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Abstract. In this paper a Zelevinsky type classification of genuine unramified irreducible representations
of the metaplectic group over a p-adic field with p ̸= 2 is obtained. The classification consists of three

steps. Firstly, it is proved that every genuine irreducible unramified representation is a fully parabolically
induced representation from unramified characters of general linear groups and a genuine irreducible neg-
ative unramified representation of a smaller metaplectic group. Genuine irreducible negative unramified

representations are described in terms of parabolic induction from unramified characters of general linear
groups and a genuine irreducible strongly negative unramified representation of a smaller metaplectic group.
Finally, genuine irreducible strongly negative unramified representations are classified in terms of Jordan
blocks. The main technical tool is the theory of Jacquet modules.

Introduction

In this paper we study the representation theory of the metaplectic group over a p-adic field with p ̸= 2,
that is, the unique non-trivial two-fold central extension of the p-adic symplectic group. Its importance
among covering groups comes from the fact that it appears, together with a classical group, as a member of
a dual pair in the theory of theta correspondence and the Weil representation, thus having applications in
number theory.

On the other hand, the structure of this metaplectic group is almost like the structure of split classical
groups [12], so that, in principle, the methods coming from representation theory of classical groups can be
adjusted, with more or less difficulty, to the metaplectic group. In our case, the main technical tool is the
theory of Jacquet modules, which we adjust for the application to the metaplectic group from the paper of
Muić [18] classifying the unramified irreducible representations of split classical groups.

The reader should be aware that not all methods available for the study of representations of p-adic
classical groups are extended to the metaplectic group. For example, the theory of R groups [10] is still not
available. The basic properties of the Aubert–Schneider–Stuhler involution [1], [2], [20] are, at the time of
writing this paper, under consideration by Dubravka Ban and Chris Jantzen, and it seems they hold in the
setting of the metaplectic group. It is very likely that some of our proofs could be considerably simplified
once these techniques are proved for the metaplectic group. However, for instance, the standard module
conjecture [17], [6] fails for the metaplectic group, because the even Weil representation is generic and the
associated standard module is reducible.

Hence, although we expect that most of the methods will eventually become available, we carefully restrict
our tools in this paper to those techniques that are applicable for all l-groups countable at infinity (cf. [3],
[4], [25]), such as Jacquet modules and induced representations, and the Langlands quotient theorem [14].
Classical groups, but also the metaplectic group, are examples of such groups.
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The goal of the paper is to provide the Zelevinsky type classification of (isomorphism classes) of unramified
irreducible representations of the p-adic metaplectic group with p ̸= 2. This type of classification for
split classical groups over a p-adic field is obtained by Muić in [18]. The unramified representations are
important in number theory, in particular the theory of automorphic forms, because the local component of
an automorphic representation is unramified at all but finitely many places of the number field. For many
number theoretic applications it is sufficient to work only with such “unramified places”. Hence, having a
good classification of unramified representations for the metaplectic group is of considerable interest, not
only for the representation theory itself, but also in view of number theoretic applications.

The Zelevinsky classification consists of three steps. The first step says that every unramified representa-
tion is a fully parabolically induced representation from unramified characters of general linear groups and
a negative unramified representation of a smaller metaplectic group. Then, negative unramified represen-
tations are described in terms of parabolic induction from unramified characters of general linear groups
and a strongly negative unramified representation of a smaller metaplectic group. Finally, strongly negative
unramified representations are classified in terms of Jordan blocks. For definitions of negative and strongly
negative representations see the body of the paper.

The structure of the paper, after preliminary Sect. 1 on the metaplectic group and Sect. 2 on its represen-
tations, follows basically the three steps of the classification. The first two steps are made in Sect. 3, although
the strong form of the first step cannot be proved until the final Sect. 5, as it requires the classification of
negative and strongly negative representations. The third step is contained in Sect. 4. In Appendix A, to
avoid interrupting the flow of arguments in the proof of classification, we provide a quite long proof of a
certain technical lemma regarding reducibility of certain degenerate principal series representation.

This paper grew out of the first author’s PhD thesis. We are grateful to Goran Muić for turning our
attention to this problem, and for his useful comments and many discussions. We are also grateful to
Marcela Hanzer for useful discussions. The first named author would also like to thank Dubravka Ban, Wee
Teck Gan, Chris Jantzen, Gordan Savin, Ivan Matić and Marko Tadić. We are grateful to the referee for
careful reading and pointing out a mistake in an earlier version of the manuscript.

1. Metaplectic group

1.1. Two-sheeted central extension. Let F be a p-adic field of residual characteristic p ̸= 2 with the ring
of integers O, containing q elements in its residue field. We denote by | |F the normalized absolute value on
F . For an integer n ≥ 1, let Sp(n, F ) be the group of F -points of the F -split symplectic group of F -rank n
defined over F . When necessary, we always use the same matrix realization of Sp(n, F ) as in [13]. We fix,
once for all, a maximal compact subgroup Sp(n,O) of Sp(n, F ).

Let ˜Sp(n, F ) be the metaplectic group, that is, the unique non-trivial twofold central extension of Sp(n, F ).
It fits into an exact sequence

1 −→ µ2
i

↪−→ ˜Sp(n, F )
p

−� Sp(n, F ) −→ 1,

where µ2 = {±1} is the multiplicative group. As a set ˜Sp(n, F ) = Sp(n, F )× µ2, and the maps i and p are
the obvious inclusion and projection. The multiplication is defined by

[h1, ϵ1][h2, ϵ2] = [h1h2, ϵ1ϵ2 cRao(h1, h2)], hi ∈ Sp(n, F ), ϵi ∈ µ2, i ∈ {1, 2},

where cRao is the Rao cocyle described in [13], [19].
For an integer n ≥ 1, let GL(n, F ) be the general linear group of n×n regular matrices over F . We write

ν = | det |F . Consider the two-fold central extension ˜GL(n, F ) of GL(n, F ), given as the preimage, with
respect to p, of the embedding of GL(n, F ) into Sp(n, F ) as the stabilizer of a maximal polarization of the
underlying symplectic space. The multiplication is given by

[g1, ϵ1][g2, ϵ2] = [g1g2, ϵ1ϵ2 (det g1,det g2)F ], gi ∈ GL(n, F ), ϵi ∈ µ2, i ∈ {1, 2},
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where ( , )F is the quadratic Hilbert symbol of F [24].
By convention, for n = 0 all the covering groups are considered to be µ2, and all classical groups to be

the trivial group.

1.2. Parabolic subgroups. We fix the Borel subgroup of Sp(n, F ) as in [13, Chap. III]. Then, as in
loc. cit., the standard parabolic subgroups of Sp(n, F ) are parameterized by ordered partitions of n into
s = (n1, . . . , nk;n0), where ni ≥ 1, i = 1, . . . , k, and n0 ≥ 0 are integers. We write Ps for the parabolic
subgroup parameterized by s. In the case of s = (−;n), i.e. k = 0, we have Ps = Sp(n, F ). For k = 1 we
obtain maximal parabolic subgroups. Partition s = (n; 0), with n0 = 0, gives the so-called Siegel parabolic
subgroup, which we sometimes denote PS = P(n;0). There is a Levi decomposition Ps =MsNs, where Ms is
the Levi factor and Ns the unipotent radical.

Let P̃s and M̃s be the preimages of Ps and Ms in ˜Sp(n, F ) with respect to the projection p, and N ′
s =

Ns × {1}. Then P̃s are the standard parabolic subgroups of ˜Sp(n, F ), and there is a Levi decomposition

P̃s = M̃sN
′
s. For the Levi factor M̃s, according to [12], [11, p. 4], there is an epimorphism ϕ with finite kernel

˜GL(n1, F )× · · · × ˜GL(nk, F )× ˜Sp(n0, F )
ϕ

−� M̃s.

Similarly, fixing the Borel subgroup in GL(n, F ), the standard parabolic subgroups Ps of GL(n, F ) are
parameterized by ordered partitions s = (n1, . . . , nk) of n into positive integers. Let Ps =MsNs be the Levi

decomposition. Then the standard parabolic subgroups P̃s of ˜GL(n, F ) are preimages of Ps with respect to

p. We have the Levi decomposition P̃s = M̃s n N ′
s, where M̃s is the preimage of Ms and N ′

s = Ns × {1}.
There is, again, an epimorphism with finite kernel

˜GL(n1, F )× · · · × ˜GL(nk, F )
ϕ−→ M̃s ≤ ˜GL(n, F ).

1.3. Splitting of the cover. Recall that ˜Sp(n, F ) splits uniquely over Sp(n,O) (cf. [16, Sect. 2.II.10]).
We write h 7→ [h, in(h)], h ∈ Sp(n,O), for the splitting. By [21, Lemma 2.1], the map in is trivial on
PS ∩Sp(n,O). Directly, or embedding GL(n,O) into Sp(n,O), where GL(n,O) is a fixed maximal compact

subgroup of GL(n, F ), we obtain the splitting g 7→ [g, 1], g ∈ GL(n,O) in ˜GL(n,O). Thus, the splitting
from GL(n,O) and from Sp(n,O) restricted to GL(n,O) match.

Lemma 1.1. Let G be either GL(n, F ) or Sp(n, F ), and K the fixed maximal compact subgroup of G. Let
K be the image of the splitting of K. In the notation as above, we have

(1) G̃ = P̃sK (Iwasawa decomposition)

(2) P̃s ∩K = (M̃s ∩K)(N ′
s ∩K)

(3) if G = GL(n, F ) then, GL(n1,O)× · · · ×GL(nk,O)
ϕ∼= M̃s ∩K

(4) if G = Sp(n, F ) then, GL(n1,O)× · · · ×GL(nk,O)× Sp(n0,O)
ϕ∼= M̃s ∩K.

Proof. Claim (1) directly follows from the Iwasawa decomposition G = PsK. Claim (2) follows from the
analogous decomposition for G and the fact that the splitting is trivial over Ns. Claim (3) is a direct
computation using the formula for ϕ from [12] and the fact that the Hilbert symbol is trivial on units when
the residual characteristic p ̸= 2.

For claim (4), we need to check that the image of ϕ restricted to the group on the left-hand side really
does lie in K. It is enough to check this on some set of generators. Using the formula for ϕ from [12], we get

ϕ([g1, 1], . . . , [gk, 1], [In0
, 1]) = [(g1, . . . , gk, In0

), 1], gi ∈ GL(ni,O), i = 1, . . . , k,

ϕ([In1 , 1], . . . , [Ink , 1], [h, in0(h)]) = [(Im, h), in0(h)], h ∈ Sp(n,O),

where Ij is the j× j identity matrix, and m = n−n0. The image in the first formula is in K, as we observed

already that in is trivial on PS ∩K. To show that the image in the second formula is in K, it is sufficient



4 IGOR CIGANOVIĆ AND NEVEN GRBAC

to prove that in0(h) = in(Im, h), that is, the splitting on Sp(n0,O) should coincide with the splitting on
Sp(n0,O) coming from the embedding in Sp(n,O) as a factor in a Levi subgroup. However, the splitting is
unique, so the claim follows. �

2. Preliminaries from representation theory

2.1. Parabolic induction and Jacquet modules. In this entire section, G is either Sp(n, F ) or GL(n, F ),

and G̃ its two-fold cover defined in Sect. 1. In both cases we use the notation Ps =MsNs for the parabolic

subgroup of G attached to partition s. Since G̃ is an l-group, we have the usual notions of smooth and
admissible representations [3]. Representations that do not act trivially by µ2 are called genuine, and only
such are considered. With our choice of the Borel group, functors of the normalised parabolic induction and
Jacquet module

IndG̃
M̃s

: Alg M̃s → Alg G̃,

rs = Jacqs = JacqG̃
M̃s

: Alg G̃→ Alg M̃s,

are defined as in [12], [11], where Alg stands for the category of smooth representations.

For σ in Alg G̃ and ρ in Alg M̃s, we have the Frobenius reciprocity

(2.1) HomG̃

(
σ, IndG̃

M̃s
(ρ)

)
∼= Hom

M̃s

(
JacqG̃

M̃s
(σ), ρ

)
.

Moreover, as remarked in [16, p. 59], all results of [4, Sect. 2] remain valid for the metaplectic group. Recall

that σ is a cuspidal representation of G or G̃ if the Jacquet module of σ is trivial with respect to any proper
parabolic subgroup. Every irreducible representation can be embedded into a representation parabolically
induced from a cuspidal one.

For the group G = GL(n, F ) the theory of genuine representations of G̃ can be completely determined
from the representation theory of G, as explained in [11, Sect. 4.1]. There is a bijection between smooth

representations of finite length of G and G̃, preserving irreducibility and commuting with the parabolic

induction and Jacquet module. This bijection is given by twisting by a fixed genuine character χψ of G̃.
Note that χψ is not unique, and we now make our choice for it. Fix a non-trivial additive character ψ of F
of even conductor. As in [12, p. 231], we define

χψ([g, ϵ]) = ϵγ
(
ψ 1

2

)
γ
(
ψ det g

2

)−1

, g ∈ GL(n, F ), ϵ ∈ µ2,

where ψa(x) = ψ(ax), and γ(η) is the Weil index.

Now let G = Sp(n, F ). For s = (n1, . . . , nk;n0) and ρ an irreducible genuine representation of M̃s,
pulling back ρ with respect to ϕ enables us to think of it as χψπ1 ⊗ · · · ⊗ χψπk ⊗ τ where πi are irreducible

representations of GL(ni, F ), i = 1, . . . , k, and τ a genuine irreducible representation of ˜Sp(n0, F ). We use
the notation, as for classical groups,

IndG̃
M̃s

(ρ) = IndG̃
M̃s

(χψπ1 ⊗ · · · ⊗ χψπk ⊗ τ) = χψπ1 × · · · × χψπk o τ.

For G = GL(n, F ) we have the same argument and use the same notation, just without τ .
Calculation of the Weyl group action [11, Sect. 3] shows that composition series for G = GL(n, F ) remains

the same after permuting πi’s. For G = Sp(n, F ), the composition series also remains the same after taking

contragredients of χψπi. Note that χ4
ψ = 1, so (χψπi)̃ ∼= χψ

(
χ2
ψπ̃i

)
, where χ2

ψ(g, ϵ) = (det g,−1)F , g ∈
GL(n, F ), ϵ ∈ µ2.

By convention, the genuine irreducible representation of ˜Sp(0, F ) = µ2 is denoted by ω0, while the genuine

irreducible representation of ˜GL(0, F ) is written as χψ1, where 1 denotes the irreducible representation of
the trivial group.
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2.2. Zelevinsky segment representation. The following lemma summarizes some results of [25] trans-

ferred to ˜GL(n, F ) by twisting by χψ. Its purpose is also to fix the notation.

Lemma 2.1. Let χ be a character of F× and α, β ∈ R such that α+ β + 1 ∈ Z>0. Recall that ν = | det |F .
Representation χψχν

−β×· · ·×χψχνα has a unique irreducible subrepresentation ζ(−β, α, χψχ) and a unique
irreducible quotient δ(−β, α, χψχ), so that

χψ(χ ◦ det)ν
−β+α

2 ∼= ζ(−β, α, χψχ) ↪−→ χψν
−βχ× · · · × χψν

αχ −� δ(−β, α, χψχ).

The representation ζ(−β, α, χψχ) may be characterized as the unique subquotient such that r(1,...,1)(ζ(−β, α, χψχ)) =
χψν

−βχ ⊗ · · · ⊗ χψν
αχ, while δ(−β, α, χψχ) as the unique subquotient such that r(1,...,1)(δ(−β, α, χψχ)) =

χψν
αχ⊗ · · · ⊗ χψν

−βχ.
For the contragredient, we have ζ(−β, α, χψχ)̃ ∼= χ2

ψζ(−α, β, χψχ−1) and δ(−β, α, χψχ)̃ ∼= χ2
ψδ(−α, β, χψχ−1).

Representation ζ(−β1, α1, χψχ1) × ζ(−β2, α2, χψχ2) reduces if and only if χ1 = χ2, α1 − α2 ∈ Z and
−β1 ≤ −β2 − 1 ≤ α1 < α2 or −β2 ≤ −β1 − 1 ≤ α2 < α. In case of reducibility, induced representation has
two non-isomorphic irreducible subquotients and for α1 < α2 we have:

ζ(−β1, α2, χψχ)× ζ(−β2, α1, χψχ) ↪−→ζ(−β1, α1, χψχ1)× ζ(−β2, α2, χψχ2)

ζ(−β2, α2, χψχ2)× ζ(−β1, α1, χψχ2) −�ζ(−β1, α2, χψχ)× ζ(−β2, α1, χψχ)

In case of irreducibility ζ(−β1, α1, χψχ1)× ζ(−β2, α2, χψχ2) ∼= ζ(−β2, α2, χψχ2)× ζ(−β1, α1, χψχ1). Inter-
changing and reversing the arrows, the above statements are valid for δ(−β1, α1, χψχ1)× δ(−β2, α2, χψχ2).

Representation ζ(−β, α, χψχ) is called the Zelevinsky segment representation. It is convenient to agree
that if α+β+1 /∈ Z>0, then ζ(−β, α, χψχ) and δ(−β, α, χψχ) means χψχ1. We write χ1n for the character

χ ◦ det of GL(n, F ). We see that χψχ1n ∼= ζ(−(n− 1)/2, (n− 1)/2, χψχ). Also, if χ = νe(χ)χu, where χu is
unitary and e(χ) is a real number, then we have a uniform notation

χψχ1n ∼= ζ(−(n− 1)/2 + e(χ), (n− 1)/2 + e(χ), χψχ
u).

2.3. Groups Rgen and Rgen
1 . Let n ≥ 0 be an integer and Rgen( ˜GL(n, F )) the Grothendieck group of the

category of smooth genuine representations of ˜GL(n, F ) of a finite length. It is a free Abelian group with a
basis of classes of irreducible smooth representations. Partial order ≤ is defined as π1 ≤ π2 if π2 − π1 is a

Z≥0 linear combination of elements of the given basis. Let Rgen =
⊕

n≥0 Rgen( ˜GL(n, F )). We use s. s. to
denote semisimplification. We have a map m∗ : Rgen → Rgen ⊗Rgen,

m∗(π) =
n∑
k=0

s.s.
(
Jacq(k,n−k)(π)

)
, π ∈ Rgen,

where Jacq(0,n)(π) = χψ1⊗ π and Jacq(n,0)(π) = π⊗ χψ1. We rewrite, for the case of ˜GL(n, F ), the results

of Propositions 3.4 and 1.7 of [25], and Proposition 9.5 of [25], which are originally stated for GL(n, F ), as
follows:

m∗(ζ(−β, α, χψχ)) =
α+β+1∑
i=0

ζ(−β,−β − 1 + i, χψχ)⊗ ζ(−β + i, α, χψχ),(2.2)

m∗(δ(−β, α, χψχ)) =
α+β+1∑
i=0

δ(α− i+ 1, α, χψχ)⊗ δ(−β, α− i, χψχ),(2.3)

m∗(π1 × π2) =(m⊗m) ◦ (id⊗ κ⊗ id) ◦ (m∗(π1)⊗m∗(π2)),(2.4)
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where κ(x⊗ y) = y ⊗ x, m(x⊗ y) = s.s.(x× y) = s.s.(y × x) and id is the identity. Similarly,

Rgen1 =
⊕
n≥0

Rgen( ˜Sp(n, F )),

and we have a map µ∗ : Rgen1 → Rgen ⊗Rgen1 ,

µ∗(σ) =

n∑
k=0

s.s.
(
Jacq(k,n−k)(σ)

)
, σ ∈ Rgen1 ,

where Jacq(0;n)(σ) = χψ1⊗ σ, σ ∈ Rgen1 . Using Proposition 4.5 of [11] and (2.2) and (2.3), we obtain

µ∗(ζ(−β, α, χψχ)o σ) =
∑

ζ⊗σ′≤µ∗(σ)

α+β+1∑
i=0

i∑
j=0

ζ(−α, β − i, χψχ
−1)× ζ(−β,−β − 1 + j, χψχ)× ζ

⊗ ζ(−β + j,−β − 1 + i, χψχ)o σ′.

(2.5)

µ∗(δ(−β, α, χψχ)o σ) =
∑

ζ⊗σ′≤µ∗(σ)

α+β+1∑
i=0

i∑
j=0

δ(−α+ i, β, χψχ
−1)× δ(α− j + 1, α, χψχ)× ζ

⊗ δ(α− i+ 1, α− j, χψχ)o σ′.

(2.6)

Note that because of the same composition series, we have in Rgen1

(2.7) ζ(−β, α, χψχ)o σ = ζ(−α, β, χψχ−1)o σ.

(2.8) δ(−β, α, χψχ)o σ = δ(−α, β, χψχ−1)o σ.

3. Unramified representations

3.1. Unramified representations of ˜GL(n, F ). Representation of ˜GL(n, F ) is unramified if there exists

a nontrivial vector fixed by GL(n,O). For the character ψ fixed in Sect. 2.1, twisting by χψ provides a full
correspondence with the theory of unramified representations of GL(n, F ). This is because χψ is unramified,

i.e., trivial on GL(n,O), for our choice of ψ, by [21, Lemma 3.4]. Hence, the following result of [25] and [5]
is valid for the covering group.

Theorem 3.1. Let the notation be as above.

(1) The induced representation ζ(−β1, α1, χψχ1)×· · ·×ζ(−βk, αk, χψχk) reduces if and only if ζ(−βi, αi, χψχi)×
ζ(−βj , αj , χψχj) reduces for some i, j.

(2) Let χ1, . . . , χk be a sequence of unramified characters of F×. Representation χψχ1 × · · · ×χψχk has
a unique unramified irreducible subquotient.

(3) Let π be a genuine unramified irreducible representation of ˜GL(n, F ). Then there exists a sequence
of Zelevinsky segment representations, unique up to permutation, such that:

π ∼= ζ(−β1, α1, χψχ
u
1 )× · · · × ζ(−βk, αk, χψχuk),

where χu1 , . . . , χ
u
k are unitary characters of F×.
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3.2. Unramified representations of ˜Sp(n, F ). Representation of ˜Sp(n, F ) is unramified if there exists a

nontrivial vector fixed by Sp(n,O). From [8, Sect. 2.6] (see also [9]), [12] and [11], using the uniqueness of
the cuspidal support, we have the following theorem.

Theorem 3.2. Let the notation be as above.

(1) Let χ1, . . . , χn be unramified characters of F×. Induced representation χψχ1 × · · · × χψχn o ω0

contains a unique unramified irreducible subquotient, denoted by σ(χψχ1,...,χψχn).

(2) Let χ1, . . . , χn and χ′
1, . . . , χ

′
n be unramified characters of F×. Representations σ(χψχ1,...,χψχn) and

σ(χψχ′
1,...,χψχ

′
n)

are isomorphic if and only if there exists a permutation h of {1, . . . , n} and a sequence
(ϵ1, . . . , ϵn) ∈ {±1}n such that χ′

i = χϵih(i) i = 1, . . . , n.

(3) Let σ be a genuine irreducible representation of ˜Sp(n, F ). Then there exist unramified characters
χ1, . . . , χn of F× such that σ ∼= σ(χψχ1,...,χψχn).

A representation is said to be spherical with respect to some compact subgroup, if there exists nontrivial
vector fixed by that subgroup. The following lemma shows that parabolic induction preserves unramified
representations.

Lemma 3.3. Let G be either GL(n, F ) or Sp(n, F ), and K its fixed maximal compact subgroup.

(1) Let σ be a smooth M̃s ∩K-spherical representation of M̃s. Then IndG̃
M̃s

(σ) is K-spherical.

(2) Let σ be a smooth representation of finite length of M̃s such that IndG̃
M̃s

(σ) contains a K-spherical

subquotient. Then σ is M̃s ∩K-spherical.

(3) Let π1, . . . , πk be smooth genuine representations of finite length of ˜GL(ni, F ), i = 1, . . . , k, and ρ a

smooth genuine representation of finite length of ˜Sp(n0, F ). Then π1×· · ·×πk (resp., π1×· · ·×πkoρ)
is unramified if and only if πi’s (resp., πi’s and ρ) are unramified.

Proof. For claim (1) define a function on G̃ by f(m̃n′k) = δPs(m)
1
2σ(m̃)v, where m̃ = [m, ϵ] ∈ M̃s, n

′ ∈ N ′
s,

k ∈ K, δPs the modular character, and v ̸= 0 an M̃s ∩ K-fixed vector of σ. It is easy to check that f is

well-defined nontrivial K-fixed vector of IndG̃
M̃s

(σ).

Taking K-invariants is an exact functor, so the full induced representation IndG̃
M̃s

(σ) is K-spherical.

Choosing any nonzero K-invariant function f in that induced representation, followed by direct calculation,

and using the definition of induced representations shows that f(1) is a nontrivial M̃s ∩K-invariant vector
for σ. Thus, (2) holds.

Claim (3) follows from (1) and (2) and Lemma 1.1. �

We end this subsection with two lemmas that are repeatedly used in the paper.

Lemma 3.4. Let σ be a genuine irreducible unramified representation of ˜Sp(n, F ), σ′ a genuine represen-

tation of finite length of ˜Sp(n′, F ) with the unique unramified subquotient σ′
0, and πi, i = 1, . . . , l, genuine

representations of finite length of ˜GL(ni, F ), such that the induced representation π1 × · · · × πl has a unique
unramified subquotient π and σ ↪→ π1 × · · · × πl o σ′. Then

σ ↪→ π1 × · · · × πl o σ′
0, σ ↪→ π o σ′ and σ ↪→ π o σ′

0.

Proof. Let (τi), i = 1, . . . , k, be a composition series of the π1×· · ·×πl and σ ↪→ τi0+1oσ′ the first possible
embedding. Then σ ↪→ (τi0+1 oσ′)/(τi0 oσ′) ∼= (τi0+1/τi0)oσ′ ∼= πoσ′, where the last isomorphism follows
from Lemma 3.3. Other claims can be proved in the same way. �
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Lemma 3.5. Let χ be a character of F×, α, β ∈ R such that α + β ∈ Z≥0, and σ a genuine unrami-

fied representation of ˜Sp(n, F ) such that µ∗(σ) ≥ ζ(−β, α, χψχ) ⊗ σ′′, where σ′′ is an irreducible genuine
representation of the metaplectic group of appropriate size. Then there exists a unique genuine irreducible
unramified representation σ′ of the metaplectic group such that µ∗(σ) ≥ ζ(−β, α, χψχ) ⊗ σ′. Moreover, σ′

has the same cuspidal support as σ′′ and σ ↪→ ζ(−β, α, χψχ)o σ′.

Proof. By Theorem 3.2, cuspidal support of σ consists of characters. Unless α+β+1 = n, which is a trivial
case, there are characters χ1, . . . , χn−α−β−1 of F× such that σ′′ ↪→ χψχ1 × · · · × χψχn−α−β−1 o ω0. By
Frobenius reciprocity and transitivity of Jacquet module, we have

Jacq(1,...,1;0)(σ) ≥ χψχν
−β ⊗ · · · ⊗ χψχν

α ⊗ χψχ1 ⊗ · · · ⊗ χψχn−α−β−1 ⊗ ω0.

By [4, Thm. 2.4], a cuspidal subquotient of an admissible representation is a quotient. Thus,

Jacq(1,...,1;0)(σ) � χψχν
−β ⊗ · · · ⊗ χψχν

α ⊗ χψχ1 ⊗ · · · ⊗ χψχn−α−β−1 ⊗ ω0.

Frobenius reciprocity gives

σ ↪→ χψχν
−β × · · · × χψχν

α × χψχ1 × · · · × χψχn−α−β−1 o ω0.

Now, by Lemma 3.4, σ ↪→ ζ(−β, α, χψχ)o σ′, so that µ∗(σ) ≥ ζ(−β, α, χψχ)⊗ σ′. �

3.3. Weak form of Zelevinsky classification. Using [11], we obtain a weak form of Zelevinsky classi-
fication for unramified representations. We first define negative and strongly negative genuine irreducible
unramified representations of the metaplectic group. For a character χ of F×, let e(χ) be the real number
such that χ = νe(χ)χu, where χu is a unitary character of F×. Let σ be a genuine irreducible unramified

representation of ˜Sp(n, F ). We call σ negative if for every embedding of form σ ↪→ χ1χψ × · · · ×χnχψ oω0,
where χ1, . . . , χn are characters of F×, we have

e(χ1) ≤ 0

e(χ1) + e(χ2) ≤ 0

. . .

e(χ1) + · · ·+ e(χn) ≤ 0.

If above inequalities are strict, σ is said to be strongly negative. We classify genuine irreducible unramified
representations of the metaplectic group in terms of negative ones.

Theorem 3.6. Let σ be a genuine irreducible unramified representation of ˜Sp(n, F ). Then, either σ is
negative, or there exist k ∈ Z>0, αi, βi ∈ R such that αi − βi, αi + βi + 1 ∈ Z>0, unitary unramified
characters χi of F

×, i = 1, . . . , k, and a genuine unramified irreducible negative representation σneg of the
metaplectic group such that

(1) σ ↪→ ζ(−β1, α1, χψχ1)× · · · × ζ(−βk, αk, χψχk)o σneg as unique irreducible subrepresentation, and
(2) ζ(−β1, α1, χψχ1)× · · · × ζ(−βk, αk, χψχk) is irreducible.

Data ζ(−β1, α1, χψχ1),. . . , ζ(−βk, αk, χψχk) are unique up to permutation, while σneg is unique up to iso-
morphism.

Proof. By Lemma 3.3, all representations that participate in Zelevinsky classification (cf. [11, Thms. 4.6
and 4.7]) are unramified, and thus, described in Theorems 3.1 and 3.2. Reducibility of the representation
ζ(−β1, α1, χψχ1)× · · ·× ζ(−βk, αk, χψχk) is not possible, because by Theorem 3.1 and Lemmas 3.4 and 2.1,
Zelevinsky data would change. �
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3.4. Negative representations. Having proved the weak form of Zelevinsky classification, we are ready
to describe negative representations in terms of strongly negative ones.

Theorem 3.7. Let σ be a genuine irreducible unramified negative representation of ˜Sp(n, F ). Then, either
σ is strongly negative, or there exist k ∈ Z>0, unramified unitary characters χ1, . . . , χk of F×, βi ∈ R such
that 2βi + 1 ∈ Z>0, i = 1, . . . , k, and a genuine irreducible unramified strongly negative representation σsn
of the metaplectic group such that

σ ↪→ ζ(−β1, β1, χψχ1)× · · · × ζ(−βk, βk, χψχn)o σsn.

Data ζ(−β1, β1, χψχ1), . . . , ζ(−βk, βk, χψχk) are unique up to permutation and replacing χi with χ
−1
i , while

σsn is unique up to isomorphism.

Proof. Unless σ is strongly negative, there exist unramified characters χ1, . . . , χn of F× and an integer
1 ≤ t ≤ n such that Jacq(1,...,1;0)(σ) ≥ χψχ1 ⊗ · · · ⊗ χψχn ⊗ ω0 and e(χ1) + · · · + e(χt) = 0. Since a
cuspidal subquotient of an admissible representation is a quotient, using Frobenius reciprocity we have
σ ↪→ χψχ1 × · · · × χψχn o ω0. Let σ0 be an irreducible unramified subquotient of χψχt+1 × · · · × χψχn o ω0

if n ≥ 2, or else ω0. By lemma 3.4, σ ↪→ χψχ1 × · · · × χψχt o σ0. Thus σ0 must be negative. Classifying
unramified irreducible subquotient of χψχ1 × · · · × χψχt by Theorem 3.1 and using Lemma 3.4, we obtain:

σ ↪→ ζ(−β1, α1, χψχ
u
1 )× · · · × ζ(−βk, αk, χψχuk)o σ0.

Since ζ(−βi, αi, χψχui )×ζ(−βj , αj , χψχuj ) commute for i, j = 1, . . . , k, σ is negative and e(χ1)+· · ·+e(χt) = 0,
we must have αi = βi, i = 1, . . . , k. Thus, using Lemma 3.4 the proof is obtained by induction, with
uniqueness of the classifying data proven in the next lemma. �

Lemma 3.8. (1) Let l ∈ 1
2Z≥0, χ a unitary unramified character of F× and σ a genuine irreducible

unramified negative representation of ˜Sp(n, F ). Then, the irreducible unramified subquotient of
ζ(−l, l, χψχ)o σ is negative.

(2) Let l1, . . . , lk ∈ 1
2Z≥0, χ1, . . . , χk unitary unramified characters of F× and σ a genuine irreducible

unramified strongly negative representation of ˜Sp(n, F ). Then, the irreducible unramified subquotient
τ of ζ(−l1, l1, χψχ1) × · · · × ζ(−lk, lk, χψχk) o σ is a subrepresentation and negative. Given τ ,
representations ζ(−l1, l1, χψχ1), . . . , ζ(−lk, lk, χψχk) are determined up to permutation and replacing

χi with χ
−1
i , while σ is determined up to isomorphism.

Proof. (1) Let τ be the unramified irreducible subquotient of ζ(−l, l, χψχ) o σ. Unless τ is negative,
by Theorem 3.6 and Lemma 3.4, there exist α, β ∈ R such that α + β ∈ Z≥0, −β + α > 0, there
exists a unitary unramified character χ1 of F×, and a genuine irreducible unramified representation
σ′ of the metaplectic group, such that τ ↪→ ζ(−β, α, χψχ1) o σ′. Thus, ζ(−β, α, χψχ1) ⊗ σ′ ≤
µ∗(τ) ≤ µ∗(ζ(−l, l, χψχ) o σ). By formula (2.5) there exist 0 ≤ j ≤ i ≤ 2l + 1 and an irreducible
representation ζ1 ⊗ σ1 ≤ µ∗(σ) such that

ζ(−β, α, χψχ1)⊗ σ′ ≤ ζ(−l, l − i, χψχ
−1)× ζ(−l, j − l − 1, χψχ)× ζ1 ⊗ ζ(j − l, i− l − 1, χψχ)o σ1.

We compare the cuspidal support to the left of ⊗. Since a cuspidal subquotient of a Jacquet module
is a quotient, as used in Theorem 3.7, and σ is negative, sum of exponents of ν contained in ζ1 cannot
be positive, and the same for ζ(−l, l− i, χψχ

−1) and ζ(−l, j − l− 1, χψχ). The sum of exponents of
ν in ζ(−β, α, χψχ1) is positive. We have a contradiction.

(2) The first claim shows that τ is negative, so by Theorem 3.7, there exist t1, . . . , tr ∈ Z≥0, unitary un-
ramified characters χ′

1, . . . , χ
′
r of F

× and σs a genuine, irreducible, unramified and strongly negative
representation, such that τ ↪→ ζ(−t1, t1, χψχ′

1)× · · · × ζ(−tr, tr, χψχ′
r)o σs. Thus

ζ(−t1, t1, χψχ′
1)× · · · × ζ(−tr, tr, χψχ′

r)⊗ σs ≤ µ∗(ζ(−l1, l1, χψχ1)× · · · × ζ(−lk, lk, χψχk)o σ).
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By formula (2.5), there exist 0 ≤ jm ≤ im ≤ 2lm+1, m = 1, . . . , k, and an irreducible representation
ζ1 ⊗ σ1 ≤ µ∗(σ) such that

ζ(−t1, t1, χψχ′
1)× · · · × ζ(−tr, tr, χψχ′

r)⊗ σs ≤
ζ(−l1, l1 − i1, χψχ

−1
1 )× ζ(−l1, j1 − l1 − 1, χψχ1)× · · · × ζ(−lk, lk − ik, χψχ

−1
k )×

ζ(−lk, jk − lk − 1, χψχk)× ζ1⊗
ζ(j1 − l1, i1 − l1 − 1, χψχ1)× · · · × ζ(jk − lk, ik − lk − 1, χψχk)o σ1.

We compare the cuspidal support to the left of ⊗. Because σ is negative and the sum of exponents
of ν on the left hand side is 0, we must have ζ1 = χψ1, im = jm = 0 or 2lm + 1, m = 1, . . . , k. Thus

ζ(−t1, t1, χψχ′
1) × · · · × ζ(−tr, tr, χψχ′

r) = ζ(−l1, l1, χψχ±1
1 ) × · · · × ζ(−lk, lk, χψχ±1

k ) and σs ∼= σ.
Comparing the largest segments yields the claim.

�

4. Unramified strongly negative representations

In this section we classify genuine irreducible unramified strongly negative representations of the meta-
plectic group in terms of Jordan blocks.

4.1. Jordan blocks. Let χ0 = νπ
√
−1/ ln q be the unique unramified character of order two, and 1 the trivial

character of F×. Jordan block is a pair (m,χψχ), where m is a positive integer and χ ∈ {1, χ0}. Jord is a
set built of Jordan blocks. Given χ ∈ {1, χ0} we denote Jord(χψχ) = {m | (m,χψχ) ∈ Jord}. Let k, l ∈ Z≥0

and

Jord(χψ) = {2m1 + 1 < 2m2 + 1 < · · · < 2ml + 1}, mi ∈
1

2
+ Z≥0, i = 1, . . . , l,

Jord(χψχ0) = {2n1 + 1 < 2n2 + 1 < · · · < 2nk + 1}, nj ∈
1

2
+ Z≥0, j = 1, . . . , k.

We denote by σ(Jord) the unique unramified irreducible subquotient (cf. Theorem 3.2 and [8]) of the induced
representation

ζ(−ml−1,ml, χψ)× ζ(−ml−3,ml−2, χψ)× · · · × ζ(−nk−1, nk, χψχ0)

×ζ(−nk−3, nk−2, χψχ0)× · · ·o σ0(Jord),

where σ0(Jord) is the unique unramified irreducible subquotient of

ζ(
1

2
,m1, χψ)× ζ(

1

2
, n1, χψχ0)o ω0 if k, l ∈ 2Z+ 1,

ζ(
1

2
,m1, χψ)o ω0 if k ∈ 2Z, l ∈ 2Z+ 1,

ζ(
1

2
, n1, χψχ0)o ω0 if k ∈ 2Z+ 1, l ∈ 2Z,

ω0 if k, l ∈ 2Z.

When k = l = 0, we have Jord = ∅, and σ(Jord) = ω0, which is by definition strongly negative.
For n ∈ Z≥0, we denote by Jord(n) set of all Jord, such that∑

(m,χψχ)∈Jord

m = 2n.

So, given Jord ∈ Jord(n), σ(Jord) is a representation of ˜Sp(n, F )
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4.2. Construction of unramified strongly negative representations. We begin with two simple cases
of unramified strongly negative representations in the following two lemmas.

Lemma 4.1. Let χ ∈ {1, χ0}, α ∈ 1
2 + Z≥0. Let σα be the unique irreducible unramified subquotient of

ζ( 12 , α, χψχ)o ω0, and put σ− 1
2
= ω0. The representation σα is strongly negative, and

µ∗(σα) =

α+ 1
2∑

i=0

ζ(−α,−1

2
− i, χψχ)⊗ σi− 1

2
,(4.1)

σα ↪→ ζ(−α,−1

2
, χψχ)o ω0,(4.2)

r(1,...,1;0)(σα) = χψν
−αχ⊗ χψν

−α+1 ⊗ · · · ⊗ χψν
− 1

2 ⊗ ω0(4.3)

Proof. We use induction on α. Case α = 1
2 follows from (2.5) and Theorem A.1. As induction hypothesis,

assume that claims are valid for α′ ∈ 1
2 + Z≥0 such that 1

2 ≤ α′ < α. We must prove that they are

valid for α. Compare χψν
−αχ o σα−1 and ζ( 12 , α, χψχ) o ω0. As both are subquotients of χψν

1
2χ × · · · ×

χψν
α−1χ×χψναχoω0, the K-fixed subquotient σα appears in both. In the minimal Jacquet module, using

the induction hypothesis and (2.5), one has

s.s.r(1,...,1;0)(χψν
−αχo σα−1) =χψν

−αχ⊗ χψν
−α+1χ⊗ · · · ⊗ χψν

− 1
2χ⊗ ω0

+ additional terms, all having χψν
− 1

2χ

and

s.s.r(1,...,1;0)(ζ(
1

2
, α, χψχ)o ω0) =χψν

−αχ⊗ χψν
−α+1χ⊗ · · · ⊗ χψν

− 1
2χ⊗ ω0

+ additional terms, all having χψν
1
2χ

Thus r(1,...,1;0)(σα) = χψν
−αχ⊗ χψν

−α+1χ⊗ · · · ⊗ χψν
− 1

2χ⊗ ω0, that is, we proved (4.3). Using Frobenius

reciprocity, we have σα ↪→ χψν
−αχ×χψν−α+1χ×· · ·×χψν−

1
2χoω0. Now (4.2) is a consequence of Theorem

3.1 and Lemma 3.4. To prove (4.1), we use the transitivity of the Jacquet module, (4.3) and Lemma 2.1. �

Lemma 4.2. Let α, α′ ∈ − 1
2 + Z≥0, let σα,α′ be the unramified irreducible subquotient of ζ( 12 , α, χψ) ×

ζ( 12 , α
′, χψχ0) o ω0, let σα be the unramified irreducible subquotient of ζ( 12 , α, χψ) o ω0, and let σ′

α′ be

the unramified irreducible subquotient of ζ( 12 , α
′, χψχ0) o ω0. Then σα,α′ ≤ ζ( 12 , α, χψ) o σ′

α′ , and σα,α′ ≤
ζ( 12 , α

′, χψχ0)o σα. The representation σα,α′ is strongly negative, and

(4.4) µ∗(σα,α′) =

α+ 1
2∑

i=0

α′+ 1
2∑

i′=0

ζ(−α,−1

2
− i, χψ)× ζ(−α′,−1

2
− i′, χψχ0)⊗ σi− 1

2 ,i
′− 1

2
,

(4.5) σα,α′ ↪→ ζ(−α,−1

2
, χψ)× ζ(−α′,−1

2
, χψχ0)o ω0.

Proof. Lemma 3.3 implies σα,α′ ≤ ζ( 12 , α, χψ)o σ′
α′ and σα,α′ ≤ ζ( 12 , α

′, χψχ0)o σα. We prove by induction

on α + α′ that, for an irreducible representation σ, if σ ≤ ζ( 12 , α, χψ) o σ′
α′ and σ ≤ ζ( 12 , α

′, χψχ0) o σα,
then σ ∼= σα,α′ .



12 IGOR CIGANOVIĆ AND NEVEN GRBAC

Claims are valid if α = − 1
2 or α′ = − 1

2 by Lemma 4.1. Let n ∈ Z>0 and assume that the lemma holds
for α+ α′ < n. Let α+ α′ = n. From Lemma 4.1 and (2.5) we have

µ∗(σ) ≤ µ∗(ζ(
1

2
, α, χψ)o σ′

α′) =

α′+ 1
2∑

i′=0

α+ 1
2∑

i=0

i∑
j=0

ζ(−α,−1

2
− i, χψ)× ζ(

1

2
, j − 1

2
, χψ)× ζ(−α′,−1

2
− i′, χψχ0)⊗ ζ(j +

1

2
, i− 1

2
, χψ)o σ′

i′− 1
2

µ∗(σ) ≤ µ∗(ζ(
1

2
, α′, χψχ0)o σα) =

α+ 1
2∑

i=0

α′+ 1
2∑

i′=0

i′∑
j′=0

ζ(−α′,−1

2
− i′, χψχ0)× ζ(

1

2
, j′ − 1

2
, χψχ0)× ζ(−α,−1

2
− i, χψ)⊗ ζ(j′ +

1

2
, i′ − 1

2
, χψχ0)o σi− 1

2
.

Since in the first formula positive powers of ν before ⊗ appear with χψ1, and in the second with χψχ0, we
should keep only terms with j = j′ = 0. Thus,

µ∗(σ) ≤
α+ 1

2∑
i=0

α′+ 1
2∑

i′=0

ζ(−α′,−1

2
− i′, χψχ0)× ζ(−α,−1

2
− i, χψ)⊗ ζ(

1

2
, i− 1

2
, χψ)o σ′

i′− 1
2
.

µ∗(σ) ≤
α+ 1

2∑
i=0

α′+ 1
2∑

i′=0

ζ(−α′,−1

2
− i′, χψχ0)× ζ(−α,−1

2
− i, χψ)⊗ ζ(

1

2
, i′ − 1

2
, χψχ0)o σi− 1

2
.

Induction hypothesis implies

µ∗(σ) ≤ χψ1⊗ σ +
∑

0≤i+i′<α+α′+1

ζ(−α,−1

2
− i, χψ)× ζ(−α′,−1

2
− i′, χψχ0)⊗ σi− 1

2 ,i
′− 1

2
.

We see that r(n;0)(σ) ∼= ζ(−α,−1
2 , χψ) × ζ(−α′,−1

2 , χψχ0) ⊗ ω0 and it is easy to prove that this appears

with multiplicity one in µ∗(ζ(−α,−1
2 , χψ)× ζ(−α′,− 1

2 , χψχ0)o ω0). Hence, σ is uniquely determined, and
thus σ ∼= σα,α′ . Looking at the cuspidal support of r(n;0)(σ), we see that σα,α′ is strongly negative. Let

i = 0, . . . , α+ 1
2 , i

′ = 0, . . . , α′ + 1
2 . Frobenius reciprocity and Lemma 3.4 imply

σα,α′ ↪→ ζ(−α,−1

2
, χψ)× ζ(−α′,−1

2
, χψχ0)o ω0 ↪→

ζ(−α,−1

2
− i, χψ)× ζ(

1

2
− i,−1

2
, χψ)× ζ(−α′,−1

2
− i′, χψχ0)× ζ(

1

2
− i′,−1

2
, χψχ0)o ω0

∼=

ζ(−α,−1

2
− i, χψ)× ζ(−α′,−1

2
− i′, χψχ0)× ζ(

1

2
− i,−1

2
, χψ)× ζ(

1

2
− i′,−1

2
, χψχ0)o ω0,

and therefore

σα,α′ ↪→ ζ(−α,−1

2
− i, χψ)× ζ(−α′,−1

2
− i′, χψχ0)o σi− 1

2 ,i
′− 1

2

µ∗(σα,α′) ≥ ζ(−α,−1

2
− i, χψ)× ζ(−α′,−1

2
− i′, χψχ0)⊗ σi− 1

2 ,i
′− 1

2
,

proving (4.4) and (4.5). �

The following lemma is crucial in showing that σ(Jord) are strongly negative and that they exhaust all
such representations.

Lemma 4.3. Let σ be a genuine irreducible unramified strongly negative representation of ˜Sp(n, F ).
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(1) Then there exists an unramified unitary character χ of F×, there exist α, β ∈ R such that α + β ∈
Z≥0, and there exists an irreducible unramified representation σ′ of the metaplectic group such that
σ ↪→ ζ(−β, α, χψχ)o σ′. Also α− β < 0 and ζ(−β, α, χψχ)o σ′ reduces. If α is the largest possible
for such embedding, then σ′ is strongly negative.

(2) Let β be the maximum of |e(χ′)| over all χψχ
′ in the cuspidal support of σ, achieved for ν±βχψχ,

where χ is a unitary character of F×. Then there exist α ∈ R such that α + β ∈ Z≥0, and there
exists an irreducible unramified representation σ′ of the metaplectic group, such that

σ ↪→ ζ(−β, α, χψχ)o σ′.

Proof. We first prove (1). Write the cuspidal support so that σ ↪→ νk1χψχ1 × · · · × νknχψχn o ω0. Note
that ζ(k1, k1, χψχ1) ∼= νk1χψχ1. If n > 1, we use Lemma 3.4 to take the unramified irreducible subquotient
σ′ of νk2χψχ2 × · · · × νknχψχn o ω0, and get an embedding of the required form.

Strong negativity of σ and Frobenius reciprocity imply −β+α < 0 and reducibility of ζ(−β, α, χψχ)oσ′,
since otherwise, by (2.7), σ ↪→ ζ(−β, α, χψχ) o σ′ ∼= ζ(−α, β, χψχ−1) o σ′, contradicting strong negativity
of σ. Let α be the largest possible with such embedding. Assume that σ′ is not strongly negative. By
Theorems 3.6 and 3.7 and Lemma 3.4, there exists a unitary unramified character χ′ of F×, there exist
α′, β′ ∈ R with α′ + β′ ∈ Z≥0 and α′ − β′ ≥ 0, and there exists an irreducible representation σ′′, such that
σ′ ↪→ ζ(−β′, α′, χψχ

′)o σ′′. There is a nontrivial intertwining

σ ↪→ ζ(−β, α, χψχ)× ζ(−β′, α′, χψχ
′)o σ′′ → ζ(−β′, α′, χψχ

′)× ζ(−β, α, χψχ)o σ′′.

Because α′ − β′ ≥ 0 and σ is strongly negative, σ must be in the kernel of the second map. Thus,
ζ(−β, α, χψχ) × ζ(−β′, α′, χψχ

′) reduces, and by Lemma 2.1, χ = χ′, α − α′ ∈ Z. Lemma 3.4 implies
σ ↪→ ζ(−β, α′, χψχ) × ζ(−β′, α, χψχ) o σ′′. But the maximality of α and Lemma 3.4 imply −β′ + α′ <
−β + α < 0, a contradiction. Thus σ′ is strongly negative.

Now we prove (2). Write the cuspidal support of σ so that σ ↪→ χψχ
′
1×· · ·×χψχ′

noω0. By Theorem 3.1, let
ζ(−β1, α1, χψχ1)× · · · × ζ(−βk, αk, χψχk) be the irreducible unramified subquotient of χψχ

′
1 × · · · × χψχ

′
n,

where k is an integer, αi, βi ∈ R with αi + βi ∈ Z>0 and χi are unitary unramified characters of F×,
i = 1, . . . , k. By Lemma 3.4,

σ ↪→ ζ(−β1, α1, χψχ1)× · · · × ζ(−βk, αk, χψχk)o ω0.

Because Zelevinsky segment representations commute and σ is strongly negative, Lemma 2.1 gives −β ∈
{−β1, . . . ,−βk}. Again, Lemma 3.4 finishes the proof. �

Now we are ready to prove that all σ(Jord), defined in Sect. 4.1, are strongly negative.

Theorem 4.4. The representation σ(Jord), attached to a set Jord of Jordan blocks, is strongly negative,
and we have

σ(Jord) ↪→ζ(−ml,ml−1, χψ)× ζ(−ml−2,ml−3, χψ)×
· · · × ζ(−nk, nk−1, χψχ0)× ζ(−nk−2, nk−3, χψχ0)× · · ·o σ0(Jord).

(4.6)

If χ ∈ {1, χ0} and card(Jord(χψχ)) ≥ 2, let 2β + 1 > 2α + 1 be two largest elements in Jord(χψχ). Put
Jord′ = Jord\{(2β + 1, χψχ), (2α+ 1, χψχ)} and σ′ = σ(Jord′), σ = σ(Jord). Then:

(4.7) σ ↪→ ζ(−β, α, χψχ)o σ′.

Proof. We use induction on card(Jord). If (l, k) = (0, 0), then ω0 is by definition strongly negative. Lemmas
4.1 and 4.2 prove cases (0, 1), (1, 0) and (1, 1). Let t ≥ 2 be an integer. Suppose that claims are valid for Jord
with less than t elements. Take Jord such that l+ k = t. Since (l, k) = (1, 1) is settled, we may assume that
there exists χ ∈ {1, χ0} such that card(Jord(χψχ)) ≥ 2. Let σ, σ′, α, β be as in the theorem. Comparing
the cuspidal support, and using the uniqueness of irreducible unramified subquotient, we have

σ ≤ ζ(−β, α, χψχ)o σ′.
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By induction hypothesis σ′ is strongly negative.
First, we shall prove that σ is strongly negative. Assume that σ is negative but not strongly negative.

By Theorem 3.7 and Lemma 3.4 there exist 2m ∈ Z≥0, an unramified unitary character χ′ of F×, and an
irreducible unramified negative representation σ′′, such that σ ↪→ ζ(−m,m,χψχ′)oσ′′. Frobenius reciprocity
implies ζ(−m,m,χψχ′)⊗ σ′′ ≤ µ∗(σ) ≤ µ∗(ζ(−β, α, χψχ)o σ′). By (2.5), there exist 0 ≤ j ≤ i ≤ α+ β + 1
and an irreducible representation ζ ⊗ σ′

1 ≤ µ∗(σ′) such that

ζ(−m,m,χψχ′)⊗ σ′′ ≤ ζ(−α, β − i, χψχ)× ζ(−β, j − β − 1, χψχ)× ζ ⊗ ζ(j − β, i− β − 1, χψχ)o σ′
1

Cuspidal support of σ does not contain ν±γχψχ twice, for γ ∈ α+Z>0. Hence j = 0. Because σ′ is strongly
negative, if ζ ̸= χψ1, it has a negative sum of powers of ν. Thus we must have −m = −α,m = β − i, ζ =
χψ1 and χ = χ′. Now σ′

1 = σ′ and

(4.8) σ′′ ≤ ζ(−β,−α− 1, χψχ)o σ′.

Let us show that the representation on the right hand side is irreducible. There exist an integer h, characters
χ1, . . . , χh ∈ {1, χ0} and r1, . . . , rh ∈ R with |rs| < α if χs = χ, s = 1, . . . , h, such that

σ′ ↪→ νr1χψχ1 × · · · × νrhχψχh o ω0.

By Lemma 2.1, representations ζ(−β,−α− 1, χψχ)× νrsχψχs and ζ(α+ 1, β, χψχ)× νrsχψχs, s = 1, . . . , h
are irreducible. By Theorems A.1 and A.7, ζ(−β,−α − 1, χψχ) o ω0 is also irreducible. Using Lemma 2.1
and (2.7), we have

ζ(α+ 1, β, χψχ)o σ′ ↪→ ζ(α+ 1, β, χψχ)× νr1χψχ1 × · · · × νrhχψχh o ω0
∼=

νr1χψχ1 × · · · × νrhχψχh × ζ(α+ 1, β, χψχ)o ω0
∼= νr1χψχ1 × · · · × νrhχψχh × ζ(−β,−α− 1, χψχ)o ω0

∼= ζ(−β,−α− 1, χψχ)× νr1χψχ1 × · · · × νrhχψχh o ω0.

Now,

(4.9) ζ(α+ 1, β, χψχ)o σ′ ↪→ ζ(−β,−α− 1, χψχ)× νr1χψχ1 × · · · × νrhχψχh o ω0.

(4.10) ζ(−β,−α− 1, χψχ)o σ′ ↪→ ζ(−β,−α− 1, χψχ)× νr1χψχ1 × · · · × νrhχψχh o ω0.

By Theorem 3.2, the representations in (4.9) and (4.10) have the same unramified irreducible subquotient,
so images of embeddings have a nontrivial intersection. By [11, Thm. 4.6], ζ(α + 1, β, χψχ) o σ′ has a
unique irreducible subrepresentation and it appears with multiplicity one, but at the same time, by [15,
Lemma 3.1], it is a quotient in ζ(−β,−α − 1, χψχ) o σ′. Thus ζ(α + 1, β, χψχ) o σ′ is irreducible and
ζ(−β,−α − 1, χψχ)o σ′ ∼= ζ(α + 1, β, χψχ)o σ′ contradicts negativity of σ′′. Thus, we have shown that σ
cannot be negative, but not strongly negative.

Now, assume that σ is not negative. By Theorem 3.6, there exist an irreducible negative representation
σneg, an integer h and χi ∈ {1, χ0}, for i = 1, . . . , h, and there exist αi, βi ∈ R such that αi − βi ∈ Z>0,
αi + βi ∈ Z≥0, and ζ(−β1, α1, χψχ1)× · · · × ζ(−βh, αh, χψχh) is irreducible and

(4.11) σ ↪→ ζ(−β1, α1, χψχ1)× · · · × ζ(−βh, αh, χψχh)o σneg.

Frobenius reciprocity gives ζ(−β1, α1, χψχ1)× · · · × ζ(−βh, αh, χψχh)⊗ σneg ≤ µ∗(ζ(−β, α, χψχ)o σ′). By
(2.5), there exist 0 ≤ j ≤ i ≤ α+ β + 1 and an irreducible representation ζ ⊗ σ′

1 ≤ µ∗(σ′) for which

ζ(−β1, α1, χψχ1)× · · · × ζ(−βh, αh, χψχh)⊗ σneg ≤
ζ(−α, β − i, χψχ)× ζ(−β, j − β − 1, χψχ)× ζ ⊗ ζ(j − β, i− β − 1, χψχ)o σ′

1

Because of the cuspidal support of σ′ and αs − βs > 0, s = 1, . . . , h, we have j = 0 and

ζ(−β1, α1, χψχ1)× · · · × ζ(−βh, αh, χψχh)⊗ σneg ≤ ζ(−α, β − i, χψχ)× ζ ⊗ ζ(−β, i− β − 1, χψχ)o σ′
1.
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Since σ′ is strongly negative, ζ cannot have a positive sum of powers of ν. Thus β − i > α. But then
i−β−1 < −α−1 and if i > 0, exactly the same argument as after (4.8) proves that ζ(−β, i−β−1, χψχ)oσ′

1

is irreducible, contradicting negativity of σneg. Thus, i = 0.
Suppose ζ ̸= χψ1. Then ζ is unramified by Lemma 3.3, and by Theorem 3.1 there exists an integer h′,

and for s = 1, . . . , h′, there exist a unitary unramified character χ′
s of F

×, and α′
s, β

′
s ∈ R with α′

s + β′
s ≥ 0,

such that ζ ∼= ζ(−β′
1, α

′
1, χψχ

′
1) × · · · × ζ(−β′

h′ , α′
h′ , χψχ

′
h′). Comparing cuspidal supports, by Theorem

3.1, we see that ζ(−α, β, χψχ) × ζ is irreducible. Since ζ cannot produce positive sum of powers of ν and
αs − βs > 0, s = 1, . . . , h, using the uniqueness of classification from Theorem 3.1, we have a contradiction.

Thus i = j = h = 0, ζ = χψ1, σneg ∼= σ′
1
∼= σ′ and (4.11) becomes

(4.12) σ ↪→ ζ(−α, β, χψχ)o σ′.

The argument just after (4.8) again shows that ζ(−β,−α− 1, χψχ)o σ′ is irreducible, so

ζ(−α, β, χψχ)o σ′ ↪→ ζ(−α, α, χψχ)× ζ(α+ 1, β, χψχ)o σ′ ∼= ζ(−α, α, χψχ)× ζ(−β,−α− 1, χψχ)o σ′,

which together with (4.12) and Lemma 3.4 implies

(4.13) σ ↪→ ζ(−β, α, χψχ)o σ′.

By [11, Thm. 4.6] and (4.12), σ is the unique irreducible subrepresentation of ζ(−α, β, χψχ)oσ′ and appearing
with multiplicity one, but at the same time it is a quotient, due to (4.13) and [15, Lemma 3.1]. Thus, if
we prove that ζ(−α, β, χψχ)o σ′ reduces, it will give a contradiction and finish the proof that σ is strongly
negative.

To show that ζ(−β, α, χψχ)o σ′ reduces, we assume that χ = 1 and k − 2, l ≥ 3 are odd. Otherwise, the
proof goes in the same way, only the notation has to be changed.

It is easy to see that ζ(−α, α, χψ)⊗ ω0 appears with multiplicity two in µ∗(ζ(−α, α, χψ)o ω0), and since
admissible unitarizable representations are completely reducible, we can write

(4.14) ζ(−α, α, χψ)o ω0
∼= π1 ⊕ π2,

where π1 and π2 are irreducible and not isomorphic, and one of them must be unramified. Using induction
hypothesis, Lemmas 4.2, 4.1 and 2.1, we have

ζ(−β, α, χψ)o σ′ ↪→ ζ(−β,−α− 1, χψ)× ζ(−α, α, χψ)× σ′ ↪→

ζ(−β,−α− 1, χψ)× ζ(−ml−2,ml−3, χψ)× · · · × ζ(−m1,−
1

2
, χψ)×

ζ(−nk, nk−1, χψχ0)× · · · × ζ(−n1,−
1

2
, χψχ0)o (π1 ⊕ π2).

Let us denote

ρ ∼=ζ(−β,−α− 1, χψ)× ζ(−ml−2,ml−3, χψ)× · · · × ζ(−m1,−
1

2
, χψ)×

ζ(−nk, nk−1, χψχ0)× · · · × ζ(−n1,−
1

2
, χψχ0).

It is irreducible, and we have

ζ(−β, α, χψ)o σ′ ↪→ ρo π1 ⊕ ρo π2.

To prove that ζ(−β, α, χψ) o σ′ reduces, it is enough to see µ∗(ζ(−β, α, χψ) o σ′) ≥ ρ ⊗ π1 + ρ ⊗ π2,
µ∗(ρo π1) � ρ⊗ π2, and µ

∗(ρo π2) � ρ⊗ π1. First, by (2.5), we have

µ∗(ζ(−β, α, χψ)o σ′) =
∑

ζ⊗σ1≤µ∗(σ′)

α+β+1∑
i=0

i∑
j=0

ζ(−α, β − i, χψ)

× ζ(−β,−β − 1 + j, χψ)× ζ ⊗ ζ(−β + j,−β − 1 + i, χψ)o σ1

(4.15)
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By induction hypothesis, Lemma 2.1 and Frobenius reciprocity, we have

µ∗(σ′) ≥ζ(−ml−2,ml−3, χψ)× · · · × ζ(−l1,−
1

2
, χψ)×

ζ(−nk, nk−1, χψχ0)× ζ(−nk−2, nk−3, χψχ0)× · · · × ζ(−k1,−
1

2
, χψχ0)⊗ ω0.

(4.16)

Picking i = α+ β + 1 and j = β − α in (4.15), and using (4.14) and (4.16), we have

µ∗(ζ(−β, α, χψ)o σ′) ≥ ρ⊗ π1 + ρ⊗ π2.

We now show that µ∗(ρo π1) � ρ⊗ π2. Suppose the contrary, and apply (2.5) to ρo π1. There exist an
irreducible representation ζ ⊗ σ1 ≤ µ∗(π1) and indices

0 ≤ j ≤ i ≤ −α+ β, 0 ≤ jl−2 ≤ il−2 ≤ ml−3 +ml−2 + 1, . . . , 0 ≤ j1 ≤ i1 ≤ m1 +
1

2
,

0 ≤ j′k ≤ i′k ≤ nk−1 + nk + 1, . . . , 0 ≤ j′1 ≤ i′1 ≤ n1 +
1

2
,

such that

ζ(−β,−α− 1, χψ)× ζ(−ml−2,ml−3, χψ)× · · · × ζ(−m1,−
1

2
, χψ)×

ζ(−nk, nk−1, χψχ0)× ζ(−nk−2, nk−3, χψχ0)× · · · × ζ(−n1,−
1

2
, χψχ0)⊗ π2

≤
ζ(α+ 1, β − i, χψ)× ζ(−β,−β − 1 + j, χψ)×
ζ(−ml−3,ml−2 − il−2, χψ)× ζ(−ml−2,−ml−2 − 1 + jl−2, χψ)×
. . .

ζ(
1

2
,m1 − i1, χψ)× ζ(−m1,−m1 − 1 + j1, χψ)×

ζ(−nk−1, nk − i′k, χψχ0)× ζ(−nk,−nk − 1 + j′k, χψχ0)×
. . .

ζ(
1

2
, n1 − i′1, χψχ0)× ζ(−n1,−n1 − 1 + j′1, χψχ0)× ζ

⊗
ζ(−β + j,−β − 1 + i, χψ)×
ζ(−ml−2 + jl−2,−ml−2 − 1 + il−2, χψ)× · · · × ζ(−m1 + j1,−m1 − 1 + i1, χψ)×
ζ(−nk + j′k,−nk − 1 + i′k, χψχ0)× · · · × ζ(−n1 + j′1,−n1 − 1 + i′1, χψχ0)o σ1.

Comparing cuspidal supports, we see that the cuspidal support of ζ cannot contain ν−αχψ, and

µ∗(π1 + π2) = µ∗(ζ(−α, α, χψ)o ω0) =

2α+1∑
u=0

u∑
v=0

ζ(−α, α− u, χψ)× ζ(−α,−α− 1 + v, χψ)⊗ ζ(−α+ v,−α− 1 + u, χψ)o ω0

implies ζ ∼= χψ1, so σ1 ∼= π1. As π1 and π2 have the same cuspidal support, we must have

j = i, jl−2 = il−2, , . . . , j1 = i1, j
′
k = i′k, , . . . , j

′
1 = i′1

and π1 ∼= π2, a contradiction. Thus, we showed µ∗(ρo π1) � ρ⊗ π2. In the same way one gets µ∗(ρo π2) �
ρ⊗ π1. Thus ζ(−β, α, χψχ)o σ′ reduces. As we already explained this proves that σ is strongly negative.
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Now, we prove formula (4.7), that is, σ ↪→ ζ(−β, α, χψχ) o σ′, and (4.6) is a consequence, obtained
using induction hypothesis. Since σ is strongly negative, by Lemma 4.3 (2), there exist a real number α′,
α′ + β ∈ Z≥0, and an irreducible unramified representation σ′′, such that σ ↪→ ζ(−β, α′, χψχ) o σ′′. Take

α′ the largest possible, so σ′′ is strongly negative. The case α′ > α would imply that ν±α
′
χψχ appears

two times in the cuspidal support of σ, which is not possible. Hence, α′ ≤ α, and let σ′
n be the unramified

irreducible subquotient of ζ(−α, α, χψχ)o σ′. Suppose α′ < α. We have

σ′
n ≤ ζ(−α, α, χψχ)o σ′ ≤ ζ(−α, α′, χψχ)× ζ(α′ + 1, α, χψχ)o σ′.

Cuspidal support implies σ′′ ≤ ζ(α′ + 1, α, χψχ)o σ′. By Lemma 3.3, σ′
n ≤ ζ(−α, α′, χψχ)o σ′′. Now

σ ↪→ ζ(−β, α′, χψχ)o σ′′ ↪→ ζ(−β,−α− 1, χψχ)× ζ(−α, α′, χψχ)o σ′′

and therefore

σ ↪→ ζ(−β,−α− 1, χψχ)o σ′
n.

Lemma 3.8 implies σ′
n ↪→ ζ(−α, α, χψχ)o σ′. Thus

σ ↪→ ζ(−β,−α− 1, χψχ)× ζ(−α, α, χψχ)o σ′.

By Lemma 3.4, σ ↪→ ζ(−β, α, χψχ)o σ′. So α′ = α, proving (4.7) and (4.6). �

4.3. Classification of strongly negative unramified representations. We now prove that represen-
tations of Theorem 4.4 exhaust all genuine irreducible strongly negative unramified representations of the
metaplectic group. We first have a proposition.

Proposition 4.5. Let χ1 be an unramified unitary character of F× and α1, β1 ∈ R, such that α1+β1 ∈ Z≥0

and α1 − β1 > 0. Then

(1) Representation ζ(−β1, α1, χψχ1) o ω0 reduces if and only if νiχ1χψ o ω0 reduces for some i with
−β1 ≤ i ≤ α1 and α1 − i ∈ Z, i.e., χ1 ∈ {1, χ0}, −β1 ∈ 1

2 − Z≥0. If it reduces, the unique
subrepresentation is not unramified.

(2) Let σ = σα,α′ be as in Lemma 4.2. Then, representation ζ(−β1, α1, χψχ1)o σ reduces if and only if
one of the following five representations reduces

ζ(−β1, α1, χψχ1)× ζ(−α,−1

2
, χψ), ζ(−α1, β1, χψχ

−1
1 )× ζ(−α,−1

2
, χψ),

ζ(−β1, α1, χψχ1)× ζ(−α′,−1

2
, χψχ0), ζ(−α1, β1, χψχ

−1
1 )× ζ(−α′,−1

2
, χψχ0),

ζ(−β1, α1, χψχ1)o ω0.

If ζ(−β1, α1, χψχ1)o σ reduces, its unique subrepresentation is not unramified.
(3) Let σ(Jord) be as in Sect. 4.1. Then ζ(−β1, α1, χψχ1) o σ(Jord) reduces if and only if one of the

following representations reduces (i = l, l − 2, . . . , j = k, k − 2, . . . )

ζ(−β1, α1, χψχ1)× ζ(−mi,mi−1, χψ), ζ(−α1, β1, χψχ
−1
1 )× ζ(−mi,mi−1, χψ),

ζ(−β1, α1, χψχ1)× ζ(−nj , nj−1, χψχ0), ζ(−α1, β1, χψχ
−1
1 )× ζ(−nj , nj−1, χψ, χ0)

ζ(−β1, α1, χψχ1)o σ0(Jord).

If ζ(−β1, α1, χψχ1)o σ(Jord) reduces, its unique subrepresentation is not unramified.

Proof. (1) Theorems A.1 and A.7 solve reducibility. Theorem 4.4 shows that in case of reducibility, the
irreducible unramified subquotient is strongly negative, so cannot be a subrepresentation.

(2) Let all representations from the list be irreducible, and ζ = ζ(−α,−1
2 , χψ), ζ

′ = ζ(−α′,− 1
2 , χψχ0),

ζ1 = ζ(−β1, α1, χψχ1) and ζ2 = ζ(−α1, β1, χψχ
−1
1 ). By Lemma 4.2 and (2.7),

ζ1 o σ ↪→ ζ1 × ζ × ζ ′ o ω0
∼= ζ × ζ ′ × ζ1 o ω0

∼= ζ × ζ ′ × ζ2 o ω0
∼= ζ2 × ζ × ζ ′ o ω0, thus
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ζ(−β1, α1, χψχ1)o σ ↪→ ζ2 × ζ × ζ ′ o ω0,

ζ(−α1, β1, χψχ
−1
1 )o σ ↪→ ζ2 × ζ × ζ ′ o ω0.

Because of the uniqueness of the irreducible unramified subquotient, the intersection of images of
the embeddings is nontrivial. By [11, Thm. 4.6], ζ(−β1, α1, χψχ1) o σ has a unique irreducible
subrepresentation, appearing with multiplicity one in its composition series, but it is also a quotient
of ζ(−α1, β1, χψχ

−1
1 )o σ by [15, Lemma 3.1]. Thus, ζ(−β1, α1, χψχ1)o σ must be irreducible.

Let us suppose that one of the representations from the list reduces, and denote by τ the unramified
irreducible subquotient of ζ(−β1, α1, χψχ1) o σ. Whenever τ is negative, it cannot be the unique
subrepresentation of ζ(−β1, α1, χψχ1) o σ and thus this representation must reduce, proving the
claim. We use this argument repeatedly below.
(i) If ζ(−β1, α1, χψχ1) × ζ(−α,−1

2 , χψ) reduces, then χ1 = 1 and its unramified irreducible sub-

quotient is ζ(−α, α1, χψ)× ζ(−β1,− 1
2 , χψ). By Lemmas 2.1 and 3.3,

τ ≤ ζ(−α, α1, χψ)× ζ(−β1,−
1

2
, χψ)× ζ(−α′,−1

2
, χψχ0)o ω0,

τ ≤ ζ(−α, α1, χψ)o σβ1,α′ .

By Lemma 4.2, σβ1,α′ is negative. If α = α1, Lemma 3.8 implies that τ is negative. Else, α ̸= α1

and because of the reducibility −β1 = 1
2 or −α < −β1 ≤ − 1

2 . Together with −β1 + α1 > 0,
Lemmas 4.2 and 3.8, and Theorem 4.4 imply negativity of τ . Since τ is negative, it cannot
be the unique subrepresentation of ζ(−β1, α1, χψχ1) o σ, and thus, this representation must
reduce, proving the claim.

(ii) If ζ(−β1, α1, χψχ1)× ζ(−α′,−1
2 , χψχ0) reduces, the proof is the same as in (i).

(iii) If ζ(−α1, β1, χψχ
−1
1 )×ζ(−α,−1

2 , χψ) reduces, we may assume that ζ(−β1, α1, χψχ1)×ζ(−α,−1
2 , χψ)

is irreducible. Lemma 2.1 implies χ1 = 1, α + 1 ≥ −β1 > 1
2 , α1 > α. Because of (2.7) and

Lemmas 2.1, 3.3 and 4.2, we have

τ ≤ ζ(−α1,−
1

2
, χψ)× ζ(−α, β1, χψ)× ζ(−α′,−1

2
, χψχ0)o ω0,

τ ≤ ζ(−β1, α, χψ)o σα1,α′ .

If −β1 = α + 1, Lemma 4.2 implies negativity of τ . If −β1 = α, Lemma 3.8 implies nega-
tivity of τ . In both cases, because τ is negative, it cannot be the unique subrepresentation of
ζ(−β1, α1, χψχ1)o σ, and thus, this representation must reduce, proving the claim. Otherwise,
α > −β1 and for representation ζ(−β1, α, χψ) o σα1,α′ we have irreducibility of all represen-
tations listed in (2) (because α1 > α > −β1 > 1

2 ), and so it is irreducible, as we already
proved at the beginning. Thus, τ ∼= ζ(−β1, α, χψ) o σα1,α′ . But then, because of the unique-
ness of the Zelevinsky classification (Theorem 3.6) and α ̸= α1, τ is not a subrepresentation of
ζ(−β1, α1, χψχ1) o σ. Thus ζ(−β1, α1, χψχ1) o σ reduces and its unique subrepresentation is
not unramified.

(iv) If ζ(−α1, β1, χψχ
−1
1 )× ζ(−α′,−1

2 , χψχ0) reduces, the proof is the same as in (iii).
(v) If ζ(−β1, α1, χψχ1) o ω0 reduces, assume that all other representations from the list are irre-

ducible. We have χ1 ∈ {1, χ0}, and take χ1 = 1, the other case being the same.
If ζ(−α,−1

2 , χψ) = χψ1, then τ ≤ ζ(−α1, β1, χψ)× ζ(−α′,− 1
2 , χψχ0)oω0 and it is negative by

Theorem 4.4 or Lemma 4.2. Else, −β1 ≤ −α so α1 > α and

τ ≤ ζ(−α1, β1, χψ)× ζ(−α,−1

2
, χψ)× ζ(−α′,−1

2
, χψχ0)o ω0,
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If −β1 < −α, then τ is negative by Lemma 4.4. Otherwise, −β1 = −α and

τ ≤ ζ(−α1,−
1

2
, χψ)× ζ(

1

2
, α, χψ)× ζ(−α,−1

2
, χψ)× ζ(−α′,−1

2
, χψχ0)o ω0,

τ ≤ ζ(−α, α, χψ)× ζ(−α1,−
1

2
, χψ)× ζ(−α′,−1

2
, χψχ0)o ω0.

Now, Lemmas 3.8, 4.2 and 3.3 imply that τ is negative. In all cases, because τ is negative, it
cannot be the unique subrepresentation of ζ(−β1, α1, χψχ1) o σ and thus this representation
must reduce, proving the claim.

(3) We use induction on card(Jord). Case card(Jord) = 0 is trivial and card(Jord) = 1 is a consequence of
(1). Because of (2), we may assume that there exist χ ∈ {1, χ0} such that card(Jord(χψχ)) ≥ 2. Let
2β+1 > 2α+1 be two largest elements of Jord(χψχ). Put Jord

′ = Jord\{(2β+1, χψχ), (2α+1, χψχ)},
σ = σ(Jord) and σ′ = σ(Jord′). Note that β > α > 1

2 . Let τ be the unramified irreducible subquotient
of ζ(−β1, α1, χψχ1)oσ. By Theorem 4.4, ζ(−β1, α1, χψχ1)oσ ↪→ ζ(−β1, α1, χψχ1)×ζ(−β, α, χψχ)o
σ′.
(i) If ζ(−β1, α1, χψχ1)× ζ(−β, α, χψχ) reduces, then χ1 = χ, β > β1, α1 > α. Suppose

τ ↪→ ζ(−β1, α1, χψχ1)o σ.

Then, by Lemma 3.4 τ ↪→ ζ(−β, α1, χψχ) × ζ(−β1, α, χψχ) o σ′. If | − β1| ≥ α, τ is negative
by Theorem 4.4 and Lemma 3.8 (Lemma 3.8 applies if β = α1 or β1 = α). Thus, it cannot
be the unique subrepresentation of ζ(−β1, α1, χψχ1) o σ and this representation must reduce,
proving the claim. Else, | − β1| < α and by Theorem 4.4 and Lemma 3.8 (Lemma 3.8 applies
if β = α1) the irreducible unramified subquotient σ′′ of ζ(−β, α1, χψχ) o σ′ is negative. Now
we have τ ↪→ ζ(−β1, α, χψχ)o σ′′, a contradiction with the Zelevinsky classification (Theorem
3.6 and α1 ̸= α). Thus, τ is not a subrepresentation and ζ(−β1, α1, χψχ1)o σ reduces.

(ii) If ζ(−β1, α1, χψχ1)o σ′ reduces, by induction hypothesis χ1 ∈ {1, χ0} and β1 ∈ 1
2 +Z. Having

proved (i), we may also assume ζ(−β1, α1, χψχ1)× ζ(−β, α, χψχ) is irreducible. Thus
ζ(−β1, α1, χψχ1)o σ ↪→ ζ(−β, α, χψχ)× ζ(−β1, α1, χψχ1)o σ′.

Let π be the unique irreducible subrepresentation of ζ(−β1, α1, χψχ1) o σ′. By induction
hypothesis π is not unramified. If ζ(−β, α, χψχ) × ζ(−β1, α1, χψχ1) ⊗ σ′ appears with the
same multiplicity in µ∗(ζ(−β, α, χψχ)×ζ(−β1, α1, χψχ1)oσ′) and µ∗(ζ(−β, α, χψχ)oπ), then
ζ(−β1, α1, χψχ1)o σ reduces and τ is not a subrepresentation.
First, we calculate the multiplicity of ζ(−β, α, χψχ)× ζ(−β1, α1, χψχ1)⊗ σ′ in

µ∗(ζ(−β, α, χψχ) × ζ(−β1, α1, χψχ1) o σ′). By (2.5), there exist 0 ≤ j ≤ i ≤ α + β + 1,
0 ≤ j1 ≤ i1 ≤ α1 + β1 + 1 and an irreducible representation ζ1 ⊗ σ1 ≤ µ∗(σ′) such that

ζ(−β, α, χψχ)× ζ(−β1, α1, χψχ1)⊗ σ′ ≤
ζ(−α, β − i, χψχ)× ζ(−β, j − β − 1, χψχ)×
ζ(−α1, β1 − i1, χψχ1)× ζ(−β1, j1 − β1 − 1, χψχ1)× ζ1

⊗ ζ(j − β, i− β − 1, χψχ)× ζ(j1 − β1, i1 − β1 − 1, χψχ1)o σ1.

Note that the cuspidal support of ζ1 does not contain νkχψχ for |k| ≥ α.
If χ1 = χ, we have:

• If −β1 ≤ −β, then α < β ≤ β1 < α1, so i1 = j1 = α1 + β1 + 1. Now i = j = α+ β + 1 or
i = j = β − α and ζ1 = χψ1 and σ1 ∼= σ′.

• If α1 ≤ α, then |β1| < α1 ≤ α < β. Since ζ(−α1, β1 − i1, χψχ)× ζ(−β1, j1 − β1 − 1, χψχ)
cannot produce ναχψχ two times if α1 = α or once if α1 < α, we must have i = j =
α+ β +1 or i = β −α, and since ν−α−1χψχ cannot be obtained by a choice of i1 and j1,
we must have j = β − α. In both cases, because of −β1 + α1 > 0, ζ(−α1, β1 − i1, χψχ1)
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should not appear, so i1 = α1 + β1 + 1. As σ′ is strongly negative, ζ1 cannot have in
cuspidal support a positive sum of powers of ν. Thus j1 = α1+β1+1, ζ1 = χψ1, σ1 ∼= σ′.

• If −β1 > α + 1, we look how to get ναχψχ. One possibility is j = α + β + 1. Then
i = j, i1 = j1 = α1 + β1 + 1, ζ1 = χψ1 and σ1 ∼= σ′. Another possibility is i = β − α.
Since ν−α−1χψχ cannot be obtained by a choice of i1 and j1, we must have j = β − α,
i1 = j1 = α1 + β1 + 1, ζ1 = χψ1 and σ1 ∼= σ′.

If χ ̸= χ1, since ζ1 does not contain ναχψχ, we must have i = j = α+ β + 1 or i = j = β − α.
Because −β1 + α1 > 0, ζ(−α1, β1 − i1, χψχ1) cannot appear, and i1 = α1 + β1 + 1. As σ′ is
strongly negative, ζ1 cannot have in the cuspidal support a positive sum of powers of ν. Thus,
j1 = α1 + β1 + 1, ζ1 = χψ1 and σ1 ∼= σ′.
We proved that ζ(−β, α, χψχ)×ζ(−β1, α1, χψχ1)⊗σ′ appears in µ∗(ζ(−β, α, χψχ)×ζ(−β1, α1, χψχ1)o
σ′) two times.
Now we show that ζ(−β, α, χψχ)× ζ(−β1, α1, χψχ1)⊗ σ′ appears in µ∗(ζ(−β, α, χψχ)o π) at
least two times. Take ζ(−β1, α1, χψχ1)⊗ σ′ ≤ µ∗(π). Now

µ∗(ζ(−β, α, χψχ)o π) ≥
α+β+1∑
i=0

i∑
j=0

ζ(−α, β − i, χψχ)× ζ(−β, j − β − 1, χψχ)×

ζ(−β1, α1, χψχ1)⊗ ζ(j − β, i− β − 1, χψχ)o σ′.

Choices of indices i = j = α+ β + 1 and i = j = β − α prove the claim.
(iii) If ζ(−β, α, χψχ)×ζ(−α1, β1, χψχ

−1
1 ) reduces, we may assume that ζ(−β1, α1, χψχ1)×ζ(−β, α, χψχ)

and ζ(−β1, α1, χψχ1)o σ′ are irreducible. Now χ = χ1, −β1 > α+ 1, β1 ≥ −β − 1, −α1 < −β
and

ζ(−β1, α1, χψχ1)o σ ↪→ζ(−β1, α1, χψχ1)× ζ(−β, α, χψχ)o σ′

∼=ζ(−β, α, χψχ)× ζ(−β1, α1, χψχ1)o σ′

∼=ζ(−β, α, χψχ)× ζ(−α1, β1, χψχ1)o σ′.

If τ ↪→ ζ(−β1, α1, χψχ1)o σ, Lemma 3.4 implies

τ ↪→ ζ(−α1, α, χψχ)× ζ(−β, β1, χψχ)o σ′.

If ζ(−β, β1, χψχ) = χψ1, then τ is negative by Theorem 4.4, a contradiction. Otherwise, by
induction hypothesis, ζ(−β, β1, χψχ)o σ′ is irreducible, so

τ ↪→ ζ(−α1, α, χψχ)× ζ(−β1, β, χψχ)o σ′.

Because −β1 > α+ 1, ζ(−α1, α, χψχ)× ζ(−β1, β, χψχ) is irreducible, we have

τ ↪→ ζ(−β1, β, χψχ)× ζ(−α1, α, χψχ)o σ′.

Let σ′′ be the unramified irreducible subquotient of ζ(−α1, α, χψχ)o σ′. By Theorem 4.4, it is
strongly negative. Lemma 3.4 gives τ ↪→ ζ(−β1, β, χψχ) o σ′′, a contradiction with Theorem
3.6 (uniqueness of embedding).

(iv) If all representations from the list are irreducible, denote ζ = ζ(−β, α, χψ), ζ1 = ζ(−β1, α1, χψχ1)
and ζ2 = ζ(−α1, β1, χψχ

−1). Now

ζ1 o σ ↪→ ζ1 × ζ o σ′

ζ2 o σ ↪→ ζ2 × ζ o σ′ ∼= ζ × ζ2 o σ′ ∼= ζ × ζ1 o σ′ ∼= ζ1 × ζ o σ′.

By the uniqueness of the irreducible unramified subquotient, the intersection of the images of
embeddings is nontrivial. By [11, Thm. 4.6], ζ(−β1, α1, χψχ1) o σ has a unique irreducible
subrepresentation appearing with multiplicity one in the composition series, but it is also a
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quotient of ζ(−α1, β1, χψχ
−1
1 ) o σ, by [15, Lemma 3.1]. Thus, ζ(−β1, α1, χψχ1) o σ must be

irreducible.
�

For n ∈ Z≥0, let Irrgen,unr,sn( ˜Sp(n, F )) (resp., [Irrgen,unr,sn( ˜Sp(n, F ))]) be the set (resp., the set of

isomorphism classes) of genuine irreducible strongly negative unramified representations of ˜Sp(n, F ). Now
we finally prove their classification, up to isomorphism. Brackets [ ] are used to denote an isomorphism class.

Theorem 4.6. Let n ∈ Z≥0. The map given by the assignment Jord 7→ [σ(Jord)] is a bijection between

Jord(n) and [Irrgen,unr,sn( ˜Sp(n, F ))].

Proof. Injectivity is obvious. We prove surjectivity by induction on n. Case n = 0 is trivial. Let n ∈ Z>0,

and suppose that the claim is valid for all 0 ≤ m < n. Take σ ∈ Irrgen,unr,sn( ˜Sp(n, F )). Let β be the largest
such that ν±βχψχ is in cuspidal support of σ, where χ is a unitary character. As in Lemma 4.3, let α be
the largest such that there is an embedding σ ↪→ ζ(−β, α, χψχ) o σ′, where σ′ is irreducible. Lemma 4.3
implies that −β + α < 0, σ′ is strongly negative and ζ(−β, α, χψχ) o σ′ reduces. By induction hypothesis
and Proposition 4.5, we have σ′ = σ(Jord′), χ ∈ {1, χ0} and β ∈ 1

2 +Z. If Jord′(χψχ) = ∅, then, by Theorem
4.4,

σ = σ(Jord) for Jord = Jord′ ∪ {(2β + 1, χψχ), (2α+ 1, χψχ)}.
Otherwise, we show that α > |i| for every νiχψχ appearing in the cuspidal support of σ′. Let 2β′ + 1

be the largest in Jord′(χψχ), and 2α′ + 1 the second largest, if it exists, or else 2α′ + 1 = 0. Let Jord′′ =
Jord′\{(2β′ + 1, χψχ), (2α

′ + 1, χψχ)}. By Theorem 4.4

(4.17) σ ↪→ ζ(−β, α, χψχ)× ζ(−β′, α′, χψχ)o σ(Jord′′).

If β′ = β, then σ ↪→ ζ(−β′, α′, χψχ)× ζ(−β, α, χψχ)o σ(Jord′′). By Lemma 3.4 and the choice of α, we
have α ≥ α′(≥ − 1

2 ). Also σ ≤ ζ(−β′, β, χψχ) × ζ(−α, α′, χψχ) o σ(Jord′′). By Theorem 4.4 and Lemma

3.8, the irreducible unramified subquotient of ζ(−α, α′, χψχ)o σ(Jord′′) is negative, so, by Lemma 3.8, σ is
negative, but not strongly negative, a contradiction. Thus, β′ < β.

If β′ > α, we have several cases:

• If α′ > α, then ζ(−β, α, χψχ) × ζ(−β′, α′, χψχ) reduces. By Lemma 3.4, σ ↪→ ζ(−β, α′, χψχ) ×
ζ(−β′, α, χψχ)o σ(Jord′′). Lemma 3.4 gives a contradiction with the choice of α.

• If α > α′, then σ ≤ ζ(−β, β′, χψχ)× ζ(−α, α′, χψχ)o σ(Jord′′). By Theorem 4.4, σ embeds in this
product, and Lemma 3.4 gives a contradiction with the choice of α.

• If α = α′, then σ ≤ ζ(−α, α′, χψχ)× ζ(−β, β′, χψχ)o σ(Jord′′). By Theorem 4.4 and Lemma 3.8, σ
is negative, but not strongly negative, a contradiction.

So α ≥ β′. If α = β′, σ ≤ ζ(−β,−α− 1, χψχ)× ζ(−α, α, χψχ)× ζ(−α, α′, χψχ)o σ(Jord′′), and

σ ≤ ζ(−α, α, χψχ)× ζ(−β, α′, χψχ)o σ(Jord′′).

By Lemma 3.8 and Theorem 4.4, σ is not strongly negative, a contradiction. Thus, β > α > β′ > α′ and
σ ∼= σ(Jord) for Jord = Jord′ ∪ {(2β + 1, χψχ), (2α+ 1, χψχ)}. �

5. The Zelevinsky classification of unramified representations

We are finally ready to prove the strong form of the Zelevinsky classification of genuine unramified

irreducible representations of ˜Sp(n, F ). But first we need a lemma.

Lemma 5.1. Let χ, χ1, . . . , χt be unramified unitary characters of F×, α, β ∈ R such that α+ β + 1 ∈ Z>0

and −β + α > 0, and l1, . . . , lt ∈ 1
2Z≥0. Let σ′ be a genuine irreducible unramified strongly negative

representation of the metaplectic group and σ the irreducible unramified subquotient of ζ(−l1, l1, χψχ1) ×
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· · · × ζ(−lt, lt, χψχt)o σ′. Then ζ(−β, α, χψχ)o σ reduces if and only if one of the following representations
reduces (i = 1, . . . , t)

ζ(−β, α, χψχ)× ζ(−li, li, χψχi), ζ(−α, β, χψχ−1)× ζ(−li, li, χψχi), ζ(−β, α, χψχ)o σ′.

If ζ(−β, α, χψχ)o σ reduces, its unique subrepresentation is not unramified.

Proof. Lemma 3.8 implies σ ↪→ ζ(−l1, l1, χψχ1) × · · · × ζ(−lt, lt, χψχt) o σ′ and the negativity of σ. If all
representations from the list are irreducible, we have

ζ(−α, β, χψχ−1)o σ ↪→ζ(−α, β, χψχ−1)× ζ(−l1, l1, χψχ1)× · · · × ζ(−lt, lt, χψχt)o σ′

∼=ζ(−l1, l1, χψχ1)× · · · × ζ(−lt, lt, χψχt)× ζ(−α, β, χψχ−1)o σ′

∼=ζ(−l1, l1, χψχ1)× · · · × ζ(−lt, lt, χψχt)× ζ(−β, α, χψχ)o σ′

∼=ζ(−β, α, χψχ)× ζ(−l1, l1, χψχ1)× · · · × ζ(−lt, lt, χψχt)o σ′.

ζ(−β, α, χψχ)o σ ↪→ ζ(−β, α, χψχ)× ζ(−l1, l1, χψχ1)× · · · × ζ(−lt, lt, χψχt)o σ′

Because of the uniqueness of the irreducible unramified subquotient, the intersection of the images of em-
beddings is nontrivial. By [11, Thm. 4.6], ζ(−β, α, χψχ) o σ has a unique irreducible subrepresentation
appearing with multiplicity one, which is also a quotient of ζ(−α, β, χψχ−1)o σ, by [15, Lemma 3.1]. Thus
ζ(−β, α, χψχ)o σ must be irreducible.

Now, we consider the cases when one of the representations from the list reduces. Let τ be the unramified
irreducible subquotient of ζ(−β, α, χψχ)o σ. Suppose that

(i) ζ(−β, α, χψχ) × ζ(−li, li, χψχi) reduces for some i = 1, . . . , t. We may assume i = 1. Reducibility
implies α > l1 > β ∈ 1

2Z≥0 and χ = χ1. Assume τ ↪→ ζ(−β, α, χψχ)o σ. Now

τ ↪→ ζ(−l1, α, χψχ)× ζ(−β, l1, χψχ)× ζ(−l2, l2, χψχ2)× · · · × ζ(−lt, lt, χψχt)o σ′

Let σ1 ≤ ζ(−β, l1, χψχ) × ζ(−l2, l2, χψχ2) × · · · × ζ(−lt, lt, χψχt) o σ′ be its irreducible unramified
subquotient. By Lemma 3.4, τ ↪→ ζ(−l1, α, χψχ) o σ1. For σ1, there exists an embedding σ1 ↪→
ζ(−β1, α1, χψχ1)× · · · × ζ(−βk, αk, χψχk)o σneg, as in Theorem 3.6. Now

τ ↪→ ζ(−l1, α, χψχ)× ζ(−β1, α1, χψχ1)× · · · × ζ(−βk, αk, χψχk)o σneg.

Since ζ(−β, α, χψχ) does not contain ν−l1χψχ in the cuspidal support, we have a contradiction
with the uniqueness of the embedding of τ (Theorem 3.6). Thus, τ is not a subrepresentation of
ζ(−β, α, χψχ)o σ, which must then reduce.

(ii) ζ(−β, α, χψχ) o σ′ reduces. By Theorem 4.6 and Proposition 4.5, we have χ ∈ {1, χ0}. Having
proved (i), we may assume that ζ(−β, α, χψχ)× ζ(−li, li, χψχi) is irreducible for every i. Now

ζ(−β, α, χψχ)o σ ↪→ ζ(−l1, l1, χψχ1)× · · · × ζ(−lt, lt, χψχt)× ζ(−β, α, χψχ)o σ′.

Let π be the unique irreducible subrepresentation of ζ(−β, α, χψχ) o σ′. By Proposition 4.5, π
is not unramified. If ζ(−l1, l1, χψχ1) × · · · × ζ(−lt, lt, χψχt) × ζ(−β, α, χψχ) ⊗ σ′ is contained
with the same multiplicity in µ∗(ζ(−l1, l1, χψχ1) × · · · × ζ(−lt, lt, χψχt) × ζ(−β, α, χψχ) o σ′) and
µ∗(ζ(−l1, l1, χψχ1)×· · ·×ζ(−lt, lt, χψχt)oπ), then τ cannot be a subrepresentation of ζ(−β, α, χψχ)o
σ and it must then reduce. Let us calculate these multiplicities.
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First, by (2.5), there exist 0 ≤ j ≤ i ≤ α+ β + 1, 0 ≤ j1 ≤ i1 ≤ 2l1 + 1,. . . ,0 ≤ jt ≤ it ≤ 2lt + 1,
and an irreducible representation ζ1 ⊗ σ1 ≤ µ∗(σ′), such that

ζ(−l1, l1, χψχ1)× · · · × ζ(−lt, lt, χψχt)× ζ(−β, α, χψχ)⊗ σ′ ≤
ζ(−l1, l1 − i1, χψχ

−1
1 )× ζ(−l1, j1 − l1 − 1, χψχ1)× · · · × ζ(−lt, lt − it, χψχ

−1
t )×

ζ(−lt, jt − lt − 1, χψχt)× ζ(−α, β − i, χψχ)× ζ(−β, j − β − 1, χψχ)× ζ1⊗
ζ(j1 − l1, i1 − l1 − 1, χψχ1)×
· · · × ζ(jt − lt, it − lt − 1, χψχt)× ζ(j − β, i− β − 1, χψχ)o σ1.

The sum of exponents of ν in the cuspidal support of ζ(−l1, l1, χψχ1) × · · · × ζ(−lt, lt, χψχt) ×
ζ(−β, α, χψχ) is −β + · · · + α > 0. On the right hand side only ζ(−β, j − β − 1, χψχ) can have
a positive sum, at most −β + · · · + α, achieved for j = α + β + 1, while ζ1 has a negative sum if
different from χψ1. Thus j = i = α+ β + 1, ζ1 = χψ1, σ1 ∼= σ′ and if χs ̸= χ−1

s , is = js = 2ls + 1,
while if χs = χ−1

s , then is = js = 2ls + 1 or is = js = 0, for all s = 1, . . . , t.

For the second multiplicity, note that ζ(−β, α, χψχ)⊗ σ′ ≤ µ∗(π). Now

µ∗(ζ(−l1, l1, χψχ1)× · · · × ζ(−lt, lt, χψχt)o π) ≥
t∑

s=1

2ls+1∑
is=0

is∑
js=0

ζ(−l1, l1 − i1, χψχ
−1
1 )× ζ(−l1, j1 − l1 − 1, χψχ1)× . . .

× ζ(−lt, lt − it, χψχ
−1
t )× ζ(−lt, jt − lt − 1, χψχt)× ζ(−β, α, χψχ)

⊗ ζ(j1 − l1, i1 − l1 − 1, χψχ1)× · · · × ζ(jt − lt, it − lt − 1, χψχt)o σ′.

We can make choices for is and js, s = 1, . . . , t as above, so multiplicities are equal.
(iii) ζ(−α, β, χψχ−1)×ζ(−li, li, χψχi) reduces for some i = 1, . . . , t. Replace ζ(−li, li, χψχi) with ζ(−li, li, χψχ−1

i ).

Now ζ(−β, α, χψχ)× ζ(−li, li, χψχ−1
i ) reduces and we are in case (i).

�

Theorem 5.2 (Zelevinsky Classification). Let σ be a genuine irreducible unramified representation of
˜Sp(n, F ). Then, either σ is negative, or there exist k ∈ Z>0, and a sequence χ1, . . . , χk of unramified unitary

characters of F×, and there exist real numbers αi, βi, such that αi+βi ∈ Z≥0 and −βi+αi > 0, for i = 1, . . . , k
and there exists a genuine irreducible unramified negative representation σneg of the metaplectic group, such
that σ ↪→ ζ(−β1, α1, χψχ1)×· · ·×ζ(−βk, αk, χψχk)oσneg. Data ζ(−β1, α1, χψχ1), . . . , ζ(−βk, αk, χψχk) are
unique up to permutation, while σneg is unique up to isomorphism. Moreover

σ ∼= ζ(−β1, α1, χψχ1)× · · · × ζ(−βk, αk, χψχk)o σneg.

Proof. Suppose that σ is not negative and take an embedding as in Theorem 3.6

σ ↪→ ζ(−β1, α1, χψχ1)× · · · × ζ(−βk, αk, χψχk)o σneg,(5.1)

where χ1, . . . , χk are unramified unitary characters of F×, αi, βi are real numbers such that αi + βi ∈
Z≥0, −βi + αi > 0, i = 1, . . . , k, ζ(−β1, α1, χψχ1) × · · · × ζ(−βk, αk, χψχk) is irreducible and σneg is
a genuine irreducible unramified negative representation. Note that we can permute Zelevinsky segment
representations. Also, ζ(−βi, αi, χψχi) o σneg is irreducible for every i, or else, by Proposition 4.5 and
Lemma 5.1, its unique irreducible subrepresentation ρi is not unramified, resulting with

σ ↪→ζ(−β1, α1, χψχ1)× · · · × ζ(−βi−1, αi−1, χψχi−1)×
ζ(−βi+1, αi+1, χψχi+1)× · · · × ζ(−βk, αk, χψχk)o ρi.
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a contradiction to Lemma 3.3. Now we do the following process. We start with ζ(−β1, α1, χψχ1). Permute it

until it is next to σneg, replace with ζ(−α1, β1, χψχ
−1
1 ) and pull back to its place. To keep the embedding of σ,

for this last action, note that ζ(−βi, αi, χψχi)× ζ(−α1, β1, χψχ
−1
1 ) is irreducible for i > 1. Indeed, if i is the

largest such that ζ(−βi, αi, χψχi)×ζ(−α1, β1, χψχ
−1
1 ) reduces and π its unique irreducible subrepresentation,

then it is not unramified by Lemma 2.1. Now

σ ↪→ ζ(−β2, α2, χψχ2)× · · · × ζ(−βi−1, αi−1, χψχi−1)× π × ζ(−βi+1, αi+1, χψχi+1)× . . .

× ζ(−βk, αk, χψχk)o σneg,

a contradiction to Lemma 3.3. Thus

σ ↪→ ζ(−α1, β1, χψχ
−1
1 )× ζ(−β2, α2, χψχ2)× · · · × ζ(−βk, αk, χψχk)o σneg

We continue the process with ζ(−β2, α2, χψχ2), . . . , ζ(−βk, αk, χψχk). In the end

σ ↪→ ζ(−α1, β1, χψχ
−1
1 )× ζ(−α2, β2, χψχ

−1
2 )× · · · × ζ(−αk, βk, χψχ−1

k )o σneg.

Lemma 3.1. of [15] implies that σ is a quotient of

ζ(−β1, α1, χψχ1)× ζ(−β2, α2, χψχ2)× · · · × ζ(−βk, αk, χψχk)o σneg.

Thus, Theorem 3.6, together with (5.1) gives the result. �

Appendix A. Reducibility of ζ(−β, α, χψχ)o ω0

The goal of this appendix is to prove a criterion for reducibility of the induced representation ζ(−β, α, χψχ)o
ω0 where χ is a unitary unramified character of F×.

A.1. The basic case of n = 1. We first consider the reducibility of the induced representation χψχν
αoω0.

It is settled by the following theorem of [23] (see also [7]).

Theorem A.1. Let χ be a unitary character of F× and α ∈ R. Representation χψχν
α o ω0 reduces if and

only if χ2 = 1F× and α ∈ {±1/2}. If α = −1/2 and χ is unramified such that χ2 = 1F× , then the unique
unramified irreducible subquotient is a subrepresentation.

A.2. Lemmas of Tadić. The following lemmas directly generalize from [22]. We include their statements
to fix the notation.

Lemma A.2. Let P̃0, P̃
′ , P̃ ′′ and P̃ ′′′ be parabolic subgroups of ˜Sp(n, F ) with Levi factors M̃0, M̃ ′, M̃ ′′

and M̃ ′′′, such that P̃ ′ ⊆ P̃ ′′ and P̃ ′ ⊆ P̃ ′′′ . Let σ0 be an irreducible representation of M̃0 such that

r
˜Sp(n,F )

M̃ ′ (Ind
˜Sp(n,F )

M̃0
(σ0)) ̸= 0.

Assume that there exists an irreducible subquotient τ ′′ of r
˜Sp(n,F )

M̃ ′′ (Ind
˜Sp(n,F )

M̃0
(σ0)) such that for every irre-

ducible subquotient τ ′′′ of r
˜Sp(n,F )

M̃ ′′′ (Ind
˜Sp(n,F )

M̃0
(σ0)) we have:

s.s.
(
rM̃

′′

M̃ ′ (τ
′′)
)
+ s.s.

(
rM̃

′′′

M̃ ′ (τ ′′′)
)
� s.s.

(
r

˜Sp(n,F )

M̃ ′ (Ind
˜Sp(n,F )

M̃0
((σ0))

)
.

Then, induced representation Ind
˜Sp(n,F )

M̃0
(σ0) is irreducible.

Lemma A.3. Let P̃0 = M̃0N0 be a parabolic subgroup of ˜Sp(n, F ) and σ0 an irreducible unitarizable repre-

sentation of M̃0.

Let P̃ ′ = M̃ ′N ′ and P̃ ′′ = M̃ ′′N ′′ be parabolic subgroups of ˜Sp(n, F ) such that P̃ ′ ⊆ P̃0 and P̃ ′ ⊆ P̃ ′′.

Assume that there exists an irreducible subquotient τ ′′ of r
˜Sp(n,F )

M̃ ′′ (Ind
˜Sp(n,F )

M̃0
(σ0)) of multiplicity one. Let τ0
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be an irreducible subquotient of r
˜Sp(n,F )

M̃0
(Ind

˜Sp(n,F )

M̃0
(σ0)) and σ

′ an irreducible representation of M̃ ′. Assume

that the following three assertions hold:

(i) Ind
˜Sp(n,F )

M̃0
(σ0) ↪→ Ind

˜Sp(n,F )

M̃ ′ (σ′)

(ii) If τ ′0 is an irreducible subquotient of r
˜Sp(n,F )

M̃0
(Ind

˜Sp(n,F )

M̃0
(σ0)) that is not isomorphic to τ0, then σ

′ is

not a subquotient of rM̃0

M̃ ′ (τ
′
0).

(iii) There exists an irreducible subquotient ρ′ of rM̃0

M̃ ′ (τ0) such that ρ′ has the same multiplicity in rM̃
′′

M̃ ′ (τ
′′)

and r
˜Sp(n,F )

M̃ ′ (Ind
˜Sp(n,F )

M̃0
(σ0)).

Then Ind
˜Sp(n,F )

M̃0
(σ0) is irreducible.

A.3. The incomplete reducibility criterion. Now we prove the irreducibility under certain conditions.
The following two lemmas solve a special case.

Lemma A.4. Let χ be a unitary unramified character of F× such that χ2 = 1. The representation
δ(0, 1, χψχ)o ω0 is irreducible.

Proof. The proof is the same as the proof of Lemma 6.2 and Proposition 6.3 of [22], except that instead of
using the analogue of Lemma 6.1 of loc. cit., that is, χψχ× δ(−1, 1, χψχ)o ω0 is irreducible, it is enough to
have that all irreducible subquotients of χψχ× δ(−1, 1, χψχ)oω0 are isomorphic. This is valid by Corollary
8.3 of [8] and the fact that χ× δ(−1, 1, χ)o1 as the representation of the split odd special orthogonal group
is irreducible, which is a consequence of Lemma 6.1 of [22] and part (iii) of Theorem 3.3 of [18].

For the sake of completeness we write down the proof. Using (2.6), we have

s.s.r(4;0)(χψχ× χψχ× χψνχ× χψνχo ω0) = 4
∑

(ϵ1,ϵ2)∈{±1}2

χψχ× χψχ× χψν
ϵ1χ× χψν

ϵ2χ⊗ ω0

s.s.r(4;0)(χψχ× δ(−1, 1, χψχ)o ω0) = 4χψχ× δ(−1, 1, χψχ)⊗ ω0 + 4χψχ× χψνχ× δ(0, 1, χψχ)⊗ ω0.

Thus, the multiplicity of δ(0, 1, χψχ) × δ(0, 1, χψχ) ⊗ ω0 in µ∗(χψχ × χψχ × χψνχ × χψνχ o ω0) is 4, the
same as in µ∗(χψχ× δ(−1, 1, χψχ)o ω0).

Now, recall that, by Theorem A.1, χψχo ω0 and χψνχo ω0 are irreducible. By (2.6), we have

µ∗(δ(0, 1, χψχ)o ω0) =χψ1⊗ δ(0, 1, χψχ)o ω0 + [χψνχ⊗ χψχo ω0 + χψχ⊗ χψνχo ω0]+

+ [δ(0, 1, χψχ)⊗ ω0 + χψχ× χψνχ⊗ ω0 + δ(−1, 0, χψχ)⊗ ω0].

Suppose that δ(0, 1, χψχ)oω0 reduces. Then, there exists an irreducible subquotient π, such that r(1;1)(π) =
χψνχ⊗ χψχo ω0. Using (2.6) and Lemma 2.1, we see

µ∗(π) = χψ1⊗ π + χψνχ⊗ χψχo ω0 + 2δ(0, 1, χψχ)⊗ ω0.

Using (2.6), we have

s.s.r(4;0)(δ(0, 1, χψχ)o π) =2δ(0, 1, χψχ)× δ(0, 1, χψχ)⊗ ω0 + 2χψχ× χψνχ× δ(0, 1, χψχ)⊗ ω0+

+2δ(−1, 0, χψχ)× δ(0, 1, χψχ)⊗ ω0.

Thus s.s.r(4;0)(δ(0, 1, χψχ) o π) ≥ 4δ(0, 1, χψχ) × δ(0, 1, χψχ) ⊗ ω0. As we proved that the multiplicity
of δ(0, 1, χψχ) × δ(0, 1, χψχ) ⊗ ω0 in µ∗(χψχ × χψχ × χψνχ × χψνχ o ω0) is 4, the same as in µ∗(χψχ ×
δ(−1, 1, χψχ)oω0), and by the above argument all irreducible subquotients of χψχ× δ(−1, 1, χψχ)oω0 are



26 IGOR CIGANOVIĆ AND NEVEN GRBAC

isomorphic, we have s.s.(χψχ× δ(−1, 1, χψχ)o ω0) ≤ s.s.(δ(0, 1, χψχ)o π). Writing down s.s.r(4,0)(χψχ×
δ(−1, 1, χψχ)o ω0) ≤ s.s.r(4,0)(δ(0, 1, χψχ)o π), we get

4χψχ× δ(−1, 1, χψχ)⊗ ω0 + 4χψχ× χψνχ× δ(0, 1, χψχ)⊗ ω0 ≤
2δ(0, 1, χψχ)× δ(0, 1, χψχ)⊗ ω0 + 2χψχ× χψνχ× δ(0, 1, χψχ)⊗ ω0 + 2δ(−1, 0, χψχ)× δ(0, 1, χψχ)⊗ ω0.

But, using Lemma 2.1 and (2.3) and (2.4), we see that χψχ× δ(−1, 1, χψχ)⊗ ω0 appears only two times on
the righthand side, a contradiction. We have proved that δ(0, 1, χψχ)o ω0 does not reduce. �

Lemma A.5. Let χ be a unitary unramified character of F× such that χ2 = 1. The representation
ζ(0, 1, χψχ)o ω0 is irreducible.

Proof. Using formulas (2.5) and (2.6), we have

(A.1) s.s.r(1;1)(ζ(0, 1, χψχ)o ω0) = χψν
−1χ⊗ χψχo ω0 + χψχ⊗ χψν

1χo ω0

(A.2) s.s.r(1;1)(δ(0, 1, χψχ)o ω0) = χψν
1χ⊗ χψχo ω0 + χψχ⊗ χψν

1χo ω0

all summands being irreducible by Theorem A.1. Since δ(0, 1, χψχ) o ω0 is irreducible by Lemma A.4, we
see that it is not isomorphic to any irreducible subquotient of ζ(0, 1, χψχ)o ω0. Now observe

ζ(0, 1, χψχ)o ω0 ↪→ χψχ× χψν
1χo ω0

∼= χψχ× χψν
−1χo ω0 → χψν

−1χ× χψχo ω0

where the kernel of the last map, induced from χψχ × χψν
−1χ → χψν

−1χ × χψχ, is δ(−1, 0, χψχ) o ω0
∼=

δ(0, 1, χψχ)o ω0. Thus,

ζ(0, 1, χψχ)o ω0 ↪→ χψν
−1χ× χψχo ω0

Let π be the unique irreducible subrepresentation of ζ(0, 1, χψχ) o ω0. Frobenius reciprocity implies that
s.s.r(1;1)(π) ≥ χψν

−1χ⊗χψχoω0. Also, from ζ(0, 1, χψχ)oω0 ↪→ χψχ×χψν1χoω0, we get s.s.r(1;1)(π) ≥
χψχ⊗ χψν

1χo ω0. Thus,

s.s.r(1;1)(π) ≥ χψν
−1χ⊗ χψχo ω0 + χψχ⊗ χψν

1χo ω0

Comparing to (A.1), we see that π = ζ(0, 1, χψχ)o ω0, showing irreducibility. �

Theorem A.6. Let α, β ∈ R such that α+β+1 ∈ Z>0, and let χ be a unitary unramified character of F×.
Suppose χ2 ̸= 1F× or −β /∈ 1/2 − Z≥0 or α ̸∈ −1/2 + Z≥0. Then the representation ζ(−β, α, χψχ) o ω0 is
irreducible.

Proof. We prove the two cases of the theorem separately. The third case, α ̸∈ −1/2 + Z≥0, follows from
Case 2 below using relation (2.7).
Case 1: χ2 ̸= 1F× .

Let β be a real number. We show, by induction on n ∈ Z≥0, irreducibility of the representation σ :=
ζ(−β,−β + n, χψχ)oω0. Theorem A.1 provides the induction basis, so assume n ≥ 1. Using (2.5), we have

µ∗(σ) =

n+1∑
i=0

i∑
j=0

ζ(β − n, β − i, χψχ
−1)× ζ(−β, j − β − 1, χψχ)⊗ ζ(j − β, i− β − 1, χψχ)o ω0.

Let M ′,M ′′,M ′′′ be Levi subgroups of Sp(n+ 1, F ) that correspond to (1, . . . , 1; 0), (n+ 1; 0), (1;n), resp.

s.s.(r
˜Sp(n+1,F )

M̃ ′′′ (σ)) =

νβ−nχψχ
−1 ⊗ ζ(−β,−β + n− 1, χψχ)o ω0 + ν−βχψχ⊗ ζ(−β + 1,−β + n, χψχ)o ω0.

(A.3)

s.s.(r
˜Sp(n+1,F )

M̃ ′′ (σ) =
n+1∑
i=0

ζ(β − n, β − i, χψχ
−1)× ζ(−β, i− β − 1, χψχ)⊗ ω0.(A.4)
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Take τ ′′ = νβ−nχψχ
−1 × ζ(−β,−β + n− 1, χψχ)⊗ ω0, which is the irreducible summand on the right hand

side of (A.4) for i = n. We want to apply Lemma A.2. By induction hypothesis, summands on the right
hand side of (A.3) are irreducible. First take τ ′′′ = νβ−nχψχ

−1⊗ ζ(−β,−β+n−1, χψχ)oω0. Assume that

(1⊗ s.s.r(1,...,1;0))(τ
′′′) + (s.s.r(1,...,1) ⊗ 1)(τ ′′) ≤ s.s.

(
r

˜Sp(n+1,F )

M̃ ′ (σ)

)
.(A.5)

From (A.3) we have (s.s.r(1,...,1)⊗1)(τ ′′) ≤ ν−βχψχ⊗s.s.(r(1,...,1)(ζ(−β+1,−β+n, χψχ)oω0), a contradiction.

Take now τ ′′′ = ν−βχψχ ⊗ ζ(−β + 1,−β + n, χψχ) o ω0. If (A.5) was valid, then (A.3) would imply
(s.s.r(1,...,1) ⊗ 1)(τ ′′) ≤ νβ−nχψχ

−1 ⊗ s.s.
(
r(1,...,1;0)(ζ(−β,−β + n− 1, χψχ)o ω0)

)
. Again contradiction,

and Lemma A.2 shows that σ is irreducible.
Case 2: χ2 = 1F× and −β ̸∈ 1/2− Z≥0.

First we prove irreducibility of σ in the special case σ := ζ(−n, n, χψχ) o ω0 for n ∈ Z≥0. Theorem A.1
covers the case n = 0. Let n ≥ 1. Using (2.5), we have

µ∗(σ) =
2n+1∑
i=0

i∑
j=0

ζ(−n, n− i, χψ)× ζ(−n,−n+ j − 1, χψχ)⊗ ζ(j − n,−n+ i− 1, χψχ)o ω0.

s.s.(r(2n;1)(σ)) = ζ(−n,−1, χψχ)× ζ(−n,−1, χψχ)⊗ χψχo ω0+

2

n∑
k=1

ζ(−n,−k − 1, χψχ)× ζ(−n, k − 1, χψχ)⊗ νkχψχo ω0.
(A.6)

All summands in (A.6) are irreducible. Let τ ′′ = ζ(−n,−1, χψχ)× ζ(−n,−1, χψχ)⊗ χψχo ω0. It appears
with multiplicity one in (A.6). Moreover,

s.s.(r(2n+1;0)(σ) = 2
n∑
i=0

ζ(−n, n− i, χψχ)× ζ(−n,−n+ i− 1, χψχ)⊗ ω0,(A.7)

and all summands in (A.7) are irreducible. Let τ0 = ζ(−n, 0, χψχ)× ζ(−n,−1, χψχ)⊗ω0. Since ν
nχψχoω0

is irreducible, and for i = 1, . . . , n − 1 and n ≥ 2, νiχψχ × ν−nχψχ is irreducible, we have νnχψχ o ω0
∼=

ν−nχψχo ω0 and νiχψχ× ν−nχψχ ∼= ν−nχψχ× νiχψχ (n ≥ 2). So for n ≥ 2

ζ(−n, n, χψχ)o ω0 ↪→ ν−nχψχ× ν−n+1χψχ× · · · × νn−1χψχ× νnχψχo ω0

∼= ν−nχψχ× ν−n+1χψχ× · · · × νn−1χψχ× ν−nχψχo ω0

∼= ν−nχψχ× · · · × ν−1χψχ× χψχ× ν−nχψχ× νχψχ× · · · × νn−1χψχo ω0

. . .

∼= ν−nχψχ× · · · × ν−1χψχ× χψχ× ν−nχψχ× ν−n+1χψχ× · · · × ν−1χψχo ω0.

Thus, for n ≥ 1

ζ(−n, n, χψχ)o ω0 ↪→
ν−nχψχ× · · · × ν−1χψχ× χψχ× ν−nχψχ× ν−n+1χψχ× · · · × ν−1χψχo ω0.

(A.8)

Let σ′ = ν−nχψχ⊗ · · ·⊗ ν−1χψχ⊗χψχ⊗ ν−nχψχ⊗ ν−n+1χψχ⊗ · · ·⊗ ν−1χψχ⊗ω0. We use Lemma A.3 to
prove irreducibility of σ = ζ(−n, n, χψχ)oω0. Let σ0 = ζ(−n, n, χψχ)⊗ω0. From (A.8), we have condition
(i) of Lemma A.3 For (ii), note that σ′ is not a subquotient of

r(1,...,1)(ζ(−n, n− i, χψχ)× ζ(−n,−n+ i− 1, χψχ))⊗ ω0, i = 0, . . . , n− 1,

because every irreducible subquotient of ζ(−n, n− i, χψχ)× ζ(−n,−n+ i− 1, χψχ) has νχχψ in its cuspidal
support. Now, from (A.7), we have condition (ii) of Lemma A.3, for τ0 defined after formula (A.7). That
leaves us with condition (iii). Since

τ0 = ζ(−n, 0, χψχ)× ζ(−n,−1, χψχ)⊗ ω0
∼= ζ(−n,−1, χψχ)× ζ(−n, 0, χψχ)⊗ ω0,



28 IGOR CIGANOVIĆ AND NEVEN GRBAC

we have τ0 ↪→ ν−nχψχ× · · · × ν−1χψχ× ν−nχψχ× · · · × χψχ⊗ ω0. Let

ρ′ = ν−nχψχ⊗ · · · ⊗ ν−1χψχ⊗ ν−nχψχ⊗ · · · ⊗ χψχ⊗ ω0 ∈ s.s.(r(1,...,1;0)(τ0)).

From (A.6), we see that it is enough to show that ρ′ is not a subquotient of

ζ(−n,−k − 1, χψχ)× ζ(−n, k − 1, χψχ)⊗ νkχψχo ω0, 1 ≤ k ≤ n.

That is clear, because r(1;0)(ν
kχψχ o ω0) = ν−kχψχ ⊗ ω0 + νkχψχ ⊗ ω0, 1 ≤ k ≤ n. So, by Lemma A.3,

representation σ = ζ(−n, n, χψχ)o ω0 is irreducible.
We consider now the general case σ := ζ(−β,−β + n, χψχ) o ω0 for −β ̸∈ 1/2 − Z≥0. As in Case 1, we

show irreducibility of σ by induction on n ∈ Z≥0. Because of Theorem A.1, we may assume n ≥ 1. Using
(2.5), we obtain

µ∗(σ) =
n+1∑
i=0

i∑
j=0

ζ(β − n, β − i, χψχ)× ζ(−β, j − β − 1, χψχ)⊗ ζ(j − β, i− β − 1, χψχ)o ω0.

Let M ′,M ′′,M ′′′ be Levi subgroups of Sp(n+ 1, F ) that correspond to (1, . . . , 1; 0), (n+ 1; 0), (1;n), resp.

s.s.(r
˜Sp(n,F )

M̃ ′′′ (σ) =

νβ−nχψχ⊗ ζ(−β,−β + n− 1, χψχ)o ω0 + ν−βχψχ⊗ ζ(−β + 1,−β + n, χψχ)o ω0

(A.9)

s.s.(r
˜Sp(n,F )

M̃ ′′ (σ)) =
n+1∑
i=0

ζ(β − n, β − i,χψχ)× ζ(−β, i− β − 1, χψχ)⊗ ω0(A.10)

By the induction hypothesis, all summands in (A.9) are irreducible. We have two cases:

a) β ̸= 0. Because of (2.7), taking contragredient if necessary, we may assume (−β + (−β + n))/2 > 0,
as it is equal to zero only for β ∈ Z>0 and n = 2β, which is settled above. Thus, the i = 1 summand
τ ′′ = ζ(β − n, β − 1, χψχ)× ν−β ⊗ ω0 in (A.10) is irreducible. We use Lemma A.2. First, let

τ ′′′ = νβ−nχψχ⊗ ζ(−β,−β + n− 1, χψχ)o ω0 and assume

s.s.

(
r

˜Sp(n,F )

M̃ ′ (σ)

)
≥ (1⊗ s.s.r(1,...,1;0))(τ

′′′) + (s.s.r(1,...,1) ⊗ 1)(τ ′′).(A.11)

From (A.9), we have a contradiction

(s.s.r(1,...,1) ⊗ 1)(τ ′′) ≤ ν−βχψχ⊗ s.s.
(
r(1,...,1)(ζ(−β + 1,−β + n, χψχ)o ω0)

)
.

Take now τ ′′′ = ν−βχψχ⊗ ζ(−β + 1,−β + n, χψχ)o ω0 and assume (A.11). Then (A.9) implies

(s.s.r(1,...,1) ⊗ 1)(τ ′′) ≤ νβ−nχψχ⊗ s.s.
(
r(1,...,1;0)(ζ(−β,−β + n− 1, χψχ)o ω0)

)
,

a contradiction. So by Lemma A.2, σ = ζ(−β,−β + n, χψχ)o ω0 is irreducible.
b) β = 0. Since we already proved in Lemma A.5 that ζ(0, 1, χψχ)oω0 is irreducible, we assume n ≥ 2.

Take the i = 2 summand

τ ′′ = ζ(−n,−2, χψχ)× ζ(0, 1, χψχ)⊗ ω0,

in (A.10). It is irreducible. Now (A.9) becomes

s.s.(r
˜Sp(n,F )

M̃ ′′′ (σ) = ν−nχψχ⊗ ζ(0, n− 1, χψχ)o ω0 + χψχ⊗ ζ(1, n, χψχ)o ω0.(A.12)

We want to use Lemma A.2. First, let τ ′′′ = ν−nχψχ⊗ ζ(0, n− 1, χψχ)o ω0. Assume that

(1⊗ s.s.r(1,...,1;0))(τ
′′′) + (s.s.r(1,...,1) ⊗ 1)(τ ′′) ≤ s.s.

(
r

˜Sp(n,F )

M̃ ′ (ζ(0, n, χψχ)o ω0))

)
.(A.13)
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But (A.2) implies a contradiction (s.s.r(1,...,1) ⊗ 1)(τ ′′) ≤ χψχ⊗ s.s.r(1,...,1;0)(ζ(1, n, χψχ)oω0). Now
take τ ′′′ = χψχ⊗ ζ(1, n, χψχ)o ω0 and assume (A.13). Relation (A.2) implies

(s.s.r(1,...,1) ⊗ 1)(τ ′′) ≤ ν−nχψχ⊗ s.s.r(1,...,1;0)(ζ(0, n− 1, χψχ)o ω0),

a contradiction. So ζ(−β,−β + n, χψχ)o ω0 is irreducible, by Lemma A.2.

�
A.4. The complete reducibility criterion. Now we finally prove the main theorem of this section.

Theorem A.7. Let α, β ∈ R be such that α + β + 1 ∈ Z>0, and let χ be a unitary unramified character
of F×. Representation ζ(−β, α, χψχ) o ω0 reduces if and only if χψχν

i o ω0 reduces for some i such that
−β ≤ i ≤ α and α− i ∈ Z.

Proof. From Theorem A.1, we know that Theorem A.6 covers all the cases in which χψχν
ioω0 is irreducible

for all i such that −β ≤ i ≤ α and α − i ∈ Z. It remains to check the cases in which at least one of these
χψχν

i o ω0 reduces. That is, χ2 = 1F× and −β ∈ 1/2−Z≥0 and α ∈ −1/2+Z≥0. In other words, we must
show that ζ( 12 − k, 12 + l, χψχ)o ω0 reduces for k, l ∈ Z≥0.

Because of (2.7) and Lemma 4.1, we may assume | 12 − k| ≤ 1
2 + l and k ≥ 1, resp. Now

ζ(
1

2
− k,

1

2
+ l, χψχ)o ω0 ↪→ ν

1
2−kχψχ× · · · × ν−

1
2χψχ× ν

1
2χψχ× · · · × ν

1
2+lχψχo ω0.

Let σ 1
2+l

be the unramified irreducible subquotient of ζ( 12 ,
1
2 + l, χψχ)o ω0, as in Lemma 4.1. Suppose that

ζ( 12 − k, 12 + l, χψχ)o ω0 is irreducible. Then, by Lemma 3.4,

(A.14) ζ(
1

2
− k,

1

2
+ l, χψχ)o ω0 ↪→ ζ(

1

2
− k,−1

2
, χψχ)o σ 1

2+l
.

We will get a contradiction by proving that (A.14) does not hold. Using (2.5), we have

µ∗(ζ(
1

2
− k,

1

2
+ l, χψχ)o ω0) =

l+k+1∑
i=0

i∑
j=0

ζ(−1

2
− l, k − 1

2
− i, χψχ)× ζ(

1

2
− k,

1

2
− k + j − 1, χψχ)

⊗ ζ(j +
1

2
− k, i+

1

2
− k − 1, χψχ)o ω0,

(A.15)

s.s.

(
r(l+k+1;0)(ζ(

1

2
− k,

1

2
+ l, χψχ)o ω0)

)
=
l+k+1∑
i=0

ζ(−1

2
− l, k − 1

2
− i, χψχ)×

× ζ(
1

2
− k,−1

2
− k + i, χψχ)⊗ ω0.

(A.16)

By Lemma 4.1 and (2.5), we have:

µ∗(ζ(
1

2
− k,−1

2
, χψχ)o σ 1

2+l
) =

l+1∑
s=0

k∑
i=0

i∑
j=0

ζ(
1

2
,−1

2
+ k − i, χψχ)× ζ(

1

2
− k,−k − 1

2
+ j, χψχ)×

× ζ(−1

2
− l,−1

2
− s, χψχ)⊗ ζ(j +

1

2
− k, i− 1

2
− k, χψχ)o σs− 1

2
,

(A.17)

s.s.

(
r(k+l+1;0)(ζ(

1

2
− k,−1

2
, χψχ)o σ 1

2+l
)

)
=

k∑
i=0

ζ(
1

2
,−1

2
+ k − i, χψχ)×

×ζ(1
2
− k,−k − 1

2
+ i, χψχ)× ζ(−1

2
− l,−1

2
, χψχ)⊗ ω0.

(A.18)

Now we have two possibilities. If −1
2 − l < 1

2 − k, (A.18) implies that µ∗(ζ( 12 − k,− 1
2 , χψχ) o σ 1

2+l
) does

not contain ζ( 12 − k, 12 + l, χψχ)⊗ω0. Since µ
∗(ζ( 12 − k, 12 + l, χψχ)oω0) contains ζ(

1
2 − k, 12 + l, χψχ)⊗ω0,



30 IGOR CIGANOVIĆ AND NEVEN GRBAC

we have a contradiction with (A.14). Else, if − 1
2 − l = 1

2 − k, (A.18) implies that multiplicity of ζ( 12 −
k, 12 + l, χψχ)⊗ ω0 in µ∗(ζ( 12 − k,− 1

2 , χψχ)o σ 1
2+l

) is one. Namely, ζ( 12 − k,−k − 1
2 + i, χψχ) must be χψ1

(i = 0), because ζ( 12 − k, 12 + l, χψχ) in its cuspidal support has no repetition of ν
1
2−kχψχ. But multipicity

of ζ( 12 − k, 12 + l, χψχ)⊗ ω0 in ζ( 12 − k, 12 + l, χψχ)o ω0 is two, i = 0 and i = k + l + 1 in (A.16). Again we

get contradiction with (A.14), so ζ( 12 − k, 12 + l, χψχ)o ω0 reduces. �
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