |, the formula for swI,J

of Corollary 7.4 gives ∑

i∈Iend

i = |Iend| · n +
∑

i∈Iend

λi.

Since λi ≥ 0, and i ∈ Iend are distinct and not greater than n, this equation has a solution only if
either Iend is empty (thus, r is even), or Iend = {n} and λn = 0 (thus, r is odd). This gives the
first two conditions of the proposition.

The remaining condition on the infinitesimal character χπ∞ of π∞ follows from (6.5) using the
description of wI,J and Λ. ¤

8. Residual Eisenstein Cohomology

Let φ be the associate class of a cuspidal automorphic representation π of Lr(A). There is a two
step filtration of the space AE,{Pr},φ by the subspace LE,{Pr},φ spanned by the square integrable

automorphic forms. Let Ls0≥1/2
E,{Pr},φ be the subspace of LE,{Pr},φ spanned by the residues at s0 ≥ 1/2

of the Eisenstein series attached to the π–isotypic subspace of the space of cusp forms on Lr(A).
The following lemma shows that the two spaces give the same contribution to cohomology.

Lemma 8.1. Let E be an irreducible representation of Spn(C). Let {Pr} be the associate class of
the standard parabolic Q–subgroup, corresponding to the subset ∆ \ {αr} of the set of simple roots,
with the Levi factor Lr. Let φ be the associate class of a cuspidal automorphic representation π of
Lr(A). Then, the map

H∗(spn,KR;Ls0≥1/2
E,{Pr},φ ⊗C E) → H∗(spn,KR;LE,{Pr},φ ⊗C E)

induced on the cohomology by the inclusion Ls0≥1/2
E,{Pr},φ ⊂ LE,{Pr},φ is an isomorphism.

Proof. The injectivity of the map in the cohomology is a consequence of the fact that Ls0≥1/2
E,{Pr},φ is

a direct summand in the space of square integrable automorphic forms LE,{Pr},φ. The surjectivity
follows from Proposition 7.9. Those propositions show that even if the Eisenstein series, attached
to a cuspidal automorphic representation π of Lr(A), had a pole at 0 ≤ s0 < 1/2, its contribution
to the cohomology is trivial because, for w ∈ WPr such that sw = s0, a non–trivial cohomology
class in H∗(lr,KR ∩ Lr(R);Vπ∞ ⊗H∗(nr, E)) of type (π, w) does not exist. ¤
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8.1. The case P = Pn.

Theorem 8.2. Let E be the irreducible representation of Spn(C) of highest weight Λ =
∑n

k=1 λkek,
where all λk are integers and λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Let {Pn} be the associate class of the standard
maximal proper parabolic Q–subgroup Pn of Spn, corresponding to the subset ∆ \ {αn} of the set of
simple roots, and with the Levi decomposition Pn = LnNn, where the Levi factor Ln

∼= GLn. Let φ
be the associate class of a cuspidal automorphic representation τ of Ln(A).

The cohomology space
H∗(spn,KR;LE,{Pn},φ ⊗C E)

is trivial is trivial except possibly in the case where the following conditions are satisfied:
(1) a cuspidal automorphic representation τ is selfdual, L(s, τ,∧2) has a pole at s = 1, and

L(1/2, τ) 6= 0,
(2) the Q–rank n of the algebraic group Spn/Q is even,
(3) the highest weight Λ of the irreducible representation E satisfies λ2l−1 = λ2l for all l =

1, 2, . . . , n/2,
(4) the infinite component τ∞ of τ has the infinitesimal character

χτ∞ =
n/2∑

l=1

[
− (

µl + (n + 3/2− 2l)
)
el +

(
µl + (n + 3/2− 2l)

)
en+1−l

]
,

where µl = λ2l−1 = λ2l, i.e. τ∞ is a tempered representation fully induced from n/2 unitary
discrete series representations of GL2(R) having the lowest O(2)–types 2µl +2n− 4l +4 for
l = 1, . . . , n/2.

Proof. By Lemma 8.1, if the cohomology space H∗(spn,KR;Ls0≥1/2
E,{Pn},φ⊗CE) is trivial, then the space

H∗(spn, KR;LE,{Pn},φ⊗CE) is trivial as well. By Corollary 5.10, condition (1) assures that the space

Ls0≥1/2
E,{Pn},φ is non–trivial. Moreover, it is spanned by the residues of the Eisenstein series ESpn

Pn
(f, λs)

at s0 = 1/2. Hence, in order to have a non–trivial cohomology class in H∗(spn,KR;Ls0≥1/2
E,{Pn},φ⊗CE),

it is necessary to have a non–trivial cohomology class in H∗(ln, KR ∩ Ln(Q);Vτ∞ ⊗ FµwI,Sn\I
) of

type (τ, wI,Sn\I), such that the corresponding evaluation point for the Eisenstein series is swI,Sn\I
=

1/2. By Proposition 7.6, this gives the remaining three conditions, and only the classes of type
(τ, wI0,Sn\I0) with I0 = {1, 3, . . . , n− 1} may exist. ¤

Theorem 8.3. Suppose that the necessary conditions for a non–trivial cohomology class in

H∗(spn,KR;LE,{Pn},φ ⊗C E)

given in Theorem 8.2 are satisfied with E = C the trivial representation. In particular, n is even.
Then the map

Hq(spn,KR;LC,{Pn},φ) → Hq(spn,KR;AC,{Pn},φ)

is the trivial map for q ≥ n(n+1)
2 , and an epimorphism for q < n(n+1)

2 . In other words, the
cohomology classes coming from LC,{Pn},φ are separated from the ones coming from AC,{Pn},φ/

LC,{Pn},φ by the degree. Note that n(n+1)
2 = 1

2 dimXSpn(R) is half of the dimension of the space
XSpn(R) = Spn(R)/KR.

Proof. We have to analyze in which cohomological degree the spaces LC,{Pn},φ and AC,{Pn},φ/
LC,{Pn},φ have a non–vanishing relative Lie algebra cohomology. Let φ be the associate class of a
cuspidal automorphic representation τ of Ln(A) subject to the necessary conditions of Theorem 8.2.
In view of the actual construction of elements in AC,{Pn},φ and LC,{Pn},φ as described in Section 5,
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we have to determine the range in which the following relative Lie algebra cohomology spaces are
non–trivial:

(8.1) H∗
(
spn,KR; IndSpn(R)

Pn(R)

(
τ∞e〈HPn(·),λsw 〉

))
,

for w ∈ WPn such that there is a non–trivial cohomology class of type (τ, w), and respectively

(8.2) H∗
(
spn,KR; IndSpn(R)

P opp
n (R)

(
τ∞e〈HPn (·),λ−1/2〉

))
.

In the latter case we have a class of type (τ, w), with w ∈ WPn , and λw = λ1/2, i.e. sw = 1/2, and
thus `(w) = n(n+2)

4 by Corollary 7.4. Following Proposition 7.6, this element w ∈ WPn is uniquely
determined, and it is the element wI0,Sn\I0 corresponding to the subset I0 = {1, 3, . . . , n− 1} in the
notation of Lemma 7.1.

In our computation we use the following notation: suppose L is a Lie group with finitely many
connected components, and let KL be a maximal compact subgroup of L. Suppose the Lie algebra
l of L is reductive. Write

2q(L) := dimL− dimKL

for the dimension of the corresponding space XL = L/KL of maximal compact subgroups of L. Set
`0(L) := rk(L)− rk(KL), and write

q0(L) =
1
2

(2q(L)− `0(L)) =
1
2

(dimXL − `0(L)) .

The rank and the dimension of a reductive Lie algebra are congruent modulo 2. Thus, q0(L) is an
integer. The following result [24, Proposition 4.4] is decisive: let (δ,Hδ) be an irreducible unitary
tempered representation of L, and let (µ, F ) be a finite–dimensional representation of L. Then,
Hj(l,KL;Hδ ⊗ F ) = (0) if j 6∈ [q0(L), q0(L) + `0(L)].

In our case at hand, by [4, Section III, 3.3], the cohomology (8.1) is the tensor product of

H∗ (ln,KR ∩ Ln(R);Vτ∞ ⊗ Fµw)

by Λ∗ǎPr,C, up to a shift in degrees by `(w). Thus, since τ∞ is a unitary tempered representation
of Ln(R) ∼= GLn(R), the cohomology space (8.1) vanishes in degrees outside of

(8.3) [q0(GLn(R)) + `(w), q0(GLn(R)) + `0(GLn(R)) + `(w) + 1] .

In the case L = GLn(R), by [32, Section 3], we have 2q(L) = n2−1− n(n−1)
2 , `0(L) = n−1−bn/2c,

and thus, for n even, q0(L) = n2/4. By Proposition 7.9, for w ∈ WPn such that 0 ≤ sw < 1/2, a
cohomology class of type (τ, w) is trivial. In view of Corollary 7.4, since the length `(w) increases as
sw increases, the minimal possible length `(w) is obtained for sw = 1/2, and it equals `(w) = n(n+2)

4 .
Hence, we obtain

q0(GLn(R)) + `(w) =
1
4
n2 +

n(n + 2)
4

=
1
2

dimXSpn(R).

as a lower bound in (8.3).
By the duality result [4, Section V, 1.5] regarding the relation between the cohomology (8.1) with

sw = 1/2, and the analogue (8.2), we obtain as the upper bound for the range outside of which the
cohomology (8.2) vanishes the value

2q(Spn(R))− (
q0(GLn(R)) + `(wI0,Sn\I0)

)
=

1
2

dimXSpn(R).

Since the actual contribution of a class in (8.2), and (8.1) as well, is given by the image of
H∗(ln,KR ∩ Ln(R); τ∞ ⊗ FµwI0,Sn\I0

) ⊗ Λ0ǎPr,C, the residual Eisenstein classes may occur only

in degrees j with j ≤ 1
2 dimXSpn(R) − 1. The lowest possible degree for these classes is 1

2n2,
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i.e. Hj(spn,KR;LC,{Pn},φ) = (0) for j 6∈ [
1
2n2, 1

2n(n + 1)− 1
]
. Since the lowest possible degree for

a cohomology class in H∗(spn,KR;AC,{Pr},φ) given by a regular value of an Eisenstein series in the
given situation is q0(GLn(R)) + `(wI0,Sn\I0) = 1

2 dimXSpn(R) our claim follows. ¤
Remark 8.4. Write

τ∞ ∼= IndGLn(R)
P(2,...,2)(R)(δ1 ⊗ . . .⊗ δn/2),

where δi are unitary discrete series representations of GL2(R) as in Theorem 8.2. Then the
Archimedean component of the space Ls0≥1/2

E,{Pn},φ, which is by Corollary 5.10 spanned by the residues
of the Eisenstein series attached to τ at the pole s0 = 1/2, is isomorphic to the Langlands quotient
of the standard module

IndSpn(R)
P(2,...,2)(R)(δ1|det |1/2 ⊗ . . .⊗ δn/2| det |1/2).

This follows from Proposition 5.4.

8.2. The case P = Pr with r < n. Now we turn our attention to the associate class {Pr},
r < n. In this case, for simplicity, we consider only the trivial coefficient system E = C, and the
corresponding cohomology spaces H∗(spn,KR;LC,{Pr},φ,Vπ

) and H∗(spn,KR;AC,{Pr},φ). Here Vπ

is the fixed realization of a cuspidal automorphic representation π of Lr(A) in the space of cusp
forms on Lr(A), which is globally ψ–generic (for a fixed non–trivial additive character ψ of Q\A),
i.e. there is a cusp form in Vπ whose ψ–Fourier coefficient is non–trivial. This assumption on Vπ is
required for the computation of the poles of the Eisenstein series in Section 5.

Theorem 8.5. Let E = C be the trivial representation of Spn(C). Let r < n, and let {Pr} be
the associate class of the standard maximal proper parabolic Q–subgroup Pr of Spn, corresponding
to the subset ∆ \ {αr} of the set of simple roots, and with the Levi decomposition Pr = LrNr,
where the Levi factor Lr

∼= GLr × Spn−r. Let φ be the associate class of a cuspidal automorphic
representation π ∼= τ ⊗ σ of Lr(A) such that a fixed realization Vπ of π in the space of cusp forms
on Lr(A) is globally ψ–generic (with respect to a fixed non–trivial additive character ψ of A/Q).

Let

χπ∞ =
br/2c∑

l=1

(−xlel + xler+1−l)−
n−r∑

l′=1

yl′er+l′

be the infinitesimal character of the Archimedean component π∞ of π, where bxc denotes the greatest
integer not greater than x. Then, the cohomology space

H∗(spn,KR;LC,{Pr},φ,Vπ
)

is trivial except possibly in the case where one of the following two sets of conditions is satisfied:
(A) (a1) a cuspidal automorphic representation τ is selfdual, L(s, τ,∧2) has a pole at s = 1, and

L(1/2, τ ×Πj) 6= 0 for all Πj appearing in the global functorial lift of σ,
(a2) r is even,
(a3) the coefficients xl of the infinitesimal character χπ∞ belong to the set

xl ∈ {3/2, 5/2, . . . , n− 1/2},
and |xl1 − xl2 | 6= 0, 1 for l1 6= l2,

(a4) the coefficients yl′ of the infinitesimal character χπ∞ are uniquely determined (up to
sign) by the coefficients xl through the formula

yl′ = n + 1− kl′ ,

for l′ = 1, . . . , n− r, where

kl′ ∈ Sn \ {n− xl + 1/2, n− xl + 3/2 : l = 1, . . . , r/2}.
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(B) (b1) a cuspidal automorphic representation τ is isomorphic to one of Πj appearing in the
global functorial lift of σ (this implies that τ is selfdual, and r ≤ 2n+1

3 ),
(b2) the coefficients xl of the infinitesimal character χπ∞ belong to the set

xl ∈
{ {2, 3, . . . , n}, if r is even,
{3, 4, . . . , n}, if r is odd,

and |xl1 − xl2 | 6= 0, 2 for l1 6= l2,
(b3) the coefficients yl′ of the infinitesimal character χπ∞ are uniquely determined (up to

sign) by the coefficients xl through the formula

yl′ = n + 1− kl′

for l′ = 1, . . . , n− r, where

kl′ ∈
{

Sn \ {n− xl, n− xl + 2 : l = 1, . . . , r/2}, if r is even,
Sn \ {n, n− xl, n− xl + 2 : l = 1, . . . , br/2c}, if r is odd.

Proof. As in the case r = n, applying Lemma 8.1, the conditions (a1) and (b1) assure that the
space Ls0≥1/2

E,{Pr},φ,Vπ
is non–trivial (see Corollary 5.10). Already these two conditions are never both

satisfied (see Remark 5.8). Moreover, the space Ls0≥1/2
E,{Pr},φ,Vπ

is spanned by the residues of the

Eisenstein series ESpn

Pr
(f, λs) attached to the realization Vπ of π at the pole s0 = 1/2 if (a1) is

satisfied, and at s0 = 1 if (b1) is satisfied.
Again, as in the case r = n, in order to have a non–trivial cohomology class in H∗(spn,KR;LE,{Pr},φ⊗C

E), it is necessary to have a non–trivial cohomology class in H∗(lr,KR ∩ Lr(R);Vπ∞ ⊗H∗(nr, E))
of type (π, wI,J), with wI,J ∈ WPr such that swI,J = 1/2 for (A), and swI,J = 1 for (B).

The remaining conditions in (A) follow from Proposition 7.6 with E = C, i.e. λl = 0 for all
l = 1, . . . , n. Necessarily r is even which is condition (a2). Furthermore, the formula for χπ∞
in that proposition shows that the subset I of Sn defining wI,J consists of all i ∈ Sn which are
solutions of one of the equations

n + 1/2− i = xl,

for l = 1, . . . , r/2. Every such equation has at most one solution i ∈ Sn. Hence, in order to have
subset I containing r/2 elements, the coefficients xl are necessarily distinct and every equation has
a solution i ∈ Sn. In particular, xl is in 1/2 +Z, and 1/2 ≤ xl ≤ n− 1/2. However, the subset J of
Sn defining wI,J is of the form J = {i + 1 : i ∈ I} and disjoint with I. Thus, the subset I should
not contain neither n, nor a pair of consecutive integers. The former condition gives a lower bound
xl ≥ 3/2. The latter shows that if l1 6= l2, then

xl1 − xl2 = i2 − i1,

where i1 and i2 are solutions of the equations for xl1 and xl2 , and thus |xl1 − xl2 | 6= 1, and (a3)
is proved. Since (a3) also defines the subsets I and J , (a4) follows from the formula for χπ∞ in
Proposition 7.6.

The remaining conditions in (B) are obtained in a similar way using Proposition 7.11 with E = C,
i.e. λl = 0 for l = 1, . . . , n. For E = C in Proposition 7.11, we have εl = 2 for all l = 1, . . . , br/2c.
In this case the equations defining I are

n− i = xl,

for l = 1, . . . , br/2c. If r is odd, besides the solutions of those equations, I contains also n. Now, we
have xl ∈ Z, all xl are distinct, and 0 ≤ xl ≤ n− 1. By Proposition 7.11, J = {i + 2 : i ∈ I \ {n}}.
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Thus, the lower bound for xl is obtained from i ≤ n − 2 for i ∈ I if r is even, and from i ≤ n − 3
for i ∈ I \ {n} if r is odd. The condition on the difference again follows from

xl1 − xl2 = i2 − i1

for l1 6= l2, where i1 and i2 are solutions of the above equations for xl1 and xl2 . Thus, (b2) is
proved, and the sets I and J are defined. Again, (b3) follows directly from Proposition 7.11. ¤
Remark 8.6. Theorem 8.5 is stated in such a way that given a globally ψ–generic cuspidal au-
tomorphic representation π of Lr(A) satisfying either (a1) or (b1), one can effectively check the
conditions on the coefficients of the infinitesimal character χπ∞ of the Archimedean component π∞
of π.

Remark 8.7. The relative Lie algebra cohomology H∗(lr,KR ∩ Lr(R);Vπ∞ ⊗ Fµw) (with π∞ ∼=
τ∞ ⊗ π∞ the Archimedean component of π ∼= τ ⊗ σ, and w ∈ WPr , as above subject to the given
conditions), attached to the Levi factor Lr

∼= GLr × Spn−r, r < n, obeys the Künneth rule [4,
Section 1.3]. Thus (non)–vanishing results for this cohomology rely on the corresponding results
for the two factors. Since τ∞ is a unitary tempered representation of GLr(R), the cohomology
H∗(glr,KR ∩GLr(R);Vτ∞ ⊗ F ) = (0) for

j 6∈ [q0(GLr(R)), q0(GLr(R)) + `0(GLr(R))]

with

q0(GLr(R)) =

{
r2

4 , if r is even,
r2−1

4 , if r is odd,

and `0(GLr(R)) = r − 1 − br/2c ([32, Section 3]). With regard to the other factor, one has a
vanishing result for the cuspidal cohomology Hj(spn−r,KR ∩ Spn−r(R);Vσ∞ ⊗ F ′) in degrees

j < κr :=
{

1
4
(n− r)(n− r + 2)

}
,

where {x} denotes the smallest integer larger or equal to the rational number x ([25, Section 7.2]).
The value κr is larger than 1

4 dimXSpn−r(R) but quite close to it. Following the line of argument as
given in the case P = Pn, and using the “critical” values for `(w) = `(wI,J), one can determine a
range of degrees outside of which the Eisenstein cohomology classes cannot occur at all.

Remark 8.8. Write

τ∞ ∼=




IndGLr(R)
P(2,...,2)(R)(δ1 ⊗ . . .⊗ δr/2), if r is even,

IndGLr(R)
P(2,...,2,1)(R)(δ1 ⊗ . . .⊗ δr/2 ⊗ χ), if r is odd.

where δi are unitary discrete series of GL2(R) of lowest O(2)–type 2xl + 1, and χ is a unitary
character of R×, as in Theorem 8.5. At infinity σ∞ is the local component of a globally ψ–generic
cuspidal automorphic representation σ, and hence a fully induced representation of the form

σ∞ ∼= IndSpn−r(R)
P(r′1,...,r′m)(R)(δ

′
1| det |x1 ⊗ . . .⊗ δ′m|det |xm ⊗ σt)

with δ′i unitary discrete series representation of GLr′i(R), σt a tempered representation of Spr′0(R),
where r′0 = n− r −∑

r′j , and 1/2 > x1 ≥ x2 ≥ . . . ≥ xm > 0. Then, the Archimedean component
of the space spanned by the residues of the Eisenstein series attached to π at s0 = 1/2 in case (A),
is isomorphic to the Langlands quotient of the standard module

Ind
Spn(R)
P(2,...,2,r′1,...,r′m)(R)(δ1| det |1/2 ⊗ . . .⊗ δr/2| det |1/2 ⊗ δ′1| det |x1 ⊗ . . .⊗ δ′m|det |xm ⊗ σt).

In the case (B), i.e. s0 = 1, the exponents 1/2 are just replaced by 1.
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