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1. Introduction
The aim of this paper is to prove the global Jacquet-Langlands correspondence and its con-sequences for the theory of representations of the inner forms of GLn over a global �eld ofcharacteristic zero. In order to de�ne the global Jacquet-Langlands correspondence, it is notsu�cient to transfer only square integrable representations as in the classical local theory ([JL],[FL2], [Ro], [DKV]). It would be necessary to transfer at least the local components of globaldiscrete series. This results are already necessary to the global correspondence with a divisionalgebra (which can be locally any inner form). Here we prove, more generally, the transfer ofall unitary representations. Then we prove the global Jacquet-Langlands correspondence, whichis compatible with this local transfer. As consequences we obtain for inner forms of GLn themultiplicity one Theorem and strong multiplicity one Theorem, as well as a classi�cation of theresidual spectrum �a la Moeglin-Waldspurger and unicity of the cuspidal support �a la Jacquet-Shalika. Using these classi�cations we give counterexamples showing that the global Jacquet-Langlands correspondence for discrete series does not extend well to all unitary automorphicrepresentations.We give here a list of the most important results, starting with the local study. We would liketo point out that the local results in this paper have already been obtained by Tadi�c in [Ta6]in characteristic zero under the assumption that his conjecture U0 holds. After we proved theseresults here independently of his conjecture (and some of them in any characteristic), S�echerreannounced the proof of the conjecture U0 ([Se]). The approach is completely di�erent and weinsist on the fact that we do not prove the conjecture U0 here but more particular results whichare enough to show the local transfer necessary for the global correspondence.Let F be a local non-Archimedean �eld of characteristic zero and D a central division algebraover F of dimension d2. For n 2 N� set Gn = GLn(F ) and G0n = GLn(D). Let � genericallydenote the character given by the absolute value of the reduced norm on groups like Gn or G0n.Let �0 be a square integrable representation of G0n. If �0 is a cuspidal representation, then itcorresponds by the local Jacquet-Langlands correspondence to a square integrable representation� of Gnd. We set s(�0) = k, where k is the length of the Zelevinsky segment of �. If �0 is not
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cuspidal, we set s(�0) = s(�), where � is any cuspidal representation in the cuspidal support of�0, and this does not depend on the choice. We set then ��0 = �s(�0). For any k 2 N� we denotethen by u0(�0; k) the Langlands quotient of the induced representation from 
k�1i=0 (� k�12 �i�0 �0), andif � 2]0; 12 [, we denote �0(u0(�0; k); �) the induced representation from ���0u0(�0; k)
����0 u0(�0; k).The representation �0(u0(�0; k); �) is irreducible ([Ta2]). Let U 0 be the set of all representationsof type u0(�0; k) or �0(u0(�0; k); �) for all G0n, n 2 N�. Tadi�c conjectured in [Ta2] that(i) all the representations in U 0 are unitary;(ii) an induced representation from a product of representations in U 0 is always irreducibleand unitary;(iii) every irreducible unitary representation of G0m, m 2 N�, is an induced representationfrom a product of representations in U 0.

The fact that the u0(�0; k) are unitary has been proved in [BR1] if the characteristic of thebase �eld is zero. In the third Section of this paper we complete the proof of the claim (i) (i.e.�0(u0(�0; k); �) are unitary; see Corollary 3.6) and prove (ii) (Proposition 3.9).We also prove the Jacquet-Langlands transfer for all irreducible unitary representations ofGnd. More precisely, let us write g0 $ g if g 2 Gnd, g0 2 G0n and the characteristic polynomialsof g and g0 are equal and have distinct roots in an algebraic closure of F . Denote Gnd;d the setof elements g 2 Gnd such that there exists g0 2 G0n with g0 $ g. We denote �� the functioncharacter of an admissible representation �. We say a representation � of Gnd is d-compatibleif there exists g 2 Gnd;d such that ��(g) 6= 0. We have (Proposition 3.9):
Theorem. If u is a d-compatible irreducible unitary representation of Gnd, then there exists aunique irreducible unitary representation u0 of G0n and a unique sign " 2 f�1; 1g such that

�u(g) = "�u0(g0)
for all g 2 Gnd;d and g0 $ g.
It is Tadi�c who �rst pointed out ([Ta6]) that this should hold if his conjecture U0 were true. Thesign " and an explicit formula for u0 may be computed. See for instance Subsection 3.3.

The �fth Section contains global results. Let us use the Theorem above to de�ne a mapjLJj : u 7! u0 from the set of irreducible unitary d-compatible representations of Gnd to the setof irreducible unitary representations of G0n.Let now F be a global �eld of characteristic zero and D a central division algebra over F ofdimension d2. Let n 2 N�. Set A = Mn(D). For each place v of F let Fv be the completion ofF at v and set Av = A 
 Fv. For every place v of F , Av ' Mrv (Dv) for some positive integerrv and some central division algebra Dv of dimension d2v over Fv such that rvdv = nd. We will�x once and for all an isomorphism and identify these two algebras. We say that Mn(D) is splitat a place v if dv = 1. The set V of places where Mn(D) is not split is �nite. We assume in thesequel that V does not contain any in�nite place.Let Gnd(A) be the group of ad�eles of GLnd(F ), and G0n(A) the group of ad�eles of GLn(D).We identify Gnd(A) with Mnd(A)� and G0n(A) with A(A)�.Let Z(A) be the center of Gnd(A). If ! is a smooth unitary character of Z(A) trivial on Z(F ),let L2(Z(A)Gnd(F )nGnd(A);!) be the space of classes of functions f de�ned on Gnd(A) withvalues in C such that f is left invariant under Gnd(F ), f(zg) = !(z)f(g) for all z 2 Z(A) andalmost all g 2 Gnd(A) and jf j2 is integrable over Z(A)Gnd(F )nGnd(A). The group Gnd(A) actsby right translations on L2(Z(A)Gnd(F )nGnd(A);!). We call a discrete series of Gnd(A) an
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irreducible subrepresentation of such a representation (for any smooth unitary character ! ofZ(A) trivial on Z(F )). We adopt the analogous de�nition for the group G0n(A).Denote DSnd (resp. DS0n) the set of discrete series of Gnd(A) (resp. G0n(A)). If � is a discreteseries of Gnd(A) or G0n(A), and v is a place of F , we denote �v the local component of � at theplace v. We will say that a discrete series � of Gnd(A) is D-compatible if �v is dv-compatiblefor all places v 2 V .If v 2 V , the Jacquet-Langlands correspondence between dv-compatible unitary representa-tions of GLnd(Fv) and GLrv (Dv) will be denoted jLJjv. Recall that if v =2 V , we have identi�edthe groups GLrv (Dv) and GLnd(Fv). We have the following (Theorem 5.1):
Theorem. (a) There exists a unique injective mapG : DS0n ! DSnd such that, for all �0 2 DS0n,we have G(�0)v = �0v for every place v =2 V . For every v 2 V , G(�0)v is dv-compatible and wehave jLJjv(G(�0)v) = �0v. The image of G is the set of D-compatible elements of DSnd.(b) One has multiplicity one and strong multiplicity one Theorems for the discrete spectrumof G0n(A).

Since the original work of [JL] (see also [GeJ]), global correspondences with division algebrasunder some conditions (on the division algebra or on the representation to be transferred) havealready been carried out (sometimes not explicitly stated) at least in [Fl2], [He], [Ro], [Vi],[DKV], [Fli] and [Ba4]. They were using simple forms of the trace formula. For the general resultobtained here these formulas are not su�cient. Our work is heavily based on the comparison ofthe general trace formulas for G0n(A) and Gnd(A) carried out in [AC]. The reader should not bemisled by the fact that here we use directly the simple formula Arthur and Clozel obtained intheir over 200 pages long work. Their work overcomes big global di�culties and together withmethods from [JL] and [DKV] reduces the global transfer of representations to local problems.Let us explain now what are the main extra ingredients required for application of the spectralidentity of [AC] in the proof of the theorem. The spectral identity as stated in [AC] is roughlyspeaking (and after using the multiplicity one theorem for Gnd(A)) of the type
X tr(�I)(f) +X�Jtr(MJ�J)(f) =Xm0i tr(�0i)(f 0) +X�0j tr(M 0j�0j)(f 0)

where �J and �0j are certain coe�cients, �I (resp. �0i) are discrete series of Gnd(A) (resp. ofG0n(A) of multiplicity m0i), �J (resp. �0j) are representations of Gnd(A) (resp. of G0n(A)) whichare induced from discrete series of proper Levi subgroups andMJ andM 0j are certain intertwiningoperators. As for f and f 0, they are functions with matching orbital integrals.The main step in proving the theorem is to choose a discrete series �0 of G0n(A) and to usethe spectral identity to de�ne G(�0). The crucial result is the local transfer of unitary represen-tations (Proposition 3.9.c of this paper) which allows to "globally" transfer the representationsfrom the left side to the right side. This gives the correspondence when n = 1 as in [JL] or [Vi].The trouble when n > 1 is that we do not know much about the operators M 0j . We overcomethis by induction over n. Then the Proposition 3.9.b shows that �0j are irreducible. This turnsout to be enough to show that the contribution of �0 to the equality cannot be canceled bycontributions from properly induced representations.
In the sequel of the �fth Section we give a classi�cation of representations of G0n(A). We de�nethe notion of a basic cuspidal representation for groups of type G0k(A) (see Proposition 5.5 andthe sequel). These basic cuspidal representations are all cuspidal. Neven Grbac will show in hisAppendix that these are actually the only cuspidal representations. Then the residual discrete
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series of G0n(A) are obtained from cuspidal representations in the same way the residual discreteseries of GLn(A) are obtained from cuspidal representations in [MW2]. This classi�cation isobtained directly by transfer from the Moeglin-Waldspurger classi�cation for Gn.Moreover, for any (irreducible) automorphic representation �0 of G0n, we know that ([La])there exists a couple (P 0; �0) where P 0 is a parabolic subgroup of G0n containing the group ofupper triangular matrices and �0 is a cuspidal representation of the Levi factor L0 of P 0 twistedby a real non rami�ed character such that �0 is a constituent (in the sense of [La]) of the inducedrepresentation from �0 to G0n with respect to P 0. We prove (Proposition 5.7 (c)) that this couple(�0; L0) is unique up to conjugation. This result is an analogue for G0n of Theorem 4.4 of [JS].The last Section is devoted to the computation of L-functions, �0-factors (in the sense of [GJ])and their behavior under the local transfer of irreducible (especially unitary) representations.The behavior of the �-factors then follows. These calculations are either well known or trivial,but we feel it is natural to give them explicitly here. The L-functions and �0-factors in questionare preserved under the correspondence for square integrable representations. In general, �0-factors (but not L-functions) are preserved under the correspondence for irreducible unitaryrepresentations.In the Appendix Neven Grbac completes the classi�cation of the discrete spectrum by showingthat all the representations except the basic cuspidal ones are residual. His approach applies theLanglands spectral theory.

The essential part of this work has been done at the Institute for Advanced Study, Princeton,during the year 2004 and I would like to thank the Institute for the warm hospitality andsupport. They were expounded in a preprint from the beginning of 2006. The present papercontains exactly the same local results as that preprint. Two major improvements obtained in2007 concern the global results. The �rst one is the proof of the fact that any discrete series ofthe inner form transfers (based on a better understanding of the trace formula from [AC]). Thesecond is a complete classi�cation of the residual spectrum thanks to the Appendix of NevenGrbac.The research at the IAS has been supported by the NSF fellowship no. DMS-0111298. Iwould like to thank Robert Langlands and James Arthur for useful discussions about globalrepresentations; Marko Tadi�c and David Renard for useful discussions on the local unitary dual;Abderrazak Bouaziz who explained to me the intertwining operators. I would like to thank GuyHenniart and Colette Moeglin for the interest they showed for this work and their invaluableadvices. I thank Neven Grbac for his Appendix where he carries out the last and importantstep of the classi�cation, and for his remarks on the manuscript. Discussions with Neven Grbachave been held during our stay at the Erwin Schr�odinger Institute in Vienna and I would like tothank here Joachim Schwermer for his invitation.
2. Basic facts and notation (local)

In the sequel N will denote the set of non negative integers and N� the set of positive integers.A multiset is a set with �nite repetitions. If x 2 R, then [x] will denote the biggest integerinferior or equal to x.Let F be a non-Archimedean local �eld and D a central division algebra of a �nite dimensionover F . Then the dimension of D over F is a square d2, d 2 N�. If n 2 N�, we set Gn = GLn(F )and G0n = GLn(D). From now on we identify a smooth representation of �nite length withits equivalence class, so we will consider two equivalent representations as being equal. By acharacter of Gn we mean a smooth representation of dimension one of Gn. In particular acharacter is not unitary unless we specify it. Let � be an irreducible smooth representation of
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Gn. We say � is square integrable if � is unitary and has a non-zero matrix coe�cient whichis square integrable modulo the center of Gn. We say � is essentially square integrable if �is the twist of a square integrable representation by a character of Gn. We say � is cuspidalif � has a non-zero matrix coe�cient which has compact support modulo the center of Gn. Inparticular a cuspidal representation is essentially square integrable.
For all n 2 N� let us �x the following notation:Irrn is the set of smooth irreducible representations of Gn,Dn is the subset of essentially square integrable representations in Irrn,Cn is the subset of cuspidal representations in Dn,Irrun (resp. Dun, Cun) is the subset of unitary representations in Irrn (resp. Dn, Cn),Rn is the Grothendieck group of admissible representations of �nite length of Gn,� is the character ofGn de�ned by the absolute value of the determinant (notation independentof n { this will lighten the notation and cause no ambiguity in the sequel).For any � 2 Dn, there is a unique couple (e(�); �u) such that e(�) 2 R, �u 2 Dun and� = �e(�)�u.We will systematically identify � 2 Irrn with its image in Rn and consider Irrn as a subsetof Rn. Then Irrn is a Z-basis of the Z-module Rn.If n 2 N� and (n1; n2; :::; nk) is an ordered set of positive integers such that n =Pki=1 ni thenthe subgroup L of Gn consisting of block diagonal matrices with blocks of sizes n1; n2; :::; nkin this order from the left upper corner to the right lower corner is called a standard Levisubgroup of Gn. The group L is canonically isomorphic with the product �ki=1Gni , and we willidentify these two groups. Then the notation Irr(L), D(L), C(L), Du(L), Cu(L), R(L) extendin an obvious way to L. In particular Irr(L) is canonically isomorphic to �ki=1Irrni and so on.We denote indGnL the normalized parabolic induction functor where it is understood that weinduce with respect to the parabolic subgroup of Gn containing L and the subgroup of uppertriangular matrices. Then indGnL extends to a group morphism iGnL : R(L) ! Rn. If �i 2 Rnifor i 2 f1; 2; :::; kg and n = Pki=1ni, we denote �1 � �2 � ::: � �k or abridged Qki=1 �i therepresentation

indGn�ki=1Gni 
 ki=1�i
of Gn. Let � be a smooth representation of �nite length of Gn. If distinction between quotient,subrepresentation and subquotient of � is not relevant, we consider � as an element of Rn(identi�cation with its class) with no extra explanation.If g 2 Gn for some n, we say g is regular semisimple if the characteristic polynomial of ghas distinct roots in an algebraic closure of F . If � 2 Rn, then we let �� denote the functioncharacter of �, as a locally constant map, stable under conjugation, de�ned on the set of regularsemisimple elements of Gn.We adopt the same notation adding a sign 0 for G0n: Irr0n, D0n, C0n, Irr0un , D0un , C0un , R0n.There is a standard way of de�ning the determinant and the characteristic polynomial forelements of G0n, in spite of D being non commutative (see for example [Pi] Section 16). Ifg0 2 G0n, then the characteristic polynomial of g0 has coe�cients in F , it is monic and has degreend. The de�nition of a regular semisimple element of G0n is then the same as for Gn. If � 2 R0n,we let again �� be the function character of �. As for Gn, we will denote � the character of G0ngiven by the absolute value of the determinant (there will be no confusion with the one on Gn).
2.1. Classi�cation of Irrn (resp. Irr0n) in terms of Dl (resp. D0l), l � n. Let � 2 Irrn.There exists a standard Levi subgroup L = �ki=1Gni of Gn and, for all 1 � i � k, �i 2 Cni ,
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such that � is a subquotient of Q ki=1�i. The non-ordered multiset of cuspidal representationsf�1; �2; :::�kg is determined by � and is called the cuspidal support of �.We recall the Langlands classi�cation which takes a particularly nice form on Gn. Let L =�ki=1Gni be a standard Levi subgroup of Gn and � 2 D(L) = �ki=1Dni . Let us write � = 
ki=1�iwith �i 2 Dni . For each i, write �i = �ei�ui , where ei 2 R and �ui 2 Duni . Let p be a permutationof the set f1; 2; :::; kg such that the sequence ep(i) is decreasing. Let Lp = �ki=1Gnp(i) and�p = 
ki=1�p(i). Then indGnLp �p has a unique irreducible quotient � and � is independent ofthe choice of p under the condition that (ep(i))1�i�k is decreasing. So � is de�ned by the nonordered multiset f�1; �2; :::; �kg. We write then � = Lg(�). Every � 2 Irrn is obtained in thisway. If � 2 Irrn and L = �ki=1Gni and L0 = �k0j=1Gn0j are two standard Levi subgroups of Gn, if� = 
ki=1�i, with �i 2 Dni , and �0 = 
k0j=1�0j , with �0j 2 Dn0j , are such that � = Lg(�) = Lg(�0),then k = k0 and there exists a permutation p of f1; 2; :::; kg such that n0j = np(i) and �0j = �p(i).So the non ordered multiset f�1; �2; :::; �kg is determined by � and it is called the essentiallysquare integrable support of � which we abridge as the esi-support of �.An element S = iGnL � of Rn, with � 2 D(L), is called a standard representation of Gn.We will often write Lg(S) for Lg(�): The set Bn of standard representations of Gn is a basis ofRn and the map S 7! Lg(S) is a bijection from Bn onto Irrn. All these results are consequencesof the Langlands classi�cation (see [Ze] and [Rod]). We also have the following result: if for all� 2 Irrn we write � = Lg(S) for some standard representation S and then for all �0 2 Irrnnf�gwe set �0 < � if and only if �0 is a subquotient of S, then we obtain a well de�ned partial orderrelation on Irrn.The same de�nitions and theory, including the order relation, hold for G0n (see [Ta2]). Theset of standard representations of G0n is denoted here by B0n.For Gn or G0n we have the following Proposition, where �1 and �2 are essentially squareintegrable representations:

Proposition 2.1. (a) The representation Lg(�1) � Lg(�2) contains Lg(�1 � �2)as a subquotient with multiplicity 1.(b) If � is another irreducible subquotient of Lg(�1)�Lg(�2), then � < Lg(�1��2). In particular, if Lg(�1) � Lg(�2) is reducible, it has at least two di�erentsubquotients.
For Gn, assertion (a) is proven in its dual form in [Ze] (Proposition 8.4). It is proven inits present form in [Ta2] (Proposition 2.3) for the more general case of G0n. Assertion (b) isthen obvious because of the de�nition (here) of the order relation, and since any irreduciblesubquotient of Lg(�1)� Lg(�2) is also an irreducible subquotient of �1 � �2.

2.2. Classi�cation of Dn in terms of Cl, ljn. Let k and l be two positive integers and setn = kl. Let � 2 Cl. Then the representation Qk�1i=0 �i� has a unique irreducible quotient �. � isan essentially square integrable representation of Gn. We write then � = Z(�; k). Every � 2 Dnis obtained in this way and l, k and � are determined by �. This may be found in [Ze].In general, a set X = f�; ��; �2�; :::; �a�1�g, � 2 Cb, a; b 2 N�, is called a segment, a is thelength of the segment X and �a�1� is the ending of X.
2.3. Local Jacquet-Langlands correspondence. Let n 2 N�. Let g 2 Gnd and g0 2 G0n. Wesay that g corresponds to g0 if g and g0 are regular semisimple and have the same characteristicpolynomial. We shortly write then g $ g0.
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Theorem 2.2. There is a unique bijection C : Dnd ! D0n such that for all � 2 Dndwe have ��(g) = (�1)nd�n�C(�)(g0)for all g 2 Gnd and g0 2 G0n such that g $ g0.

For the proof, see [DKV] if the characteristic of the base �eld F is zero and [Ba2] for the nonzero characteristic case. I should quote here also the particular cases [JL], [Fl2] and [Ro] whichcontain some germs of the general proof in [DKV].
We identify the centers of Gnd and G0n via the canonical isomorphism. Then the correspon-dence C preserves central characters so in particular � 2 Dund if and only if C(�) 2 D0un .If L0 = �ki=1G0ni is a standard Levi subgroup of G0n we say that the standard Levi subgroupL = �ki=1Gdni of Gnd corresponds to L0. Then the Jacquet-Langlands correspondence extendsin an obvious way to a bijective correspondence D(L) to D0(L0) with the same properties. We willdenote this correspondence by the same letter C. A standard Levi subgroup L of Gn correspondsto a standard Levi subgroup or G0r if and only if it is de�ned by a sequence (n1; n2; :::; nk) suchthat each ni is divisible by d. We then say that L transfers.

2.4. Classi�cation of D0n in terms of C0l, ljn. The invariant s(�0). Let l be a positiveinteger and �0 2 C0l . Then � = C�1(�0) is an essentially square integrable representation of Gld.We may write � = Z(�; p) for some p 2 N� and some � 2 C ldp . Set then s(�0) = p and ��0 = �s(�0).Let k and l be two positive integers and set n = kl. Let �0 2 C0l . Then the representationQk�1i=0 �i�0�0 has a unique irreducible quotient �0. �0 is an essentially square integrable represen-tation of G0n. We write then �0 = T (�0; k). Every �0 2 D0n is obtained in this way and l, k and�0 are determined by �0. We set then s(�0) = s(�0). For this classi�cation see [Ta2].A set S0 = f�0; ��0�0; �2�0�0; :::; �a�1�0 �0g, �0 2 C0b, a; b 2 N�, is called a segment, a is the lengthof S0 and �a�1�0 �0 is the ending of S0.
2.5. Multisegments, order relation, the function l and rigid representations. Here wewill give the de�nitions and results in terms of groups Gn, but one may replace Gn by G0n. Wehave seen (Section 2.2 and 2.4) that to each � 2 Dn one may associate a segment. A multisetof segments is called a multisegment. If M is a multisegment, the multiset of endings of itselements (see Section 2.2 and 2.4 for the de�nition) is denoted E(M).If � 2 Gn, the multiset of the segments of the elements of the esi-support of � is a multiseg-ment; we will denote it by M�. M� determines �. The reunion with repetitions of the elementsof M� is the cuspidal support of �.Two segments S1 and S2 are said to be linked if S1 [ S2 is a segment di�erent from S1 andS2. If S1 and S2 are linked, we say they are adjacent if S1 \ S2 = �.Let M be a multisegment, and assume S1 and S2 are two linked segments in M . Let M 0 bethe multisegment de�ned by- M 0 = (M [fS1 [S2g[fS1 \S2g)nfS1; S2g if S1 and S2 are not adjacent (i.e. S1 \S2 6= �),and- M 0 = (M [ fS1 [ S2g)nfS1; S2g if S1 and S2 are adjacent (i.e. S1 \ S2 = �).We say that we made an elementary operation on M to get M 0, or that M 0 was obtainedfrom M by an elementary operation. We then say M 0 is inferior to M . It is easy to verify thisextends by transitivity to a well de�ned partial order relation < on the set of multisegments ofGn. The following Proposition is a result of [Ze] (Theorem 7.1) for Gn and [Ta2] (Theorem 5.3)for G0n.Proposition 2.3. If �; �0 2 Irrn, then � < �0 if and only if M� < M�0 .
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If � < �0, then the cuspidal support of � equals the cuspidal support of �0.De�ne a function l on the set of multisegments as follows: if M is a multisegment, then l(M)is the maximum of the lengths of the segments in M . If � 2 Irrn, set l(�) = l(M�). Thefollowing Lemma is obvious:

Lemma 2.4. If M 0 is obtained from M by an elementary operation then l(M) �l(M 0) and E(M 0) � E(M). As a function on Irrn, l is decreasing.
The next important Proposition is also a result from [Ze] and [Ta2]:

Proposition 2.5. Let � 2 Irrk and �0 2 Irrl. If for all S 2M� and S0 2M�0 thesegments S and S0 are not linked, then � � �0 is irreducible.
There is an interesting consequence of this last Proposition. Let l 2 N� and � 2 Cl. We willcall the set X = f�a�ga2Z a line, the line generated by �. Of course X is also the line generatedby �� for example. If � 2 Irrn, we say � is rigid if the set of elements of the cuspidal supportof � is included in a single line. As a consequence of the previous Proposition we have the

Corollary 2.6. Let � 2 Irrn. Let X be the set of the elements of the cuspidalsupport of �. If fD1; D2; :::; Dmg is the set of all the lines with which X has anon empty intersection, then one may write in the unique (up to permutation) way� = �1��2�:::��m with �i rigid irreducible and the set of elements of the cuspidalsupport of �i included in Di, 1 � i � m.
We will say � = �1��2� :::��m is the standard decomposition of � in a product of rigidrepresentations (this is only the shortest decomposition of � in a product of rigid representations,but there might exist �ner ones).The same holds for G0n.

2.6. The involution. Aubert de�ned in [Au] an involution (studied too by Schneider and Stuh-ler in [ScS]) of the Grothendieck group of smooth representations of �nite length of a reductivegroup over a local non-Archimedean �eld. The involution sends an irreducible representation toan irreducible representation up to a sign. We specialize this involution to Gn, resp. G0n, anddenote it in, resp. i0n. We will write i and i0 when the index is not relevant or it is clearly un-derstood. With this notation we have the relation i(�1)� i(�2) = i(�1��2), i.e. \the involutioncommutes with the parabolic induction". The same holds for i0. The reader may �nd all thesefacts in [Au].If � 2 Irrn, then one and only one among i(�) and �i(�) is an irreducible representation.We denote it by ji(�)j. We denote jij the involution of Irrn de�ned by � 7! ji(�)j. The samefacts and de�nitions hold for i0.The algorithm conjectured by Zelevinsky for computing the esi-support of ji(�)j from theesi-support of � when � is rigid (and hence more generally for � 2 Irrn, cf. Corollary 2.6) isproven in [MW1]. The same facts and algorithm hold for ji0j as explained in [BR2].
2.7. The extended correspondence. The correspondence C�1 may be extended in a naturalway to a correspondence LJ between the Grothendieck groups. Let S0 = iG0nL0 �0 2 B0n, whereL0 is a standard Levi subgroup of G0n and �0 an essentially square integrable representation ofL0. Set Mn(S0) = iGndL C�1(�0), where L is the standard Levi subgroup of Gnd correspondingto L0. Then Mn(S0) is a standard representation of Gnd and Mn realizes an injective mapfrom B0n into Bnd. De�ne Qn : Irr0n ! Irrnd by Qn(Lg(S0)) = Lg(Mn(S0)). If �01 < �02, thenQn(�01) < Qn(�02). So Qn induces on Irr(G0n), by transfer from Gnd, an order relation << whichis stronger than <.
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Let LJn : Rnd ! R0n be the Z-morphism de�ned on Bnd by setting LJn(Mn(S0)) = S0 andLJn(S) = 0 if S is not in the image of Mn.

Theorem 2.7. (a) For all n 2 N�, LJn is the unique map from Rnd to R0n suchthat for all � 2 Rnd we have
��(g) = (�1)nd�n�LJn(�)(g0)

for all g $ g0.(b) The map LJn is a surjective group morphism.(c) One has
LJn(Qn(�0)) = �0 + X

�0j<<�0 bj�
0j

where bj 2 Z and �0j 2 Irr0n.(d) One has LJn � ind = (�1)nd�ni0n � LJn:
See [Ba4]. We will often drop the index and write only Q, M and LJ. LJ may be extendedin an obvious way to standard Levi subgroups. For a standard Levi subgroup L0 of G0n whichcorrespond to a standard Levi subgroup L of Gnd we have LJ � iGndL = iG0nL0 � LJ.We will say that � 2 Rnd is d-compatible if LJn(�) 6= 0. This means that there existsa regular semisimple element g of Gnd which corresponds to an element of G0n and such that��(g) 6= 0. A regular semisimple element of Gnd corresponds to an element of G0n if and only ifits characteristic polynomial decomposes into irreducible factors with the degrees divisible by d.So our de�nition depends only on d, not on D. A product of representations is d-compatible ifand only if each factor is d-compatible.

2.8. Unitary representations of Gn. We are going to use the word unitary for unitarizable.Let k, l be positive integers and set kl = n.Let � 2 Cl and set � = Z(�; k). Then � is unitary if and only if � k�12 � is unitary. We set then�u = � k�12 � 2 Cul and we write � = Zu(�u; k). From now on, anytime we write � = Zu(�; k), itis understood that � and � are unitary.Now, if � 2 Dul , we set
u(�; k) = Lg(k�1Yi=0 �

k�12 �i�):
The representation u(�; k) is an irreducible representation of Gn.If � 2]0; 12 [, we moreover set

�(u(�; k); �) = ��u(�; k)� ���u(�; k):
The representation �(u(�; k); �) is an irreducible representation of G2n (by Proposition 2.5).Let us recall the Tadi�c classi�cation of unitary representations in [Ta1].Let U be the set of all the representations u(�; k) and �(u(�; k); �) where k; l range over N�,� 2 Cl and � 2]0; 12 [. Then any product of elements of U is irreducible and unitary. Everyirreducible unitary representation � of some Gn, n 2 N�, is such a product. The non orderedmultiset of the factors of the product are determined by �.The fact that a product of irreducible unitary representations is irreducible is due to Bernstein([Be]).Tadi�c computed the decomposition of the representation u(�; k) in the basis Bn of Rn.
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Proposition 2.8. ([Ta4]) Let � = Z(�; l) and k 2 N�. Let W lk be the set ofpermutations w of f1; 2; :::; kg such that w(i) + l � i for all i 2 f1; 2; :::; kg. Thenwe have:

u(�; k) = �� k+l2 ( Xw2W lk(�1)
sgn(w) kY

i=1Z(�
i�; w(i) + l � i)):

One can also compute the dual of u(�; k).
Proposition 2.9. Let � = Zu(�u; l) and k 2 N�. If � = Zu(�u; k), then

ji(u(�; k))j = u(�; l):
This is the Theorem 7.1 iii) [Ta1], and also a consequence of [MW1].

2.9. Unitary representations of G0n. Let k; l 2 N� and set n = kl. Let � 2 C0l and �0 =
T (�0; k) 2 D0n. As for Gn, one has �0 2 D0un if and only if � k�12�0 �0 is unitary; we set then�0u = � k�12 �0 and write �0 = Tu(�0u; k).If now �0 2 D0ul , we set

u0(�0; k) = Lg(k�1Yi=0 �
k�12 �i�0 �0)

and
�u(�0; k) = Lg(k�1Yi=0 �

k�12 �i�0):
The representations u0(�0; k) and �u(�0; k) are irreducible representations of G0n.If moreover � 2]0; 12 [, we set�(u0(�0; k); �) = ���0u0(�0; k)� ����0 u0(�0; k):The representation �(u0(�0; k); �) is an irreducible representation ofG02n (cf. [Ta2]; a consequenceof the (restated) Proposition 2.5 here).We have the formulas:

(2.1) �u(�0; ks(�0)) = s(�0)Y
i=1 �

i� s(�0)+12 u0(�0; k);
and, for all integers 1 � b � s(�0)� 1,

(2.2) �u(�0; ks(�0) + b) = ( bY
i=1 �

i� b+12 u0(�0; k + 1))� (s(�
0)�bY

j=1 �j� s(�0)�b+12 u0(�0; k));
with the convention that we ignore the second product if k = 0.The products are irreducible, by Proposition 2.5, because the segments appearing in the esi-support of two di�erent factors are never linked. The fact that the product is indeed �u(�0; ks(�0))(and resp. �u(�0; ks(�0) + b)) is then clear by Proposition 2.1. This kind of formulas has beenused (at least) in [BR1] and [Ta6].The representations u0(�0; k) and �u(�0; k) are known to be unitary at least in zero characteristic([Ba4] and [BR1]).
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One has

Proposition 2.10. Let �0 = Zu(�0u; l) and k 2 N�. If � 0 = Zu(�0u; k), then(a) ji0(u0(�0; k))j = u0(� 0; l) and(b) ji0(�u(�0; ks(�0)))j = �u(� 0; ls(�0)):
Proof. The claim (a) is a direct consequence of [BR2]. For the claim (b), it is enough to usethe relation 2.1, the claim (a) here and the fact that i0 commutes with parabolic induction. �

2.10. Hermitian representations and an irreducibility trick. If � 2 Irr0n, write h(�) forthe complex conjugated representation of the contragredient of �. A representation � 2 Irr0n iscalled hermitian if � = h(�) (we recall, to avoid confusion, that here we use \=" for the usual\equivalent"). A unitary representation is always hermitian. If A = f�ig1�i�k is a multisetof essentially square integrable representations of some G0li , we de�ne the multiset h(A) byh(A) = fh(�i)g1�i�k. If � 2 Irr0n and x 2 R, then h(�x�) = ��xh(�), so if �0 2 D0l and wewrite �0 = �e�0u with e 2 R and �0u 2 D0ul , then h(�0) = ��e�0u 2 D0l. An easy consequence ofProposition 3.1.1 in [Ca] is the
Proposition 2.11. If � 2 Irr0n, and A is the esi-support of �, then h(A) is theesi-support of h(�). In particular, � is hermitian if and only if the esi-support Aof � satis�es h(A) = A.

Let us give a Lemma.
Lemma 2.12. Let �1 2 Irr0n1 and �2 2 Irr0n2 and assume h(�1) 6= �2. Then thereexists " > 0 such that for all x 2]0; "[ the representation ax = �x�1 � ��x�2 isirreducible, but not hermitian.

Proof. For all x 2 R let Ax be the esi-support of �x�1 and Bx be the esi-support of ��x�2.Then the set X of x 2 R such that Ax \ h(Ax) 6= ; or Bx \ h(Bx) 6= ; is �nite (it is enough tocheck the central character of the representations in these multisets). The set Y of x 2 R suchthat the cuspidal supports of Ax and Bx have a non empty intersection is �nite too. Now, ifx 2 RnY , ax is irreducible by the Proposition 2.5. Assume moreover x =2 X. As ax is irreducible,if it were hermitian one should have h(Ax)[h(Bx) = Ax[Bx (where the reunions are to be takenwith multiplicities, as reunions of multisets) by the Proposition 2.11. But if Ax \h(Ax) = ; andBx\h(Bx) = ;, then this would lead to h(Ax) = Bx, and hence to h(�1) = �2 which contradictsthe hypothesis. �We now state our irreducibility trick.
Proposition 2.13. Let u0i 2 Irr0uni , i 2 f1; 2; :::; kg. If, for all i 2 f1; 2; :::; kg,u0i � u0i is irreducible, then Qki=1 u0i is irreducible.Proof. There exists " > 0 such that for all i 2 f1; 2; :::; kg the cuspidal supports of �xu0iand ��xu0i are disjoint for all x 2]0; "[. Then, for all i 2 f1; 2; :::; kg, for all x 2]0; "[, therepresentation �xu0i � ��xu0i is irreducible. As, by hypothesis, u0i � u0i is irreducible andunitary, the representation �xu0i� ��xu0i is also unitary for all x 2]0; "[ (see for example [Ta3],Section (b)). So Q ki=1�xu0i � ��xu0i is a sum of unitary representations. But we have (in theGrothendieck group) kY

i=1(�
xu0i � ��xu0i) = (�x kY

i=1u
0i)� (��x kY

i=1u
0i):

If Q ki=1u0i were reducible, then it would contain at least two di�erent unitary subrepresen-tations �1 and �2 (Proposition 2.1). But then, for some x 2]0; "[, (�xQ ki=1u0i)� (��xQ ki=1u0i)
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contains an irreducible, but not hermitian, subquotient of the form �x�1 � ��x�2 (by Lemma2.12). This subquotient would be non-unitary which contradicts our assumption. �

3. Local results
3.1. First results. Let �0 2 D0un and set � = C�1(�0) 2 Dund. Write �0 = Tu(�0; l) for somel 2 N�; ljn and �0 2 Cunl . As C�1(�0) 2 Dundl we may write C�1(�0) = Zu(�; s(�0)) for some� 2 Cundls(�0) . We set l0 = ls(�0). Then we have � = Zu(�; l0) (means one can recover the
cuspidal support of � from the cuspidal support of �0; it is a consequence of the fact that thecorrespondence commutes with the Jacquet functor; the original proof for square integrablerepresentations is [DKV], Theorem B.2.b).Let k be a positive integer and set k0 = ks(�0). Let H be the group of permutations w off1; 2; :::; k0g such that s(�0)jw(i)� i for all i 2 f1; 2; :::; k0g. For the meaning of W lk and W l0k0 inthe following, see Proposition 2.8.This is Lemma 3.1 in [Ta5]:

Lemma 3.1. If w 2 H, then for each j 2 f1; 2; :::; s(�0)g, the set of elements off1; 2; :::; k0g equal to j mod s(�0) is stable under w, and w induces a permutationwj of f1; 2; :::; kg de�ned by the fact that, if w(as(�0)+ j) = bs(�0)+ j then wj(a+1) = b+ 1. The map w 7! (w1; w2; :::; ws(�0)) is an isomorphism of groups from Hto (Sk)s(�0). One has w 2 H \W l0k0 if and only if for all j, wj 2 W lk. Moreover,sgn(w) =Qs(�0)j=1 sgn(wj).
We have the following:

Theorem 3.2. (a) One has
LJ(u(�; k0)) = �u(�0; k0):

(b) The induced representation �u(�0; k0)� �u(�0; k0) is irreducible.(c) We have the character formula
�u(�0; k0) = �� k0+l02 + s(�0)�12 ( X

w2H\W l0k0
(�1)sgn(w) k0Y

i=1T (�
i�0; w(i)� is(�0) + l)):

Proof. (a) Let � 0 = Tu(�0; k) and set � = C�1(� 0). For the same reasons as explained for �,we have � = Zu(�; k0).We apply Theorem 2.7 (c) to �u(�0; k0) and �u(� 0; l0). We get
(3.1) LJ(u(�; k0)) = �u(�0; k0) + X

�0j<<�u(�0;k0) bj�
0j

and
(3.2) LJ(u(�; l0)) = �u(� 0; l0) + X

� 0q<<�u(� 0;l0) cq�
0q

We want to show that all the bj vanish.Let us write the dual equation to 3.1 (cf. Theorem 2.7 (d)). As ji(u(�; k0))j = u(�; l0)(Proposition 2.9) and ji0(�u(�0; k0))j = �u(� 0; l0) (Proposition 2.10), we obtain:
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(3.3) LJ(u(�; l0)) = "1�u(� 0; l0) + "2 X
�0j<<�u(�0;k0) bji

0(�0j):
for some signs "1; "2 2 f�1; 1g. The equations 3.2 and 3.3 imply then the equality:

(3.4) �u(� 0; l0) + X
� 0q<<�u(� 0;l0) cq�

0q = "1�u(� 0; l0) + "2 ( X
�0j<<�u(�0;k0) bji

0(�0j)):
First, observe that since �0j 6= �u(�0; k0) for all j, we also have ji0(�0j)j 6= �u(� 0; l0) for all j. So bythe linear independence of irreducible representations in the Grothendieck group, "1 = 1 andthe term �u(� 0; l0) cancels.We will now show that the remaining equality

X
� 0q<<�u(� 0;l0) cq�

0q = "2 ( X
�0j<<�u(�0;k0) bji

0(�0j)):
implies that all the coe�cients bj vanish. The argument is the linear independence of irreduciblerepresentations and the Lemma:

Lemma 3.3. If �0j << �u(�0; k0), it is impossible to have ji0(�0j)j << �u(� 0; l0).
Proof. The proof is complicated by the fact that we do not have in general equality < = <<between the order relations. But this does not really matter. Recall that �0j << �u(�0; k0), meansby de�nition Q(�0j) < Q(�u(�0; k0)), i.e. there exists �j < u(�; k0) such that the esi-support of �0jcorresponds to the esi-support of �j element by element by Jacquet-Langlands. This implies theonly two properties we need:(*) the cuspidal support of �0j equals the cuspidal support of �u(�0; k0) and(**) we have the inclusion relation E(M�0j ) � E(M�u(�0;k0)) (Lemma 2.4).The property (*) implies that, if

�0j = a1 � a2 � :::� ax
is a standard decomposition of �0j in a product of rigid representations, then:- x = s(�0),- we may assume that for 1 � t � s(�0) the line of at is generated by �t�0 and- the multisegment Mt of at has at most k elements.So, if one uses the Zelevinsky-Moeglin-Waldspurger algorithm to compute the esi-support M#tof ji0(at)j (cf. [BR2]), one �nds that l(M#t ) � k, since each segment in M#t is constructed bypicking up at most one cuspidal representation from each segment in Mt. This implies thatl(ji0(at)j) � k. As ji0(�0j)j = ji0(a1)j � ji0(a2)j � :::� ji0(ax)jwe eventually have l(ji0(�0j)j) � k.Assume now ji0(�0j)j << �u(� 0; l0). We will show that l(ji0(�0j)j) > k. Set Q(ji0(�0j)j) =  andwe know that  < u(�; l0). We obviously have in our particular situation l() = s(�0)l(ji0(�0j)j).So we want to prove l() > k0. The multisegment of  is obtained by a sequence of elementaryoperation from the multisegment of u(�; l0): at the �rst elementary operation on the multisegmentof u(�; l0) we get a multisegment M 0 such that l(M 0) > k0 and then we apply Lemma 2.4. Weget, indeed, l() > k0.So our assumption leads to a contradiction. �
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(b) The proof uses the claim (a) and is similar to its proof. Let � and � 0 be de�ned like in(a). By the part (a) we know now that

LJ(u(�; k0)) = �u(�0; k0) and LJ(u(�; l0)) = �u(� 0; l0);
so LJ(u(�; k0)� u(�; k0)) = �u(�0; k0)� �u(�0; k0)and LJ(u(�; l0)� u(�; l0)) = �u(� 0; l0)� �u(� 0; l0):Let us call K1 the Langlands quotient of the esi-support of �u(�0; k0) � �u(�0; k0) and K2 theLanglands quotient of the esi-support of �u(� 0; l0) � �u(� 0; l0). Using [BR2] it is easy to see thatji0(K1)j = K2. Then we may write, using Theorem 2.7 (c) and Proposition 2.1:

(3.5) LJ(u(�; k0)� u(�; k0)) = K1 + X
�j<<K1 bj�

0j
and

(3.6) LJ(u(�; l0)� u(�; l0)) = K2 + X
�0m<<K2 cm�

0m:
We want to prove that all the bj vanish. Let us take the dual in the equation 3.5 (cf. Proposition2.7 (d)):

(3.7) LJ(i(u(�; k0)� u(�; k0))) = �(i0(K1) + X
�j<<K1 bji

0(�0j)):
We know that ji(u(�; k0)� u(�; k0))j = u(�; l0)� u(�; l0) because i commutes with the inductionfunctor and we have ji(u(�; k0))j = u(�; l0) by Proposition 2.9. As ji0(K1)j = K2, we get fromequations 3.6 and 3.7 after cancellation of K2 (as in the equation 3.4):X

�j<<K1 bji
0(�0j) = �( X

�0m<<K2 cm�
0m):

To show that all the bj vanish, it is enough, by the linear independence of irreducible represen-tations, to show the following:
Lemma 3.4. If �0 << K1 it is impossible to have ji0(�0)j << K2.

Proof. The proof of Lemma 3.3 applies here with a minor modi�cation. We write again
�0 = a1 � a2 � :::� as(�0)such that the line of at, 1 � t � s(�0), is generated by �t�0. The di�erence here is that themultisegment M of at may have up to 2k elements. We will prove though, that in this caseagain:

Lemma 3.5. The multisegment m# of ji0(at)j veri�es l(m#) � k.
This implies that l(�0) � k and the rest of the proof goes the same way as for (a).
Proof. Let us denote m the multisegment of at (m and m# respect the notation in [MW1]).The multisegment m# is obtained from m using the algorithm in [MW1] (cf. [BR2]). As

�0 << K1, one has E(m) � f� l�k2 +1�0 �0; � l�k2 +2�0 �0; :::; � l+k2�0 �0g (it is the property (**) given atthe beginning of the proof of Lemma 3.3). One constructs all the segments of m# ending with
� l+k2�0 �0 using only cuspidal representations in E(m) (Remark II.2.2 in [MW1]). So the length
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of the constructed segments is at most k. Let m� be the multisegment obtained from m afterwe dropped from each segment of m the cuspidal representations used in this construction. Weobviously have then E(m�) � f� l�k2�0 �0; � l�k2 +1�0 �0; :::; � l+k2 �1�0 �0g which has again k elements. Sogoing through the algorithm we will �nd that all the segments of m# have length at most k. �

(c) The claim (a) we have just proven allows us to transfer the formula of the Proposition 2.8by LJ.We have
LJ(u(�; k0)) = �� k0+l02 ( Xw2W l0k0

(�1)sgn(w)LJ( k0Yi=1Z(�
i�; w(i) + l0 � i))):

The representationsQk0i=1 Z(�i�; w(i)+ l0� i) are standard. If w is such that, for some i, s(�0)does not divide w(i)� i, then LJ(Qk0i=1 Z(�i�; w(i) + l0 � i)) = 0.If w satis�es s(�0)jw(i)� i for all i, i.e. w 2 H, then
LJ( k0Yi=1Z(�

i�; w(i) + l0 � i)) = k0Y
i=1T (�

i+ s(�0)�12 �0; w(i)� is(�0) + l):
Hence the formula of (c). �

Corollary 3.6. Let n; k 2 N� and �0 2 D0un .(a) u0(�0; k)� u0(�0; k) is irreducible. �(u0(�0; k); �) are unitary for � 2]0; 12 [.(b) Write �0 = Tu(�0; l) for some unitary cuspidal representation �0. Let W lk bethe set of permutation w of f1; 2; :::; kg such that w(i)+ l � i for all i 2 f1; 2; :::; kg.Then we have:
u0(�0; k) = �� k+l2�0 ( Xw2W lk(�1)

sgn(w) kY
i=1T (�

i�0�0; w(i) + l � i))
Proof. (a) It is clear that u0(�0; k) � u0(�0; k) is irreducible from the part (b) of Theorem3.2 and the formula 2.1. The fact that this implies that all the �(u0(�0; k); �) are unitary isexplained in [Ta2].(b) We want to show that

u0(�0; k) = �� k+l2�0 ( Xw2W lk(�1)
sgn(w) kY

i=1T (�
i�0�0; w(i) + l � i)):

We use the equality
�u(�0; ks(�0)) = s(�0)Y

j=1 �
j� s(�0)+12 u0(�0; k)

and the character formula for �u(�0; ks(�0)) obtained in Theorem 3.2 (c).Set
U = �� k+l2�0 ( Xw2W lk(�1)

sgn(w) kY
i=1T (�

i�0�0; w(i) + l � i)) 2 R0n:
We have
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s(�0)Y
j=1 �

j� s(�0)+12 U =

= �� k+l2 s(�0) s(�0)Y
j=1 �

j� s(�0)+12 ( Xw2W lk(�1)
sgn(w) kY

i=1T (�
i�0�0; w(i) + l � i)) =

= �� k0+l02 + s(�0)�12 s(�0)Y
j=1 (

X
w2W lk(�1)

sgn(w) kY
i=1T (�

(i�1)s(�0)+j�0; w(i) + l � i)) =

�� k0+l02 + s(�0)�12 X
w1;w2;:::;ws(�0)2W lk

s(�0)Y
j=1 (�1)

sgn(wj) kY
i=1T (�

(i�1)s(�0)+j�0; wj(i)+ l�i)):
Using Lemma 3.1 we �nd that this last formula is equal to the character formula of �u(�0; ks(�0))(Theorem 3.2.c). As �u(�0; ks(�0)) is irreducible, we will show that so is U .The formula de�ning U is an alternated sum of jW lkj terms which are distinct elements of

B0n. The term Qki=1 �i� k+12�0 �0, corresponding to the trivial w, is maximal. To prove that, one
may use Lemma 2.4 and the fact that one has l(Qki=1 �i� k+12�0 �0) = l, while l(t) > l for any other
term t in the sum. The Langlands quotient of this maximal term Qki=1 �i� k+12�0 �0 is u0(�0; k) andappears then in the sum with coe�cient 1. So we may write:

U = �00 + mX
t=1 bt�

0t
where �00 = u0(�0; k), bt are non-zero integers, �0t 2 Irr0n and the �0t, 0 � t � m, are distinct,with the convention m = 0 if U = u0(�0; k). The representations �0t are rigid and supported on
the same line L (generated by �� k+l2�0 �0). For di�erent j in f1; 2; :::; s(�0)g, the lines �j� s(�0)+12 L
are di�erent. So, as the �0t are distinct (and have distinct esi-support), Qs(�0)j=1 �j� s(�0)+12 U isa linear combination of exactly (m + 1)s(�0) irreducible distinct representations each appearingwith non-zero coe�cient. As it is irreducible, we have m = 0. �

3.2. Transfer of u(�; k). Let k, l, q be positive integers, set n = klq and let � 2 Cuq and� = Zu(�; l) 2 Dulq, � = Zu(�; k) 2 Dukq. Let s be the smallest positive integer such that djsq. Inthe next Proposition we give the general result of the transfer of u(�; k). The question has nomeaning unless djn (i.e. sjkl) which we shall assume.
Proposition 3.7. (a) If djlq (i.e. sjl), then �0 = C(�) is well de�ned; we haves = s(�0) and LJ(u(�; k)) = �u(�0; k):

(b) If djkq (i.e. sjk), then � 0 = C(�) is well de�ned; we have s = s(� 0) and
LJ(u(�; k)) = "ji0(�u(� 0; l))j

where " = 1 if s is odd and " = (�1) kls if s is even.(c) If d does not divide neither lq, nor kq (i.e. s does not divide neither l nork), then LJ(u(�; k)) = 0.
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Proof. (a) We have the formula for the decomposition of u(�; k) in the standard basis Bn(Proposition 2.8) so we may compute the formula for the decomposition of LJ(u(�; k)) in thestandard basis B0n by transfer. On the other hand, we have the formula for the decomposition of�u(�; k) in the standard basis B0n using the formula 2.2 and the Corollary 3.6 (b). The equalityof the two decompositions in the basis B0n leads again to the combinatorial Lemma 3.1 in [Ta5].(b) Up to the sign ", this is a consequence of the claim (a) and the dual transform, Theorem2.7 (d), since ji(u(�; l))j = u(�; k). For the sign ", see Proposition 4.1, b) in [Ba4].(c) The proof is in [Ta6]. It is a consequence of Proposition 2.8 here, which is also due toTadi�c, and the following Lemma for which we give here a more straightforward proof.

Lemma 3.8. Let k; l; s 2 N�. Assume there is a permutation w of f1; 2; :::; kg suchthat for all i 2 f1; 2; :::; kg one has sjl + w(i)� i. Then sjk or sjl.
Proof. Let [x] denote the biggest integer less than or equal to x. If y 2 N�, let Ny denotethe set f1; 2; :::; yg.Assume s does not divide l. Summing up all the k relations sjl + w(i) � i we �nd that sjkl.So, if (s; l) = 1, then sjk. Assume (s; l) = p. Then for all i 2 f1; 2; :::; kg, pjw(i)� i. Let w0 bethe natural permutation of N[ kp ] induced by the restriction of w to fp; 2p; :::; [kp ]pg and w1 the

natural permutation of N[ k�1p ]+1 induced by the restriction of w to f1; p+1; :::; [k�1p ]p+1g. Then
for all i 2 N[ kp ] one has sp j lp +w0(i)� i, and for all j 2 N[ k�1p ]+1 one has sp j lp +w1(j)� j. As now( sp ; lp ) = 1 we have already seen that one has sp j[kp ] and sp j[k�1p ] + 1. This implies [kp ] = [k�1p ] + 1and so pjk. It follows sp jkp , i.e. sjk. �

3.3. New formulas. The reader might have noticed that the dual of representations u(�; l)and u0(� 0; l) are of the same type, while the dual of representations �u(� 0; l) are in general morecomplicated. This is why the claim (b) of Proposition 3.7 looks awkward. We could not expressi0(�u(� 0; l)) in terms of �0 = C(�), and for the good reason that C(�) is not de�ned since thegroup on which � lives does not have the appropriate size (divisible by d). Recall the hypothesiswas s(�0)jk. We explain here that one can get a formula though, in terms of u0(�0+; ks(�0) ) andu0(�0�; ks(�0) ), where �0+ = C(�+) and �0� = C(��), and the representations �+ and �� areobtained from � by stretching and shortening it to get an appropriate size for the transfer. Theformulas we will give here are required for the global proofs.Let � 0 2 D0n and l = as(� 0) + b with a; b 2 N, 1 � b � s(� 0) � 1. We start with the formula2.2:
�u(� 0; l) = bY

i=1 �
i� b+12 u0(� 0; a+ 1)� s(� 0)�bY

j=1 �j� s(�0)�b+12 u0(� 0; a):
So one may compute the dual of �u(� 0; l) using Proposition 2.9; if � 0 = Tu(�0; k), we set �0+ =Tu(�0; a+ 1) and, if a 6= 0, �0� = Tu(�0; a); then

(3.8) ji0(�u(� 0; l))j = bY
i=1 �

i� b+12 u0(�0+; k)�
s(� 0)�bY
j=1 �j� s(�0)�b+12 u0(�0�; k)

with the convention that if a = 0 we ignore the second product.In particular the dual of a representation of type �u(�0; k) is of the same type (i.e. some �u(; p))if and only if s(�0)jk or �0 is cuspidal and k < s(�0). One can see that comparing the formula 3.8with the formula 2.1 and using the fact that a product of representations of the type ��u0(�0; k)determines its factors up to permutation ([Ta2]).
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This gives a formula for LJ(u(�; k)) when s divides k but s does not divide l (case (b) of Propo-sition 3.7). Let jLJj(u(�; k)) stand for the irreducible representation among fLJ(u(�; k));�LJ(u(�; k))g.Let � 2 Cup , � = Zu(�; l) 2 Dulp and let s be the smallest positive integer such that djps. Assumes 6= 1 and l = as + b, a; b 2 N, 1 � b � s � 1. Set �+ = Zu(�; (a + 1)s) and, if a 6= 0,�� = Zu(�; as). Let �0+ = C(�+) and, if a 6= 0, �0� = C(��). If sjk and k = k0s, then

(3.9) jLJj(u(�; k)) = bY
i=1 �

i� b+12 u0(�0+; k0)�
s(�0)�bY
j=1 �j� s(�0)�b+12 u0(�0�; k0);

with the convention that if a = 0 we ignore the second product.The following formula for the transfer is somehow arti�cial, but it has the advantage of beingsymmetric in k and l and adapted to the both cases (a) and (b) of Proposition 3.7. Let � 2 Cpfor some p 2 N�, and let s be the smallest positive integer such that djps. Set �0 = C(Zu(�; s))(in particular �0 is cuspidal and s(�0) = s). Let k; l 2 N�. Set b = k � s[ks ] + l � s[ ls ] and de�nea sign " by " = 1 if s is odd and " = (�1) kls if s is even. Make the convention that a productQ0i=1 has to be ignored in a formula. The representation u(Zu(�; l); k) is d-compatible if andonly if sjk or sjl. In this case we have
(3.10) LJ(u(Zu(�; l); k)) = " bY

i=1 �
i� b+12 u0�Tu(�0; � ls

�); �k � 1s
�+ 1�

� s�bY
j=1 �

j� s�b+12 u0�Tu(�0; � l � 1s
�+ 1); �ks

��;
with the convention that in this formula we ignore the �rst product if [ ls ] = 0 and the secondproduct if [ks ] = 0. (As s divides either l or k we cannot have [ ls ] = [ks ] = 0.)
3.4. Transfer of unitary representations. Let U 0 be the set of all the representations u0(�0; k)and �(u0(�0; k); �) where k; l range over N�, �0 2 D0l and � 2]0; 12 [. Here we will use the factthat the representations u0(�0; k) are unitary so we will assume the characteristic of the base�eld F is zero. As Henniart pointed out to me it is not di�cult to lift the result to the non zerocharacteristic case by the Kazhdan's close �elds theory ([Ka]), but it has not been written yet.The next Proposition has been proven in [Ta6] under the assumption of the U0 conjecture ofTadi�c. We prove it here without this assumption.

Proposition 3.9. (a) All the representations in U 0 are irreducible and unitary.(b) If �0i 2 U 0, i 2 f1; 2; :::; kg, then the product Q ki=1�0i is irreducible andunitary.(c) If u 2 Irrund, then LJ(u) = 0 or LJ(u) is an irreducible unitary representationu0 of G0n up to a sign.(d) Let u0 be an irreducible unitary representation of G0n. If u0�u0 is irreducible,then u0 is a product of representations in U 0.

Proof. The claim (a) is a part of the Tadi�c conjecture U2 in [Ta2]. It has already beensolved for s(�0) � 3 in [BR1], Remark 4.3, which is actually a remark due to Tadi�c, not to theauthors. The only problem, as explained in [Ta2], is to show that the product u0(�0; k)�u0(�0; k)is irreducible. This is just our Corollary 3.6 (a).
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(b) This follows from the irreducibility trick (Proposition 2.13) and the Corollary 3.6 (a).(c) This is a consequence of the Proposition 3.7, the formula 3.9 and of the parts (a) and (b)here.(d) Assume u0 � u0 is irreducible. Then any product containing u0 and representations in U 0is irreducible (by Proposition 2.13). As u0(�0; k) are prime elements ([Ta2], 6.2), the same proofas for GL(n) (Tadi�c, [Ta1]) shows that u0 is a product of representations in U 0. �

If u0 is like in the second situation of the part (c) we write u0 = jLJuj(u).Let �U 0 be the set of products of representations in U 0. Then �U 0 is a set of irreducibleunitary representations containing the �u(�0; k) (formula 2.2). We have:
Proposition 3.10. (a) The set �U 0 is stable under ji0j.(b) If � is a d-compatible unitary representation of Gnd, then jLJuj(�) 2 �U 0.

Proof. (a) is implied by Proposition 2.10 (a).(b) is implied by Proposition 3.7, the fact that �u(�0; k) 2 �U 0 and the part (a). �

So we have a map jLJuj from the set of unitary irreducible d-compatible representations ofGnd to the set �U 0. We prove here a Lemma we will need later to construct automorphic unitaryrepresentations of the inner form which do not transfer to the split form.
Lemma 3.11. Assume dimFD = 16. Let St03 be the Steinberg representation ofGL3(D) and St04 the Steinberg representation of GL4(D). Let

� = �� 32u0(St03; 4)� �� 12u0(St04; 3)� � 12u0(St04; 3)� � 32u0(St03; 4):
Then � is a representation of GL48(D). We have(i) � is unitary irreducible,(ii) we have � < �u(St03; 16) and(iii) � is not in the image of jLJuj.

Proof. (i) If 11 is the trivial representation ofD�, we have s(11) = 4. So s(St03) = s(St04) = 4.By de�nition of �U 0 it is clear then that � 2 �U 0.(ii) By the formula 2.1 we get
�u(St03; 16) = �� 32u0(St03; 4)� �� 12u0(St03; 4)� � 12u0(St03; 4)� � 32u0(St03; 4):

It is easy to prove that the esi-support of u0(St04; 3) is obtained from the esi-support ofu0(St03; 4) by elementary operations. So � < �u(St03; 16)(iii) Any unitary representation of Gnd decomposes in the unique way up to permutation offactors in a product of representations of type ��u(�; k) and any unitary representation of G0ndecomposes in a unique way up to permutation of factors in a product of representations of type��u0(�0; k) ([Ta2]). The formula 3.10 implies that if �� 32u0(St03; 4) appear in the decompositionof an element of the image of jLJuj, then �� 12u0(St03; 4) should appear too. So � is not in theimage of jLJuj. �

It is natural to ask how big are the �bers of jLJuj over a given element u0 2 �U 0. A product ofrepresentations of type �u(�0; k) and ji0j�u(�0; k) may be equal to several di�erent similar productsand it does not seem to exist a manageable formula for the number of possibilities. They are ofcourse �nite since the cuspidal support is �xed.
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3.5. Transfer of local components of global discrete series. Let  2 Irrun be a genericrepresentation. Then one may write

 = mY
i=1 �

ei�i
where �i are square integrable and ei 2] � 12 ; 12 [ ([Ze]). As it is explained in the Section 4.1 of[Ba4], for all k 2 N�, the representation Qk�1i=0 (� k�12 �i) is a standard representation and if wecall Lg(; k) its Langlands quotient, then we have

Lg(; k) = mY
i=1 �

eiu(�i; k):
One may show that, as  was unitary, Lg(; k) is unitary.  is tempered if and only if all eiare zero. As the local component of global cuspidal representations are generic (see the nextSection), by the Moeglin-Waldspurger classi�cation, all local components of the global discreteseries of GLn are of the type Lg(; k). So it is important to know when do they transfer to anon zero representation under LJ.Write �i = Zu(�i; li), �i 2 Cupi . Let J be the set of integers j 2 f1; 2; :::;mg such that djpj lj .Let s;d be the smallest positive integer s such that for all i 2 f1; 2; :::;mgnJ , djpis. ThenLJ(Lg(; k)) 6= 0 if and only if for all i 2 f1; 2; :::;mg we have LJ(u(�i; k)) 6= 0 if and only ifs;djk (by Proposition 3.7). Then

LJ(Lg(; k)) = mY
i=1 �

eiLJ(u(�i; k)):
4. Basic facts and notation (global)

Let F be a global �eld of characteristic zero and D a central division algebra over F ofdimension d2. Let n 2 N�. Set A = Mn(D). For each place v of F let Fv be the completion ofF at v and set Av = A
Fv. For every place v of F , Av 'Mrv (Dv) for some positive integer rvand some central division algebra Dv of dimension d2v over Fv such that rvdv = nd. We will �xonce and for all an isomorphism and identify these two algebras. We say that Mn(D) is splitat a place v if dv = 1. The set V of places where Mn(D) is not split is �nite. We assume inthe sequel V does not contain any in�nite place. For each v, dv divides d, and moreover d is thesmallest common multiple of the dv over all the places v.Let G0(F ) be the group A� = GLn(D). For every place v 2 V , set G0v = A�v = GLrv (Dv).For every �nite place v of F , we set Kv = GLrv (Ov), where Ov is the ring of integers of Dv. We�x then a Haar measure dgv on G0v such that vol(Kv) = 1. For every in�nite place v, we �x anarbitrary Haar measure dgv on G0v. Let A be the ring of ad�eles of F . With these conventions,the group G0(A) of ad�eles of G0(F ) is the restricted product of the G0v with respect to the familyof compact subgroups Kv. We consider the Haar measure dg on G0(A) which is the restrictedproduct of the measures dgv (see [RV] for details). We consider G0(F ) as a subgroup of G0(A)via the diagonal embedding.
4.1. Discrete series. Let Z(F ) be the center of G0(F ). For every place v, let Zv be the centerof G0v. For every �nite place v of F , let dzv be a Haar measure on Zv such that the volumeof Zv \ Kv is one. The center Z(A) of G0(A) is canonically isomorphic with the restrictedproduct of the Zv with respect to the Zv \Kv. On Z(A) we �x the Haar measure dz which isthe restricted product of the measures dzv. On Z(A)nG0(A) we consider the quotient measuredzndg. As G0(F ) \ Z(A)nG0(F ) is a discrete subgroup of Z(A)nG0(A), on the quotient space
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Z(A)G0(F )nG0(A) we have a well de�ned measure coming from dzndg. The measure of the wholespace Z(A)G0(F )nG0(A) is �nite.Through all these identi�cations, Z(F ) is a subgroup of Z(A). Fix a unitary smooth character! of Z(A), trivial on Z(F ).Let L2(Z(A)G0(F )nG0(A);!) be the space of classes of functions f de�ned on G0(A) withvalues in C such thati) f is left invariant under G0(F ),ii) f satisfy f(zg) = !(z)f(g) for all z 2 Z(A) and almost all g 2 G0(A),iii) jf j2 is integrable over Z(A)G0(F )nG0(A).

We consider the representationR0! ofG0(A) by right translations in the space L2(Z(A)G0(F )nG0(A);!).We call a discrete series of G0(A) any irreducible subrepresentation of any representation R0!for any unitary smooth character ! of Z(A) trivial on Z(F ).Every discrete series of G0(A) with the central character ! appears in R0! with a �nite multi-plicity. Every discrete series � of G0(A) is isomorphic with a restricted Hilbertian tensor productof (smooth) irreducible unitary representations �v of the groups G0v like in [Fl1]. Each represen-tation �v is determined by � up to isomorphism and is called the local component of � at theplace v. For almost all �nite places v, �v has a non zero �xed vector under Kv. We say then�v is spherical. In general, an admissible irreducible representation � of G0(A) decomposessimilarly into a restricted tensor product of smooth irreducible representations �v of G0v and �vis spherical for almost all v (see [Fl1]).Let R0!;disc be the subrepresentation of R0! generated by the discrete series. If � is a discreteseries we call the multiplicity of � in the discrete spectrum the multiplicity with which �appears in R0!;disc.
4.2. Cuspidal representations. Let L2(Z(A)G0(F )nG0(A);!)c be the subspace of all theclasses f in L2(Z(A)G0(F )nG0(A);!) satisfyingZ

N(F )nN(A) f(ng)dn = 0
for almost all g 2 G0(A) and for all unipotent radicals N of a proper parabolic F -subgroup ofG0(F ).The space L2(Z(A)G0(F )nG0(A);!)c is stable under R0! and decomposes discretely in a directsum of irreducible representations. Such an irreducible subrepresentation is called cuspidal. Itis automatically a discrete series.

We let now n vary. For all n 2 N� let G0n be the group of ad�eles of GLn(D) and G0n;v thelocal component of G0n at a place v. Let DS0n be the set of classes of discrete series of G0n.If (n1; n2; :::; nk) is an ordered set of positive integers such that n1 + n2 + ::: + nk = n, wecall a standard Levi subgroup of G0n(F ) a subgroup formed by block diagonal matrices withblocks of given sizes n1, n2, ..., nk in this order.A standard Levi subgroup of G0n(A) will be by de�nition a subgroup de�ned by the ad�elegroup L(A) of a standard Levi subgroup L of G0n(F ). Let L be like in the previous paragraph.For every place v of F , one has dvjnid for all 1 � i � k. If Lv is the subgroup of G0v formedby block diagonal matrices with k blocks of sizes n1d=dv, n2d=dv, ..., nkd=dv in this order, thenL(A) is the restricted product of the Lv with respect to Lv \Kv. We naturally identify L withthe ordered product �ki=1G0ni .Let � denote here the character j det jF on G0n, product of local characters �v = j det jv wherej jv is the normalized absolute value on Fv.
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4.3. Automorphic representations. Let us recall some facts from [La]. Let L = �ki=1G0ni bea standard Levi subgroup of G0n. For 1 � i � k, let �i be a cuspidal representation of G0ni(A)and ei a real number. Set � = 
ki=1�ei�i.Then for each place v, the induced representation �v = indG0vLv �v is of �nite length. For everyplace v where all the �i;v are spherical, �v has a unique subquotient �v which is a sphericalrepresentation. An irreducible subquotient of indG0n(A)L(A) � is said to be a constituent of indG0n(A)L(A) �.
Then an irreducible admissible representation � of G0n is a constituent of indG0nL � if and onlyif for all v, �v is an irreducible subquotient of �v and for almost all v, �v = �v. The notionof a cuspidal representation di�ers between [La] and here: here we allow only what would bein the [La] language a unitary cuspidal representation. Using the Proposition 2 in [La], anautomorphic representation A of G0n will be here by de�nition a constituent of indG0n(A)L(A) � forsome � as above. One would like to prove then that the couples (�i; ei) are all determined by A upto permutation. This has been shown in [JS] in the case where D = F , and in the present paperwe will show it for general D. For the case D = F , we will then call the non ordered multisetf�e1�1; �e2�2; :::; �ek�kg the cuspidal support of A. For the classical de�nition of automorphicrepresentations we refer to [BJ]; here we used an equivalent one, cf. Proposition 2 in [La]. Letus point out that a discrete series is always a (unitary) automorphic representation.In the particular case D = F some other facts are known. However, we make the followingconvention: for the case of a general division algebra D we keep the notation adopted above,while for the particular case D = F we consider another class of groups Gn = GLn(F ). All thede�nitions adapt then to Gn by setting D = F and we will write DSn for the set of discreteseries of Gn(A).
4.4. Multiplicity one Theorems for Gn. We recall in this Subsection three facts about Gn.There is the multiplicity one Theorem: every discrete series of Gn(A) appears with multiplicityone in the discrete spectrum. And the strong multiplicity one Theorem: if � and �0 are twodiscrete series of Gn such that �v = �0v for almost all place v, then � = �0. This results may befound in [Sh] and [P-S] (when D = F ). We will prove them in this paper for general G0n.One also knows that the local component of a cuspidal representation of Gn at any placeis generic and unitary, hence an irreducible product Qmi=1 �ei�i where �i are square integrablerepresentations and ei 2]� 12 ; 12 [ (see [Sh] and [Ze]).
4.5. The residual spectrum of Gn. We recall now the Moeglin-Waldspurger classi�cation ofthe discrete series for groups Gn(A). Let m 2 N� and � 2 DSm be a cuspidal representation. Ifk 2 N�, then the induced representation Qk�1i=0 (� k�12 �i�) has a unique constituent � which is adiscrete series (i.e. � 2 DSmk). One has �v = Lg(�v; k) for all place v (we used the de�nitionof Lg(�v; k) of Section 3.5 since �v is generic). We set then � =MW (�; k). Discrete series � ofgroups Gn(A), n 2 N�, are all of this type, k and � are determined by � and � is cuspidal if andonly if k = 1. These are the results of [MW2]. We will prove in the sequel the same classi�cationholds for G0n(A)Let us prove, for future purposes, a Proposition generalizing the strong multiplicity one The-orem.

Proposition 4.1. Let �i 2 DSni , i 2 f1; 2; :::; k1g, Pk1i=1 ni = n and �j 2 DSmj ,j 2 f1; 2; :::; k2g, Pk2j=1mj = n. Assume that for almost all �nite places v the localcomponents of the (irreducible) products � =Qk1i=1 �i and � =Qk2j=1 �j at the placev are equal. Then (�1; �2; :::; �k1) equals up to a permutation (�1; �2; :::; �k2).
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Proof. By the Theorem 4.4 in [JS], the cuspidal supports of the automorphic representations� and � are equal. We call a line the set of representations f�k�gk2Z, where � is a cuspidalrepresentation of some Gm(A). We call a shifted line the set of representations f�k+ 12 �gk2Z,where � is a cuspidal representation of some Gm(A). Thanks to the Moeglin-Waldspurger classi-�cation we know that the set of the elements of the cuspidal support of a given �i or �j is eitherincluded in a line, or in a shifted line. So we may then \separate the supports" and reduce theproblem to the case where there exists a line or a shifted line T such that the set of elements ofthe cuspidal supports of all the �i and all the �j are included in T . Then there exists a cuspidalrepresentation � such that �i =MW (�; pi) for all i and �j =MW (�; qj) for all j. And moreoverthe pi and the qj are either all odd, or all even. Let X be the cuspidal support of � and � inthis case. We show that X determines the �i up to permutation.If the pi are all odd, the result is a consequence of the following combinatorial Lemma:

Lemma 4.2. Let A be a multiset of integers which may be written as a reunionwith multiplicities of sets of the form B = f�k;�k + 1;�k + 2; :::; k � 2; k � 1; kg.Then the sets B are determined by A.
Proof. Let f : Z ! N be the multiplicity map: f(a) is the multiplicity of a in A. Thenumber f(a) is also the number of sets B containing a. If a � 1 and a set B contains a,then it contains also a � 1. So f is decreasing on N and for all p 2 N, the number of setsf�p;�p+ 1;�p+ 2; :::; p� 2; p� 1; pg in A is exactly f(p)� f(p+ 1). �If the pi are even, the proof is essentially the same. This �nishes the proof of the Proposition4.1. �

4.6. Transfer of functions. For each �nite place v let H(G0n;v) be the Hecke algebra of locallyconstant functions with compact support on G0n;v. Let H(G0n) be the set of functions f :G0n(A) ! C such that f is a product f = Qv fv over all places of F , where fv is C1 withcompact support when v is in�nite, fv 2 H(G0n;v) when v is �nite and, for almost all �nite placesv, fv is the characteristic function of Kv. We write then f = (fv)v. As the local components ofan automorphic representation � are almost all spherical, the product of traces Qv tr�v(fv) hasa meaning for all f = (fv)v 2 H(G0n) and we may set tr(�(f)) =Qv tr�v(fv). We adopt similarnotation and de�nitions for the groups Gn.Let v 2 V . We �x measures on the maximal tori of Gnd;v and G0n;v in a compatible wayand de�ne the orbital integrals � on Gnd;v and �0 on G0n;v for regular semisimple elementswith respect to these choices (see the Section 2 of [Ba1] for example). If fv 2 H(Gnd;v) andf 0v 2 H(G0n;v) we say that fv and f 0v correspond to each-other, and write fv $ f 0v, if:- fv and f 0v are supported in the set of regular semisimple elements, and- for all g $ g0 we have �(fv; g) = �0(f 0v; g0), and- for all regular semisimple g 2 Gnd;v which does not correspond to any g0 2 G0n;v we have�(fv; g) = 0.It is known that for every f 0v 2 H(G0n;v) supported on the regular semisimple set there existsfv 2 H(Gnd;v) such that fv $ f 0v. Also, if fv $ f 0v then tr(�(fv)) = 0 for all representation �induced from a Levi subgroup of Gnd;v which does not transfer (Section 2 of [Ba1] for example).For f = (fv)v 2 H(Gnd) and f 0 = (f 0v)v 2 H(G0n) we write f $ f 0 and say that f and f 0correspond to each other ifi) 8v =2 V we have fv = f 0v andii) 8v 2 V we have fv $ f 0v.For every f 0 = (f 0v)v 2 H(G0n) such that for all v 2 V the support of f 0v is included in the set ofregular semisimple elements of G0v there exists f 2 H(Gn) such that f $ f 0. If f 2 H(Gnd), wesay f transfers if there exists f 0 2 H(G0n) such that f $ f 0.
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5. Global results

5.1. Global Jacquet-Langlands, multiplicity one and strong multiplicity one for innerforms. For all v 2 V , denote LJv (resp. jLJjv) the correspondence LJ (resp. jLJj), as de�nedin Subsection 2.7, applied to Gnd;v and G0n;v.If � 2 DSnd we say � isD-compatible if, for all v 2 V , �v is dv-compatible. Then LJ(�v) 6= 0and jLJjv(�v) is an irreducible representation of G0n (Proposition 3.2 (c)).
Theorem 5.1. (a) There exists a unique map G : DS0n ! DSnd such that for all�0 2 DS0n, if � = G(�0), one has jLJjv(�v) = �0v for all places v 2 V , and �v = �0vfor all places v =2 V . The map G is injective. The image of G is the set DSDnd ofD-compatible discrete series of Gnd(A).(b) We have the multiplicity one Theorem for discrete series of G0n(A): if �0 2DS0n, then the multiplicity of �0 in the discrete spectrum is one.(c) We have the strong multiplicity one Theorem for discrete series of G0n(A): if�0; �00 2 DS0n, and if �0v = �00v for almost all v, then �0v = �00v for all v.(d) For all �0 2 DS0n, for all places v 2 V , �0v 2 �U 0 (see Section 3.4).

Proof. We will use the results of [AC]. The authors compare the trace formulas of Gnd andG0n. We will restate the result here.Let F �1 be the product �iF �i where i runs over the set of in�nite places of F . Let � be aunitary character of F �1. We use the embedding of F �1 in A� trivial at �nite places to realize itas a subgroup of the center Z(A).Let L(Gnd) be the set of F -Levi subgroups of Gnd which contain the maximal diagonal torus.Let Idisc;t;�;Gnd(f) =X
L2L(Gnd) jW

L0 jjWGnd0 j�1 X
s2W (aL)reg j det(s� 1)

a
GndL j�1tr(MGndL (s; 0)�L;t(0; f))

where, in the order of the appearance:- t 2 R+;- jWL0 j is the cardinality of the Weyl group of L;- jWGnd0 j is the cardinality of the Weyl group of Gnd;- aL is the real space Hom(X(L)F ;R) where X(L)F is the lattice of rational characters of L;W (aL) is the Weyl group of aL of L; aGndL is the quotient of aL by aGnd ; W (aL)reg is the set ofs 2W (aL) such that det(s� 1)
a
GndL 6= 0;

- MGndL (s; 0) is the intertwining operator associated to s at the point 0; it intertwines repre-sentations indGndL � and indGndsL s�, where � is a representation of L;- �L;t is the induced representation with respect to any parabolic subgroup with Levi factorL from the direct sum of discrete series � of L such that � is �-equivariant and the imaginarypart of the Archimedean in�nitesimal character of � has norm t ([AC], page 131-132);- f is an element of H(Gnd).For this de�nition see page 198, and the formula (4.1) page 203, in [AC]. It is the \� formula",and not the original de�nition-equality (9.2) page 132, which does not contain any �.Now let us compute the terms. It turns out that W (aL)reg is empty unless L is conjugatedto a Levi subgroup given by block diagonal matrices with blocks of equal size. Let L be theLevi subgroup given by block diagonal matrices with l blocks of size m, lm = nd. If we identifyW (aL) with Sl, then W (aL)reg is the set of l-cycles. So the cardinality of W (aL)reg is (l � 1)!and for any s 2W (aL)reg, j det(s�1)aGndL j = l. We also have jWL0 j = (m!)l and jWGnd0 j = (nd)!.
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So the coe�cient of the character attached to L in the linear combination over L(Gnd) is (m!)l(nd)! l .Now, if L0 is conjugated with L, the contribution of L0 to the sum is the same as that of L ([AC],page 207). Let us compute the number of Levi subgroups L0 conjugated to L, and containingthe diagonal torus. The diagonal torus is then a maximal torus of L0, and so the center of L0is contained in the diagonal torus. As L0 is the centralizer of its center there will be exactly asmany L0 as the non ordered partitions of f1; 2; :::; ndg in l subsets of cardinality m. This numberis l!�1Cnd�mnd Cnd�2mnd�m Cnd�3mnd�2m:::Cm2m (product of binomial coe�cients), which is (nd)!l!(m!)l (for a moretheoretical formula for the same result see [AC], page 207).So we may rewrite the formula: for all ljnd, if Ll is the Levi subgroup of Gnd given by blockdiagonal matrices with l blocks of equal size ndl , thenIdisc;t;�;Gnd(f) =X

ljnd
1l! l

X
s2W (aL)reg tr(M

GndLl (s; 0)�Ll;t(0; f)):
In [AC] it is shown moreover, page 207-208, that for any Ll, the (l�1)! elements s 2W (aL)reggive all the same contribution to the sum. So, in the end, if s0 is the cycle (1; 2; :::; l), the de�nitionof Idisc;t;�;Gnd(f) turns out to be simply:

X
ljnd

1l2 tr(MGndLl (s0; 0)�Ll;t(0; f)):
Let us turn now to the operator MGndLl (s0; 0)�Ll;t(0; f). A discrete series � of Ll is an orderedproduct 
li=1�i, where each �i is a discrete series of Gndl . Let Stab� be the subgroup of Slwhich stabilizes the ordered multiset (�1; �2; :::; �l) for the obvious action. Let X� be a set ofrepresentatives of Sl=Stab� in Sl. Let V� be the subspace �x2X� �li=1 �x(i) of �Ll;t. Then V�is stable under the operator MGndLl (s0; 0). But, if the �i are not all equal, MGndLl (s0; 0) permuteswithout �xed point the subspaces �li=1�x(i). So the trace of the operator induced byMGndLl (s0; 0)on V� is zero. Then in the formula only the contributions from representations � = 
li=1�i of Llsuch that all the �i are equal remain.
So

(5.1)
Idisc;t;�;Gnd(f) = X

�2DSnd;t;� tr(�(f))+
X

ljnd; l 6=1
1l2

X
�2DSndl ; tl ;�l

tr(MGndLl (s0; 0) �l(0; f));
where DSk; tl ;�l is the set of discrete series � of Gk(A) such that � is �0-equivariant for somecharacter �0 of F �1 such that �0l = � and the norm of the imaginary part of its in�nitesimalcharacter is tl , and �l is the induced representation � � � � ::: � � from Ll. In the last formulawe used the multiplicity one Theorem for Gk, kjnd. The representation � being unitary, therepresentation �l is irreducible and hence MGndLl (s0; 0) acts as a scalar on �l. As it is also aunitary operator, the scalar is some complex number �� of module 1.

The analogous de�nition of Idisc;t;�;G0n(f 0) is given in [AC] for the groups G0n and f 0 2 H(G0n):
Idisc;t;�;G0n(f 0) =
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X

L2L(G0n) jW
L0 jjWG0n0 j�1 X

s2W (aL)reg j det(s� 1)
a
G0nL j�1tr(MG0nL (s; 0)�L;t(0; f))

where the symbols have the same de�nition as for Idisc;t;�;Gnd(f) when replacing Gnd by G0n andf by f 0. All the computation made for Gnd to simplify the formula, up to formula 5.1 itself,are combinatorial and work exactly the same for G0n (replacing nd with n). We get then ananalogous formula to 5.1, taking in account we do not have multiplicity one (yet) for G0n(A):
(5.2)
Idisc;t;�;G0n(f 0) = X

�02DS0n;t;�m�0 tr(�0(f 0))+ X
ljn; l 6=1

1l2
X

�02DS0nl ; tl ;�l
ml�0 tr(MG0nL0l (s0; 0) �0l(0; f 0));

where m�0 is the multiplicity of �0 in the discrete spectrum (ml�0 is the power l of the positiveinteger m�0) and the other symbols are de�ned as for Gnd in the formula 5.1.One of the main results of [AC] is the fundamental equality (equation (17.8) page 198):
(5.3) Idisc;t;�;Gnd(f) = Idisc;t;�;G0n(f 0)for any f $ f 0.We have an easy Lemma.
Lemma 5.2. Let ljnd and � 2 DSndl . Let f 0 2 H(G0n) and f 2 H(Gnd) suchthat f $ f 0. If l does not divide n, or if ljn and � is not D-compatible, thentr(M(s0; 0) �l(f)) = 0.

Proof. Assume l does not divide n. Then d does not divide ndl . By the class �eld theory thesmallest common multiple of the integers dv is d, so there exists a place w such that dw doesnot divide ndl . Then �lw is not dw-compatible. The same, if � is not D-compatible, there existsa place w such that �w is not dw-compatible and hence �lw is not dw-compatible.In both cases we have then tr�lw(fw) = 0 and as the operator M(s0; 0) acts as a scalar, theresult follows. �Another Lemma:
Lemma 5.3. Assume the multiplicity one Theorem is true for all G0k, k < n. Then(a)
Idisc;t;�;G0n(f 0) = X

�02DS0n;t;�m�0tr�0(f 0)+ X
ljn; l 6=1

1l2
X

�02DS0nl ; tl ;�l
tr(MG0nL0l (s0; 0) �0l(0; f 0));

where m�0 is the multiplicity of �0 in the discrete spectrum.(b) For all f $ f 0, one has
(5.4) X

�2DSDnd;t;� tr�(f) +
X

ljn; l 6=1
1l2

X
�2DSDndl ; tl ;�l

tr(MGndLl (s0; 0) �l(0; f)) =
X

�02DS0n;t;�m�0tr�0(f 0) + X
ljn; l 6=1

1l2
X

�02DS0nl ; tl ;�l
tr(MG0nL0l (s0; 0) �0l(0; f 0));

where DSD? is by de�nition the subset of D-compatible representations in DS?.
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Proof. (a) Comes straight from the formula 5.2.(b) We used (a) and the equality 5.3. But the Gnd side has been modi�ed due to Lemma 5.2.Lemma 5.2 allows also the replacement of DS? by DSD? . �

Let us �nish now the proof of Theorem 5.1 by induction on n. So, among other things, wewill use the formula 5.4. Let us point out, not to recall it all the time, that the correspondenceG, once assumed or proven, preserves the quantities t and �.First assume n = 1. Then we get from the relation 5.4:
(5.5) X

�2DSDd;t;� tr�(f) =
X

�02DS01;t;�m�0tr�0(f 0)
for all f $ f 0, where m�0 is the multiplicity of �0 in the discrete spectrum.Let us �x a representation �0 2 DS01. Then we have �0 2 DS01;t;� for some t and �. Wewill show there exists � 2 DSDd;t;� such that jLJjv(�v) = �0v for all v 2 V and �v = �0v forall v =2 V , and also that m�0 = 1. Let S be a �nite set of places of F containing all the placesin V , all the in�nite places and all the places v such that �0v is not a spherical representation.For any � 2 DSDd;t;� or � 2 DS01;t;� write �S for the tensor product 
v2S�v and �S for therestricted tensor product 
v=2S�v. Let DSDd;t;�;�0 (resp. DS01;t;�;�0) be the set of � 2 DSDd;t;�(resp. � 2 DS01;t;�) such that �S = �0S . Then we have for all f $ f 0:X

�2DSDd;t;�;�0
tr�(f) = X

�02DS01;t;�;�0 m�0tr�0(f 0):
This statement is inferred from the equation 5.5 by a standard argument one may �nd wellexpounded in [Fl2]. According to the strong multiplicity one Theorem applied to Gd, the cardi-nality of DSDd;t;�;�0 is either zero or 1. The cardinality of DS01;t;�;�0 is �nite by [BB]. As fv = f 0vfor v =2 S, we may cancel in this equality Qv=2S tr�0v(f 0v), by choosing f 0v such that this productis not zero. We get

X
�2DSDd;t;�;�0

Y
v2S tr�v(fv) =

X
�02DS01;t;�;�0 m�0 Yv2S tr�

0v(f 0v)
for functions such that fv $ f 0v for all v 2 V and fv = f 0v for all v 2 SnV . On the rightside we have a �nite non empty set (containing at least �0) of distinct characters on a �niteproduct of groups. The linear independence of characters on these groups implies the linearindependence of characters on the product, and so there exist functions f 0v 2 H 0(G01;v) for v 2 S,supported on the set of regular semisimple elements, such that the right side of the equalitydoes not vanish on (f 0v)v2S . Then DSDd;t;�;�0 is not empty and hence contains one element. Letus call this element �. As � is D-compatible, for every v 2 V we have that jLJjv(�v) is anirreducible unitary representation u0v of G01;v such that tr(�v(fv)) = tr(u0v(f 0v)) for all fv $ f 0v.So by the linear independence of characters on the group �v2SG01;v we must have u0v = �0v forall v 2 V and �v = �0v for all v 2 SnV . This obviously implies m�0 = 1 which is the claim (b).Now G(�0) is de�ned. If G(�0) = G(�00) = � then we have �0v = �00v = �v for all v =2 V and�0v = �00v = jLJjv(�v) for all v 2 V , which shows that G is injective.Let us show the surjectivity of G onto DSDd . We start again from the equality 5.5X

�2DSDd;t;� tr�(f) =
X

�02DS01;t;� tr�
0(f 0)
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for all f $ f 0 (the multiplicities on the left side have disappeared). Consider � 2 DSDd;t;� andlet S be a �nite set of places containing all the places in V , all the in�nite places and all theplaces v such that �v is not spherical. Let DSDd;t;�;� (resp. DS01;t;�;�) be the set of � 2 DSDd;t;�(resp. � 2 DS01;t;�) such that �S = �S . By the same arguments as before (simpli�cation of thetrace formula as expounded in [Fl2]), we have for all f $ f 0:X

�2DSDd;t;�;� tr�(f) =
X

�02DS01;t;�;� tr�
0(f 0):

But by strong multiplicity one Theorem on Gd, DSDd;t;�;� contains the unique element �. As �is D-compatible, there exist f $ f 0 such that tr�(f) 6= 0. So DS01;t;�;� is not empty. Consider�0 2 DS01;t;�;�. Then G(�0) is de�ned. By multiplicity one Theorem on Gd applied to placesoutside S, G(�0) has to be �.We have seen that �0v = G(�0)v for all v =2 V . The strong multiplicity one Theorem for Gdimplies then the strong multiplicity one Theorem for G01 ((c)). The claim (d) is obtained nowby transfer under G�1 and Proposition 3.10 (b).Thus, we �nished the proof of the Theorem for n = 1.
Let us now assume the Theorem has been proven for all k < n and call Gk the transfer mapat level k. This hypothesis enables us to apply Lemma 5.3 and implies the relation (5.4) whichwe recall:

(5.6) X
�2DSDnd;t;� tr�(f) +

X
ljn; l 6=1

1l2
X

�2DSDndl ; tl ;�l
tr(MGndLl (s0; 0) �l(0; f)) =

X
�02DS0n;t;�m�0tr�0(f 0) + X

ljn; l 6=1
1l2

X
�02DS0nl ; tl ;�l

tr(MG0nL0l (s0; 0) �0l(0; f 0)):
Moreover, using the part (d) of the Theorem for Gk, k < n, the induction hypothesis impliesthat the representations �0l are irreducible (Proposition 3.9 (b)). SoMG0nL0l (s0; 0) is again a scalarand as it is unitary the scalar is a complex number ��0 of module 1. So the equation is actually,using again the induction to transfer the representations in DS0nl ; tl ;�l :

(5.7) X
�2DSDnd;t;� tr�(f) +

X
ljn; l 6=1

1l2
X

�2DSDndl ; tl ;�l
��tr(�l(0; f)) =

X
�02DS0n;t;�m�0tr�0(f 0) + X

ljn; l 6=1
1l2

X
�2DSDndl ; tl ;�l

�G�1nl (�)tr(�l(0; f))
for f $ f 0.Now the proof goes as for the case n = 1 with a minor modi�cation in the end. Choose arepresentation �0 2 DS0n;t;�. Fix a �nite set S of places of F which contains all the places inV , all the in�nite places and all the places v for which �0v is not spherical. By the Theoremof multiplicity one for Gnd the set A of � 2 DSDnd;t;� such that �S = �0S is empty or containsonly one element. If we apply Proposition 4.1 to the representations �l and all the places out ofS, then we conclude that the set B of representations  = �l (where ljn and l 6= 1) such thatS = �0S is empty or contains one element. Let DS0n;t;�;�0 be the set of � 0 2 DS0n;t;� such that
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� 0S = �0S . Then DS0n;t;�;�0 is not empty (contains �0) and �nite ([Ba3]; we do not quote [BB]again since the representations may not be cuspidal).By the same argument in [Fl2], already quoted for the case n = 1, we obtain then

X
�2A

Y
v2S tr�v(fv) +

X
2B

� � �G�1nl ()
l2

Y
v2S trv(fv) =

X
�02DS0n;t;�;�0 m�0 Yv2S tr�

0v(f 0v)
if fv $ f 0v for all v 2 V and fv $ f 0v for all v 2 SnV .If A is not empty and � is the unique element of A, then the local components of � are unitaryand we can transfer them. If B is not empty and  is the unique element of B, then the localcomponents of  are unitary and we can transfer them. In any possible case we do so. But the
coe�cient ���G�1nl ()l2 cannot be a non-zero integer because its module is less than 12 . So thelinear independence of characters on the group �v2SG0v implies that B was empty, A was notempty, on the right side there is only �0 and m�0 = 1. The injectivity is proven like for n = 1.Let us prove the surjectivity of G. Fix � 2 DSDnd;t;� and let S be a set of places of F whichcontains all the places in V , all the in�nite places and all the places v for which �v is notspherical. We start again with the relation 5.7:X

�2DSDnd;t;� tr�(f) +
X

ljn; l 6=1
1l2

X
�2DSDndl ; tl ;�l

��tr(�l(0; f)) =
X

�02DS0n;t;�m�0tr�0(f 0) + X
ljn; l 6=1

1l2
X

�2DSDndl ; tl ;�l
�G�1nl (�)tr(�l(0; f))

for f $ f 0. As before, we may restrict this relation to representations which have the same localcomponent as � outside S.By strong multiplicity one Theorem for Gnd, the set of � 2 DSDn;t;� such that �S = �Scontains the unique element �. By the Proposition 4.1, no representation  = �l (where ljn andl 6= 1) can verify S = �S . The relation becomes then
tr�(f) = X

�02DS0n;t;�;�m�0tr�0(f 0)
where DS0n;t;�;� is the set of �0 2 DS0n;t;� such that �0S = �S . As � is D-compatible, there existf $ f 0 such that tr�(f) 6= 0, and so there exists at least one representation �0 2 DS0n;t;�;�.Then G(�0) is de�ned and, by strong multiplicity one Theorem on Gnd(A), G(�0) must be �.This proves the surjectivity.Claims (c) and (d) may be proven like for n = 1. �

Corollary 5.4. The intertwining operators MGndLl (s0; 0) and MG0nL0l (s0; 0) are givenby the same scalar. In particular, the computations in [KS] transfer to G0n(A).
Proof. This is the consequence of � � �G�1nl () = 0 implied by the end of the proof of the

Theorem. �

5.2. A classi�cation of discrete series and automorphic representations of G0n. If L =�ki=1G0ni is a standard Levi subgroup of G0n, we call essentially square integrable (resp.essentially cuspidal) representation of L a representation �0 = 
ki=1�ai�0i where, for each i, �0iis a discrete series (resp. cuspidal representation) of G0ni and ai is a real number.
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We adopt the same de�nitions for representations � = 
ki=1�ai�i of standard Levi subgroupsof Gnd. Such a representation � is said to be D-compatible if all the �i are D-compatible.

Proposition 5.5. Let � 2 DSm be a cuspidal representation. Let s�;D be thesmallest common multiple of s�v;dv , v 2 V (cf. Section 3.5). Then(a) MW (�; k) is D-compatible if and only if s�;Djk.(b) G�1(MW (�; s�;D)) = �0 2 DS0ms�;Dd is cuspidal (in particular G�1 sends
cuspidal to cuspidal).

Proof. (a) This is an easy consequence of the discussion in Section 3.5 and the de�nition ofs�;D.(b) Assume �0 is not cuspidal. Then there exists an essentially cuspidal representation � 0 ofa proper standard Levi subgroup L0 of G0n such that �0 is a constituent of the induced represen-tation to G0ms�;Dd from � 0. Set � = G(� 0). So � is a D-compatible essentially square integrable
representation of L(A) where L is a proper standard Levi subgroup of Gms�;D corresponding toL0. By the Theorem 4.4 of [JS], � has the same cuspidal support as MW (�; s�;D). As it is aD-compatible essentially square integrable representation and lives on a smaller subgroup, thiscontradicts the minimality of s�;D. �

Remark 5.6. It will be proved in the Appendix that all the cuspidal representationsof G0n(A) are obtained like in Proposition 5.5. But at this point this proof cannot bemade, so for now we will call these representations basic cuspidal. Later, using thenext Proposition, Grbac will prove in the Appendix that basic cuspidal and cuspidalis the same thing. Therefore, the reader may drop the word "basic" in the nextProposition and have a clean classi�cation.
Let us call basic cuspidal a cuspidal representation obtained as �0 = G�1(MW (�; s�;D))in the part (b) of the Proposition. We then set s(�0) = s�;D and ��0 = �s�;D . If L = �ki=1G0niis a standard Levi subgroup of G0n, we call basic essentially cuspidal representation of L arepresentation 
ki=1�ai�0i where, for each i, �0i is a basic cuspidal representation of G0ni and ai isa real number.We now give a classi�cation of discrete series of groups G0n. The part (a) generalizes [MW2]and the part (b) generalizes the theorem 4.4 in [JS].

Proposition 5.7. (a) Let �0 2 DS0m be a basic cuspidal representation. Let k 2 N�.
The induced representation Qk�1i=0 (� k�12 �i�0 �0) has the unique constituent �0 which isa discrete series. We write then �0 = MW 0(�0; k). Every discrete series �0 ofa group G0n, n 2 N�, is of this type, and k and �0 are determined by �0. Thediscrete series �0 is basic cuspidal if and only if k = 1. If �0 = MW 0(�0; k), thenG(�0) =MW (�; s�;D) if and only if G(�0) =MW (�; ks�;D).(b) Let (Li; �0i), i = 1; 2, be such that Li is a standard Levi subgroup of G0n and�0i is a basic essentially cuspidal representation of Li(A) for i = 1; 2. Fix any �niteset of places V 0 containing the in�nite places and all the �nite places where �01 or �02is not spherical. If, for all places v =2 V 0, the spherical subquotients of the inducedrepresentations from �0i;v to G0n are equal, then the couples (Li; �0i) are conjugated.(c) If �0 is an automorphic representation of G0n, then there exists a couple (L; �0)where L is a standard Levi subgroup of G0n and �0 is a basic essentially cuspidalrepresentation of L(A) such that �0 is a constituent of the induced representationfrom �0 to G0n(A). The couple (L; �0) is unique up to conjugation.
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Proof. (a) Let G(�0) = MW (�; s�;D). The discrete series MW (�; ks�;D) is D-compatible(Proposition 5.5 (a)). We will show directly that G�1(MW (�; ks�;D)) is a constituent ofQk�1i=0 (� k�12 �i�0 �0).It is enough to show that, for every place v 2 V , jLJjv(MW (�; ks�;D)v) is a subquotient of

the local representation Qk�1i=0 (� k�12 �i�0 �0v). By Proposition 2.1, it is enough to show that the esi-
support of jLJjv(MW (�; ks�;D)v) is the reunion of the esi-supports of representations � k�12 �i�0 �0v.As in Section 3.5, we may write the generic representation �v as a product of essentially squareintegrable representations Qmj=1 �ej�j and we have seen then that

�0v = jLJjv(Lg(�v; s�;D)) = mY
j=1 �

ej jLJjv(u(�j ; s�;D))
and

jLJjv(Lg(�v; ks�;D)) = mY
j=1 �

ej jLJjv(u(�j ; ks�;D)):
Fix an index j. If �j transfers to �0j (case (a) of the Proposition 3.2), we know that jLJjv(u(�j ; s�;D)) =�u(�0j ; s�;D)) and jLJjv(u(�j ; ks�;D)) = �u(�0j ; ks�;D). One may easily verify that the esi-supportof �u(�0j ; ks�;D) is the reunion of the esi-supports of �( k�12 �i)s�;D �u(�0j ; s�;D) for i 2 f0; :::; k � 1g.If �j does not transfer (case (b) of the Proposition 3.2), one has to use the formula 3.9 in Section3.5 involving �0j+ and �0j�, but then the proof goes exactly the same as for the case when �jtransfers.So Qk�1i=0 (� k�12 �i�0 �0) has a constituent �0 which is a discrete series. The strong multiplicityone Theorem for discrete series of G0n (Proposition 5.1 (c)) implies this induced representationhas no other constituent which is a discrete series.Let �0 2 DS0n be a discrete series and let us show it is obtained in this way. Set G(�0) =MW (�; p). We have s�;Djp since MW (�; p) is D-compatible (Proposition 5.5 (a)). So, if we set�0 = G�1(MW (�; s�;D)), �0 is a basic cuspidal, and we have �0 = MW 0(�0; ps�;D ). The strongmultiplicity one Theorem for Gnd implies p and � are determined by �0, so k = ps�;D and �0 aredetermined by �0. It is clear that �0 is basic cuspidal if and only if p = s�;D, if and only if k = 1.

(b) G(�01) = �1 is a tensor product of the form 
p1i=1��iMW (�i; s�i;D) and G(�02) = �2 is atensor product of the form 
p2j=1��jMW (�j ; s�j ;D), where �i and �j are cuspidal. As the inducedrepresentations to Gnd from �1 and �2 have equal spherical subquotient at all �nite places whichare not in V [V 0, we know that the essentially cuspidal supports of �1 and �2 are equal (Theorem4.4 in [JS]). As �i and �j are cuspidal, it follows from the formulas for �1 and �2 that the multi-sets f(�i; �i)g and f(�j ; �j)g are equal and so the tensor products are the same up to permutation.
(c) The existence is proven in (a). The unicity in (b). �

5.3. Further comments. The question whether the transfer of discrete series could be extendedto unitary automorphic representations or not seems natural. Let us extend in an obvious way thenotion of D-compatible from discrete series to unitary automorphic representations of Gnd(A).Let us formulate two questions.
Question 1. Given a unitary automorphic representation a0 of G0n(A), is it possible to �nd a uni-tary automorphic representation a of Gnd(A) such that av = a0v for all v =2 V and jLJjv(av) = a0vfor all v 2 V ?
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Question 2. Given a D-compatible unitary automorphic representation a of Gnd(A), is itpossible to �nd a unitary automorphic representation a0 of G0n(A) such that av = a0v for allv =2 V and jLJjv(av) = a0v for all v 2 V ?

These questions are independent and the answer is in general \no" for both.
Consider the �rst question. Roughly speaking the counterexample comes from the fact thatthere exist unitary irreducible representations of an inner form of GLn over a local �eld whichdo not correspond to a unitary representation of GLn. The problem is to realize such a represen-tation as a local component of a unitary automorphic representation. Here is the construction,based on Lemma 3.11.Let dimFD = 16. Let G0 = GL3(D). Assume there is a �nite place v0 of F such thatthe local component of G0(A) at the place v0 is G0v0 ' GL3(Dv0) with dimFv0Dv0 = 16. It ispossible to choose such a D by the global class �eld theory. Let �0 be a cuspidal representationof G0(A) such that �0v0 is the Steinberg representation of G0v0 . Then G(�0) is cuspidal. Indeed,its local component at the place v0 has to be the Steinberg representation of GL12(Fv0) (theonly unitary irreducible elliptic representations being the trivial representation and the Steinbergrepresentation). In particular s�0 = 1.Let � 0 = MW 0(�0; 16). Let St03 be the Steinberg representation of GL3(Dv0) and St04 theSteinberg representation of GL4(Dv0). Then � 0v0 = u0(St03; 16).Let � 00 be the global representation de�ned by: � 00v = � 0v for all v 6= v0 and � 00v0 = �� 32u0(St03; 4)��� 12u0(St04; 3)� � 12u0(St04; 3)� � 32u0(St03; 4): Let us show that � 00 is an automorphic representa-tion. We have � 00v0 < � 0v0 by Lemma 3.11 (ii). So � 00v0 is a subquotient of �16i=1� 172 �iSt03. So � 00is a constituent of �16i=1� 172 �i�0. As �0 is cuspidal, � 00 is automorphic. All the local componentsof � 00 are unitary. It is true by de�nition for � 00v , v 6= v0, and by Lemma 3.11 (i) for � 00v0 . So� 00 is a unitary automorphic representation. It cannot correspond to a unitary automorphicrepresentation of GL192(A) because by Lemma 3.11 (iii) there is a transfer problem at the placev0.
Consider now the second question. Let dimFD = d2 = 4. Let G0 = GL3(D). Assume there isa �nite place v0 of F such that the local component of G0(A) at the place v0 is G0v0 ' GL3(Dv0)with dimFv0Dv0 = 4. For all i 2 N�, write Sti for the Steinberg representation of GLi(Fv0) andSt0i for the Steinberg representation of GLi(Dv0). Let � be a cuspidal representation of GL3(A)such that �v0 = St3. Set � =MW (�; 2). We have s�;D = 2 (since s�;D always divides d and hered = 2 and s�;D 6= 1). So � is D-compatible and � 0 = G�1(�) is a cuspidal representation. Wehave �v0 = u(St3; 2). Let � be the representation St4 � St2 of GL6(Fv0). Then � is tempered.We also have � < �v0 , so � is a subquotient of � 12St3 � �� 12St3. So the representation �de�ned by �v = �v if v 6= v0 and �v0 = � is a constituent of � 12 �� �� 12 �, hence an automorphicrepresentation. All its local components are unitary. It is a D-compatible representation because� is 2-compatible. Let us show that the representation �0 de�ned by �0v = jLJjv(�v) for all placesv of F is not automorphic. For every place v 6= v0, we have �0v = � 0v. As � 0 is cuspidal, it isenough to show that �0 6= � 0 by Theorem 5.7 (b) applied to � 0 and the cuspidal support of �0.So this comes to show that jLJv0 j(u(St3; 2)) 6= jLJv0 j(�). Using the formulas we have for thetransfer (Proposition 3.7) we �nd jLJv0 j(u(St3; 2)) = u(St01; 3) and jLJv0 j(�) = St02 � St01. If 12is the trivial representation of GL2(Dv0), we have u(St01; 3) = 12 � St01 hence �0v0 6= � 0v0 .
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6. L-functions and �0-factors

In this Section we examine the local transfer of L-functions and �0-factors. The results aresimple computations using [GJ] and [Ja] included here for the completeness.
Let F be again the non-Archimedean local �eld (of any characteristic) and D a divisionalgebra of dimension d2 over F . For all n, recall that Gn = GLn(F ) and G0n = GLn(D).Suppose the characteristic of the residual �eld of F is p and its cardinality is q. Let OF bethe ring of integers of F and �F be a uniformizer of F . Fix an additive character  of F trivialon O and non trivial on ��1F O. For irreducible representations � of Gn or G0n, we adopt thenotation L(s; �) and �0(s; �;  ) for the L-function and the �0-factor, as de�ned in [GJ].In this Section we will specify �, because confusion may appear. For all n 2 N�, �n (resp. �0n)will denote the absolute value of the determinant on Gn (resp. G0n); 1n (resp. 10n) will denotethe trivial representation of Gn (resp. G0n); let Stn = Zu(11; n) (resp. St0n = Tu(101; n)) bethe Steinberg representation of Gn (resp. G0n). One has Stn = ji(1n)j and St0n = ji0(10n)j.The character of the Steinberg representation is constant on the set of elliptic elements, equalto (�1)n�1. In particular, we have C(Std) = 101. This implies that s(101) = d (here s(101) is theinvariant de�ned in Section 2.4, nothing to do with the complex variable s). For all n 2 N�, onehas C(Stnd) = St0n.We bring together facts from [GJ] in the following Theorem:

Theorem 6.1. (a) We have L(s; 101) = (1� q�s� d�12 )�1,
L(s; 10n) = n�1Y

j=0 L(s+ dn� 12 � dj; 101) = n�1Y
j=0(1� q

�s+dj� dn�12 )�1
and

�0(s; 10n;  ) = n�1Y
j=0 �

0(s+ dn� 12 � dj; 101;  ) = dn�1Y
j=0 �

0(s+ dn� 12 � j; 11;  ):
(b) We have L(St0n) = L(s+ dn�12 ; 101) = (1� q�s� dn�12 )�1 and
�0(s; St0n;  ) = n�1Y

j=0 �
0(s+ dn� 12 � dj; 101;  ) = dn�1Y

j=0 �
0(s+ dn� 12 � j; 11;  ):

(c) If �0 is a cuspidal representation of G0x, then L(s; �0) = 1 unless x = 1 and�0 is an unrami�ed character of D�. If x = 1 and �0 is an unrami�ed character ofD�, then �0 = �0t1 for some t 2 C and we have L(s; �0) = (1� q�s�t� d�12 )�1.(d) Let �0 = T (�0; k) be an essentially square integrable representation of G0xkwhere �0 is a cuspidal representation of G0x. Then L(s; �0) = L(s; �0).In particular, L(s; �0) = 1 unless x = 1 and �0 is an unrami�ed character of D�.If x = 1 and �0 is an unrami�ed character of D� then �0 = �0t1 for some t 2 C and
then �0 = �0t+dn�12n St0n. We have L(s; �0) = (1� q�s�t� d�12 )�1 in this case.We have, in general,

�0(s; �0;  ) = k�1Y
j=0 �

0(s+ js(�0); �0;  )
(in this formula, s(�0) is the invariant de�ned in Section 2.4).
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(e) Let �0i 2 D0uni , i 2 f1; 2; :::; kg, Pki=1 ni = n. Let a1 � a2 � ::: � ak be realnumbers. Set S0 = �ki=1�0aini �0i and �0 = Lg(S0).Then

L(s; �0) = kY
i=1L(s; �

0i)
and

�0(s; �0;  ) = kY
i=1 �

0(s; �0i;  ):
In particular, if �01; �02; :::; �0p is the cuspidal support of �0, then

�0(s; �0;  ) = pY
i=1 �

0(s; �0i;  ):
Proof. (a) This is shown in the Proposition 6.11 in [GJ], where the formula is slightly wrong.The reader may verify that the good formula for the L-function in [GJ], Proposition 6.9 is with(d� 1) instead of (n� 1), as indicated by the proof of this Proposition. Then this typo error ispropagated to [GJ], Proposition 6.9, where the reader may easily verify that the right formulaobtained, after correcting the Proposition 6.9, is our formula. For the �0-factor our formula �tsthe [GJ] one.(b) The �0-factor of St0n equals the �0-factor of 10n as they are both sub-quotients of the sameinduced representation ([GJ], Corollary 3.6).Let us check the L-function. For the particular caseD = F , the computation of the L-functionis Theorem 7.11 (4), [GJ]. Let us give a general (di�erent) proof by induction on n.For n = 1 we have St0n = St01 = 101 and the result is implied by (a).For any n > 1, the representation St0n is a subquotient of the induced representation from

�0� d(n�1)21 101 
 �0 d2n�1St0n�1. We know that
L(�0 d(n�1)21 101) = (1� q�s� d�12 + d(n�1)2 )�1

and, by the induction hypothesis, we have
L(s; �0 d2n�1St0n�1) = (1� q�s� dn�12 )�1:

By [GJ], Corollary 3.6, L(s; St0n) is equal to one of these two functions or to their product.But, by [GJ], Proposition 1.3 and Theorem 3.3 (1) and (2), the poles of L(s; St0n) cannot begreater than d(n�1)2 � dn�12 = �d�12 , so there is no positive pole (this trick comes from theoriginal proof: an L-function of a square integrable representation cannot have a pole with apositive real part). So L(s; St0n) = L(s; �0 d2n�1St0n�1) = (1� q�s� dn�12 )�1:(c) The �rst assertion is a consequence of Lemma 4.1, Proposition 4.4 and Proposition 5.11 of[GJ] (prop 5.11 is not enough, since the authors assume m > 1 at the beginning of the Section5). The second assertion is a direct consequence of the part (a) of the present Theorem.(d) For the particular case of Gn this is explained after Proposition 3.1.3 of [Ja]. The sameproof applies to G0n, using the calculation for St01, i.e. the part (b).(e) This is proven in [Ja] for Gn, but the same proof applies to G0n. �

Theorem 6.2. Let C be the local Jacquet-Langlands correspondence between Gndand G0n. Then, for all � 2 Dund, we have L(s; �) = L(s;C(�)) and �0(s; �;  ) =�0(s;C(�);  ).
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Proof. Let us show it �rst for the Steinberg representation and its twists. We haveC(Stnd) =St0n. Theorem 6.1 (a) and (b) implies the statement in this case. This implies then the statementfor all the twist of Stnd with characters.

Lemma 6.3. For all � 2 Dund, we have �0(s; �;  ) = �0(s;C(�);  ).
Proof. The proof is standard, using an easy global correspondence (true in all characteristics)and the previous calculus for the Steinberg representations. See for example [Ba2], page 741 :Les facteurs �0. �

Let us complete the proof of the Theorem with the calculation of L-functions. If � 2 Dund orD0un which is not a twist of the Steinberg representation, then Theorem 6.1 d) implies that itsL-function is trivial and so its �0-factor is equal to its �-factor. As C(�) is a twist of the Steinbergrepresentation if and only if � itself is a twist of the Steinberg representation, the statement hasbeen now proven for all � 2 Dund. �

Corollary 6.4. Let �0i 2 D0uni , i 2 f1; 2; :::; kg, Pki=1 ni = n. Let a1 � a2 � ::: � akbe real numbers. Set S0 = �ki=1�0aini �0i. Let C�1(�0i) = �i 2 Dudni and set S =�ki=1�ainid�i. Then L(s; Lg(S0)) = L(s; Lg(S)) and �0(s; Lg(S0);  ) = �0(s; Lg(S);  ).
Proof. This is implied by the previous Theorem and the part (e) of Theorem 6.1. �

Corollary 6.5. Assume the characteristic of F is zero. If u 2 Irrund is such thatLJn(u) 6= 0. Then �0(s; u;  ) = �0(s; jLJjn(u);  ).
Proof. It is enough to prove it for u = u(�; k), � 2 Dup , k; p 2 N�, such that jLJpkj(u) = u0 6=0. If we are in the case (a) of the Proposition 3.2, then u and u0 are like in the Corollary 6.4. Inparticular, their L functions are equal too. If we are in the case (b) of the Proposition 3.2, thenji(u)j and ji0(u0)j are like in the Corollary 6.4. Now, the �0-factor depends only on the cuspidalsupport (Theorem 6.1 e)). So the �0-factor is the same for an irreducible representation and itsdual. But in general we do not get equality for the L-functions in this case. �
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Appendix A. The Residual Spectrum of GLn over a Division Algebra

by Neven GRBAC
A.1. Introduction. In this Appendix the residual spectrum of GLn over a division algebra isdecomposed. The approach is the Langlands spectral theory as explained in [MW3] and [La2].However, the results in the paper, obtained using the Arthur trace formula of [AC], classify theentire discrete spectrum of GLn over a division algebra. Hence, the problem reduces to distin-guishing the residual representations in the discrete spectrum. This simpli�es the application ofthe Langlands spectral theory since it reduces the region of the possible poles of the Eisensteinseries to a cone well inside the positive Weyl chamber. Having in mind the classi�cation of thediscrete spectrum and the multiplicity one Theorem, we obtain the classi�cation of the cuspidalspectrum as a consequence of the decomposition of the residual spectrum. In fact, it turns outthat the only cuspidal representations are the basic cuspidal ones.The idea of writing this Appendix was born during our stay at the Erwin Schr�odinger Institute,Vienna in December 2006 and February 2007. I would like to thank Joachim Schwermer for hiskind invitation. My gratitude goes to Goran Mui�c for many useful conversations and constanthelp. I am grateful to Colette M�glin for sharing her insight and advices on the normalizationof the standard intertwining operators. Also, I would like to thank Marko Tadi�c for the supportand interest in my work. I thank Ioan Badulescu for explaining his results and including thisAppendix to the paper. And �nally, I would like to thank my wife Tiki for bringing so much joyinto my life.
A.2. Normalization of intertwining operators. Let F be an algebraic number �eld (a global�eld of characteristic zero) andD a central division algebra of dimension d2 over F . Let Fv denotethe completion of F at a place v and A the ring of ad�eles of F . We use the global notation ofSections 4 and 5. Let G0r be the inner form, de�ned via D, of the split general linear groupGrd = GLrd. Let V be the �nite set of places where D is non{split. As in the paper, we assumethat D splits at all in�nite places, i.e. V consists only of �nite places.Recall from Section 5.2 the description of the basic cuspidal representations of G0r(A). Let� be a cuspidal representation of Gq(A) and s�;D the smallest positive integer such that thediscrete spectrum representation � �= MW (�; s�;D) of Gqs�;D (A) is compatible at every place.Then,

�0 �= G�1(�) �= 
vjLJjv(�v)
is a basic cuspidal representation of G0r(A). Observe that �0v �= �v at all places v 62 V . The goalof this Appendix is to show that all cuspidal representations of G0r(A) are obtained in this way.In fact, we show that all the remaining representations in the discrete spectrum belong to theresidual spectrum and apply the multiplicity one Theorem.In the sequel we always assume that the cuspidal representations are such that the poles of theattached Eisenstein series and L{functions are real. There is no loss in generality since this canbe achieved simply twisting by the imaginary power of the absolute value of the determinant.Hence, our assumption is just a convenient choice of the coordinates. Furthermore, as in thepaper, along with the notation � for the parabolic induction, we use the notation indGM whenwe want to point out the Levi factor M of the standard parabolic subgroup in G.Consider �rst a cuspidal representation �0 
 �0 of the Levi factor L0(A) �= G0r(A)�G0r(A) ofa maximal proper standard parabolic subgroup in G02r(A), where �0 is basic cuspidal as above.Let s = (s1; s2) 2 aL0;C and w the unique nontrivial Weyl group element such that wL0w�1 = L0.
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Lemma A.1. Let v 62 V be a split place. The normalizing factor for the standardintertwining operator A((s1; s2); �v 
 �v; w)acting on the induced representation

indG2rd(Fv)Grd(Fv)�Grd(Fv) (�s1�v 
 �s2�v)is given by(A.1)
r((s1; s2); �v 
 �v; w) =

Qs�;Dj=1 L(s1 � s2 � s�;D + j; �v � e�v)Qs�;Dj=1 L(s1 � s2 + j; �v � e�v) � "(s1 � s2; �v � e�v;  v) ;
where the L{functions and "{factors are the local Rankin{Selberg ones of pairs.Then, the normalized intertwining operator N((s1; s2); �v 
 �v; w), de�ned by

A((s1; s2); �v 
 �v; w) = r((s1; s2); �v 
 �v; w)N((s1; s2); �v 
 �v; w);
is holomorphic and non{vanishing for Re(s1 � s2) � s�;D.
Proof. This Lemma is a weaker form of Lemma I.10 of [MW2] where the holomorphyand non{vanishing is proved in a certain region slightly bigger than the closure ofthe positive Weyl chamber for any unitary representation. We just show that thenormalizing factor de�ned in [MW2] is the same as here.By [MW2],
(A.2) r((s1; s2); �v 
 �v; w) = L(s1 � s2; �v � e�v)L(1 + s1 � s2; �v � e�v)"(s1 � s2; �v � e�v;  v) :But, �v is a quotient of the induced representation

� s�;D�12 �v � � s�;D�32 �v � : : :� �� s�;D�12 �v;
where �v, being unitary and generic as the local component at v of a cuspidalrepresentation �, is a fully induced representation of the form

�e1;v�1;v � �e2;v�2;v � : : :� �emv;v�mv;vwith ei;v real, jei;vj < 1=2 and �i;v 2 Du. We may arrange the indices in such away that e1;v � e2;v � : : : � emv;v.This shows that �v is the Langlands quotient and we can apply the formulas forthe Rankin{Selberg L{function and "{factor of the Langlands quotient. Having inmind that �v is fully induced, we obtain(A.3)
L(s; �v�e�v) = L(s; �v�e�v)s�;D s�;D�1Y

j=1 L(s+s�;D�j; �v�e�v)jL(s�s�;D+j; �v�e�v)j
and the "{factor is of the same form, but since it has no zeroes nor poles we donot need to re�ne its form. Inserting the formula for the L{function into equation(A.2) gives after cancellation the normalizing factor (A.1). �

Lemma A.2. Let v 2 V be a non{split place. Then the standard intertwiningoperator A((s1; s2); �0v 
 �0v; w)is holomorphic and non{vanishing for Re(s1 � s2) � s�;D.
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Proof. Sections 3.2, 3.3 and 3.5 give rather precise form of the local component �0vof a basic cuspidal representation of GL0r(A). By Section 3.5, it is a fully inducedrepresentation of the form

�0v �= �e1;v jLJjv (u(�1;v; s�;D))� : : :� �emv;v jLJjv (u(�mv;v; s�;D)) ;where ei;v are real, jei;vj < 1=2 and �i;v 2 Du. More precisely, ei;v and �i;v arede�ned by �v �= �e1;v�1;v � : : :� �emv;v�mv;v:The precise formula for jLJjv (u(�i;v; s�;D)) is given in Proposition 3.7 and equation3.9. If �i;v is compatible, then
jLJjv (u(�i;v; s�;D)) = u(�0i;v; s�;D);and the highest exponent of � appearing in the corresponding standard module iss�;D�12 . If �i;v is not compatible, then, by the choice of s�;D, we have

jLJjv (u(�i;v; s�;D)) = bY
i=1 �

i� b+12 u0(�0i;+;v; s�;D=s(�i;v))�
s(�i;v)�bY

j=1 �j� s(�i;v)�b+12 u0(�0i;�;v; s�;D=s(�i;v));
where �0i;�;v 2 D0u are certain unitary discrete series representations. See Section3.3 for the unexplained notation. In this case the highest exponent of � appearingamong the standard modules is eitherb� 12 + s(�i;v)s�;D=s(�i;v)� 12 < s�;D � 12or s(�i;v)� b� 12 + s(�i;v)s�;D=s(�i;v)� 12 � s�;D � 12 ;
where the upper bounds are obtained using the fact that 0 � b < s(�i;v) (see Section3.3).The description of �0v shows that the induced representation

�s1�0v � �s2�0vis a product of possibly twisted representations of the form u(�) and u0(�) whichare the Langlands quotients of the standard module induced from a discrete seriesrepresentation. In other words there is a unitary discrete series representation �0vof the appropriate Levi factor L00(Fv) of G02r(Fv) and s 2 aL00;C such that, by theLanglands classi�cation, the standard intertwining operator
A(s; �0v; w0) : indG02r(kv)L00(kv) (s; �0v)! indG02r(kv)w0(L00)(kv)(w0(s); w0(�0v))is holomorphic and its image is the induced representation �s1�0v � �s2�0v. There-fore, by the decomposition property of the intertwining operators according to thereduced decomposition of the Weyl group element ww0, the standard intertwiningoperator A((s1; s2); �0v 
 �0v; w) �ts into the commutative diagram

indG02r(kv)L00(kv) (s; �0v) A(s;�0v;w0)������������! �s1�0v � �s2�0vA(s;�0v;ww0) # # A((s1;s2);�0v
�0v;w)
indG02r(kv)ww0(L00)(kv)(ww0(s); ww0(�0v))  - �s2�0v � �s1�0v;where the upper horizontal arrow is surjective. Observe that the right vertical arrowis in fact just the restriction of the intertwining operator A(w0(s); w0(�0v); w) to the
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subrepresentation �s1�0v � �s2�0v. This follows by the analytic continuation fromthe fact that the integrals de�ning the two intertwining operators are over the sameunipotent subgroups and hence agree in the domain of convergence. The diagramimplies the Lemma if we prove that, for Re(s1 � s2) � s�;D, the left vertical arrowis holomorphic and non{vanishing.By the Langlands classi�cation it su�ces to check that the real parts of all thedi�erences between exponents of � appearing in the parts of I(s; �0v) correspondingto �s1�0v and �s2�0v are strictly positive. However, we already checked that thehighest exponent appearing among the standard modules in the expressions forjLJjv(u(�i;v; s�;D)) is at most s�;D�12 . Therefore, in the worst case we obtain thedi�erence Re(s1 � s2) + ei;v � ej;v � 2 � s�;D � 12 > 0
since ei;v � ej;v > �1. �

Remark A.3. The proof of the previous Lemma follows the idea of the proof ofLemma I.8 of [MW2]. Since the results of this paper based on the trace formulareduce the question of determining the residual spectrum to the point Re(s1� s2) =s�;D and give bounds on the exponents of the local component at a non{split placeof a cuspidal representation of an inner form, we do not require the full power ofLemma I.8, and hence the proof becomes simpler. However, its analogue for innerforms could have been obtained using �rst the transfer of the Plancherel measurefor discrete series representations (see [MS]) to de�ne the normalization using L{functions for the split group. For the classical hermitian quaternionic groups weused this technique to obtain the parts of the residual spectra in [Gr1], [Gr2], [Gr3],[Gr4].
Corollary A.4. The normalizing factor for the global standard intertwining oper-ator A((s1; s2); �0 
 �0; w)acting on the induced representation

indG02r(A)L0(A) (�s1�0 
 �s2�0)
is given by
(A.4) r((s1; s2); �0 
 �0; w) =

Qs�;Dj=1 LV (s1 � s2 � s�;D + j; �� e�)Qs�;Dj=1 LV (s1 � s2 + j; �� e�) � "V (s1 � s2; �0 � e�0) ;where the L{functions and "{factors are the partial Rankin{Selberg ones with respectto the �nite set V of non{split places of D. Then, the normalized intertwiningoperator N((s1; s2); �0 
 �0; w) de�ned by
A((s1; s2); �0 
 �0; w) = r((s1; s2); �0 
 �0; w)N((s1; s2); �0 
 �0; w)is holomorphic and non{vanishing for Re(s1�s2) � s�;D. Moreover, the only pole ofthe standard intertwining operator A((s1; s2); �0
�0; w) in the region Re(s1�s2) �s�;D is at s1 � s2 = s�;D and it is simple.

Proof. The global normalizing factor is obtained as a product over all places of thelocal ones. Note that, for our purposes, at a non{split places the normalizing factoris taken to be trivial. Then the holomorphy and non{vanishing of the normalizedintertwining operator in the region Re(s1�s2) � s�;D follows from the local resultsof the previous two Lemmas.
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The analytic properties of the Rankin{Selberg L{functions are well{known. Theglobal Rankin{Selberg L{function L(z; � � e�) has the only poles at z = 0 andz = 1 and they are both simple. It has no zeroes for Re(z) � 1. Writing �v ata non{split place v 2 V as a fully induced representation from the discrete seriesrepresentation as in the proof of the previous Lemma shows that the local Rankin{Selberg L{function equals

L(z; �v � e�v) = mvY
i;j=1L(z + ei;v � ej;v; �i;v � e�j;v):

Since the local L{functions attached to unitary discrete series representations areholomorphic in the strict right half{plane, and ei;v � ej;v > �1, the L{functionL(z; �v � e�v) is holomorphic for Re(z) � 1. Local L{functions have no zeroes.Therefore, the partial L{function LV (z; � � e�) is holomorphic for Re(z) � 1except for a simple pole at z = 1. It has no zeroes for Re(z) � 1. The "{factor has neither zeroes nor poles. Since for Re(s1 � s2) � s�;D real parts of allthe arguments of the L{functions in the global normalizing factor (A.4), exceptRe(s1 � s2 � s�;D + 1) � 1, are strictly greater than one, it has no zeroes and theonly pole occurs for s1 � s2 = s�;D. Since the normalized intertwining operator isholomorphic and non{vanishing for Re(s1 � s2) � s�;D, it turns out that the onlypole in the region Re(s1 � s2) � s�;D of the global standard intertwining operatoris at s1 � s2 = s�;D and it is simple. �

A.3. Poles of Eisenstein series. Let �0 be as above and k > 1 an integer. Let �0 �= �0
: : :
�0be a cuspidal representation of the Levi factor M 0(A) �= G0r(A) � : : : � G0r(A) of a standardparabolic subgroup of G0kr(A), with k copies of G0r(A) and �0 in the products. We �x anisomorphism a�M 0;C �= Ck using the absolute value of the reduced norm of the determinant ateach copy of G0r and denote its elements by s = (s1; s2; : : : ; sk) 2 a�M 0;C. By the results of thepaper, the study of the residual spectrum is reduced to the point
s0 =

�s�;D(k � 1)2 ; s�;D(k � 3)2 ; : : : ;�s�;D(k � 1)2
� ;

i.e. we have to prove that the unique discrete series constituent of the induced representation
indG0kr(A)M 0(A) (s0; �0) = � s�;D(k�1)2 �0 � � s�;D(k�3)2 �0 � : : :� �� s�;D(k�1)2 �0;

which is denoted in the paper by MW 0(�0; k), is in the residual spectrum. Of course, the casek = 1 is excluded since it gives just the (basic) cuspidal representation �0.
Lemma A.5. Let E(s; g;�0; fs)be the Eisenstein series attached to a 'good' (in the sense of Sections II.1.1 andII.1.2 of [MW3]) Section fs of the above induced representation from a cuspidalrepresentation �0. Then, its only pole in the region Re(si � si+1) � s�;D, fori = 1; : : : ; k � 1, is at s0 and it is simple. The constant term map gives rise toan isomorphism between the space of automorphic forms A(�0; k) spanned by theiterated residue at s0 of the Eisenstein series and the irreducible image MW 0(�0; k)of the normalized intertwining operator

N(s0; �0; wl);where wl is the longest among Weyl group elements w such that wM 0w�1 �=M 0.
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Proof. By the general theory of the Eisenstein series explained in Section V.3.16of [MW3], its poles coincide with the poles of its constant term along the standardparabolic subgroup with the Levi factor M 0 which equals the sum of the standardintertwining operators

E0(s; g;�0; fs) = X
w2W (M 0)A(s; �

0; w)fs(g);
where W (M 0) is the set of the Weyl group elements such that wM 0w�1 �= M 0.Hence, the poles of the Eisenstein series are determined by the poles of the standardintertwining operators.By Corollary A.4, in the region Re(si�si+1) � s�;D, for i = 1; : : : ; k�1, the onlypossibility for the pole is at s0. However, it indeed occurs only for the intertwiningoperators corresponding to the Weyl group element inverting the order of any twosuccessive indices, i.e. the longest element wl in W (M 0). Since the iterated pole issimple in every iteration, the iterated residue of the constant term, up to a non{zeroconstant, equals the normalized intertwining operator

N(s0; �0; wl);
as claimed.The irreducibility of its image follows from the uniqueness of the discrete seriesconstituent in the considered induced representation obtained in Proposition 5.6(a).The square integrability follows from the Langlands criterion (Section I.4.11 of[MW3]). �

Remark A.6. The proof of the Lemma shows that MW 0(�0; k), for k > 1, is atevery place an irreducible quotient of the corresponding induced representation.
Theorem A.7. The residual spectrum L2res(G0n) of an inner form G0n(A) of thesplit general linear group decomposes into a Hilbert space direct sum

L2res(G0n) �= M
rjn1 � r < n

M
�0 2 DS0r(basic) cuspidal

A(�0; n=r);

where A(�0; n=r) �=MW 0(�0; n=r) are the spaces of automorphic forms obtained inthe previous Lemma.
Proof. The results of Section 5 classify the discrete spectrum DS0n of the innerform G0n(A) using the trace formula. The basic cuspidal representations are provedto be cuspidal. Hence, it remains to show that the representations of the formMW 0(�0; k), for k > 1 and a basic cuspidal representation �0, are in the residualspectrum. However, this is precisely the content of the previous Lemma A.5. �

Corollary A.8. The cuspidal spectrum of an inner form G0n(A) consists of thebasic cuspidal representations.
Proof. Theorem A.7 shows that in the discrete spectrum DS0n of an inner formG0n(A) obtained in Section 5 all the representations not being basic cuspidal belongto the residual spectrum. Hence, the multiplicity one of Theorem 5.1 for innerforms implies the Corollary. �
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