Multi-Structured
 Designs and Their Applications

Ryoh Fuji-Hara
University of Tsukuba, Japan
Joint work with Ying Miao (University of Tsukuba)

Conditions

(CI) every block contains k points (regular)
(C2) every point of V is contained in r blocks (singleton balance)
(C3) every pair of distinct elements of V appears in exactly λ blocks (pair balance)

Classical designs

Pairwise Balanced Design (PBD) : when (C3) is satisfied (r, λ) design : \quad when (C 2) and (C3) are

Balanced Incomplete Block Design (BIBD) or 2-design: when (CI), (C2) and (C3) are

Multi-Structured Design

- A block design
- Each block has further structure
- additional combinatorial conditions

Block Forms

Each block \mathbf{B}_{i} has sub-blocks
$\mathbf{B}_{i}=\left\{C_{i 1}, C_{i 2}, \ldots, C_{i n_{i}}\right\}, C_{i j} \subseteq \mathbf{B}_{i}$

1) $\left\{C_{i 1}, C_{i 2}, \ldots, C_{i n_{i}}\right\}$ is a partition of \mathbf{B}_{i}
II) $\quad C_{i j} \subseteq \mathbf{B}_{i}$ and $\mathbf{B}_{i}=\bigcup_{1 \leq j \leq n_{i}} C_{i j}$

Block Design

- V : a finite set (points)
- \mathfrak{B} : a collection of subsets (blocks) of V

$$
\mathfrak{B}=\left\{\mathbf{B}_{1}, \mathbf{B}_{2}, \ldots, \mathbf{B}_{b}\right\}, \mathbf{B}_{i} \subseteq V
$$

- some combinatorial conditions

App. I (Designs of Experiments)

(V, \mathfrak{B}) super design

$$
\mathfrak{B}=\left\{\mathbf{B}_{1}, \mathbf{B}_{2}, \ldots, \mathbf{B}_{b}\right\}, \mathbf{B}_{i} \subseteq V
$$

(V, \mathfrak{C}) sub-design (nested design)
$\tilde{\mathbf{B}}_{i}=\left\{C_{i 1}, C_{i 2}, \ldots, C_{i n_{i}}\right\}, C_{i j} \subseteq \mathbf{B}_{i}$
$\mathfrak{C}=\left\{C_{i j} \mid 1 \leq i \leq b, 1 \leq j \leq n_{i}\right\}$
Note: \{ \} is a multi-set

Multi-Structured Design (MSD) with

 a 2-designConditions on (V, \mathfrak{B}) $S_{\lambda}(2 ; v, k)$
(I) block size is constant (regular) k
(2) every element of V appears in the same number of the blocks (singleton balance) r
(3) every pair of distinct elements of V appears in the same number of blocks (pair balance) λ
Conditions on (V, \mathfrak{C}) $S_{\lambda^{\prime}}\left(2 ; v, k^{\prime}\right)$
(1) regular
(2) singleton balance
(3) pair balance

Federer(I972),Preece(I967) (Nested Design)

Example $V=\{0, I, 2,3,4\} S_{3}(2 ; 5,4)$
$B_{I}=\{\{0,1\},\{2,4\}\}$
$B_{2}=\{\{1,2\},\{3,0\}\}$
$B_{3}=\{\{2,3\},\{4,1\}\}$
$B_{4}=\{\{3,4\},\{0,2\}\}$
$B_{5}=\{\{4,0\},\{1,3\}\}$

Merits

- Less experiments
- All effects are estimable easily
- Good precision of estimations
- Equal precisions of estimations

Standard Block Experiments

$y_{i j}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j} \quad \sum_{i=1}^{7} \alpha_{i}=\sum_{j=1}^{7} \beta_{j}=0$
the total combinations of i and j are 49

```
Nested Blocks
    10 fertilizers (5 kinds X 2 types)
            {0-0, 0-1, 1-0, 1-1, 2-0, 2-1, 3-0,
            3-1, 4-0, 4-1}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{5 wheat varieties} & 0 & x & - & \(\bigcirc\) & & x \\
\hline & 1 & x & \(\bigcirc\) & x & \(\bigcirc\) & \\
\hline & 2 & & x & \(x\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline & 3 & \(\bigcirc\) & x & & x & \(\bigcirc\) \\
\hline & 4 & - & & - & x & x \\
\hline
\end{tabular}
\[
\begin{gathered}
y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\epsilon_{i j k} \\
\gamma_{k}, k=0,1: \text { sub-block effect } \\
\gamma_{0}+\gamma_{1}=0
\end{gathered}
\]
```


App. 2 (Rows and Columns)

(V, \mathfrak{B}) the points of each block are arranged in an nXm array

$$
\mathbf{B}_{i}=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 m} \\
x_{21} & x_{22} & \cdots & x_{2 m} \\
\vdots & \vdots & & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n m}
\end{array}\right)
$$

(I) pair balance
(2) for any distinct two points x, y of V, there are exactly λ_{R} blocks which contain x, y in a row (row pair balance)
(3) (column pair balance) λ_{C}

$$
\begin{aligned}
& (V, \mathfrak{B}) \\
& \quad \mathfrak{B}=\left\{\mathbf{B}_{1}, \mathbf{B}_{2}, \ldots, \mathbf{B}_{b}\right\}, \mathbf{B}_{i} \subseteq V \\
& \mathbf{B}_{i} \mid=n m
\end{aligned}
$$

For each block \mathbf{B}_{i},

$$
\begin{aligned}
& \tilde{\mathbf{B}}_{i}^{(R)}=\left\{C_{i 1}, C_{i 2}, \ldots, C_{i n}\right\}, C_{i j} \subseteq \mathbf{B}_{i} \\
& \tilde{\mathbf{B}}_{i}^{(C)}=\left\{D_{i 1}, D_{i 2}, \ldots, D_{i m}\right\}, D_{i j} \subseteq \mathbf{B}_{i}
\end{aligned}
$$

Experiments

Srivastava (1978)
Singh and Dey (1978)
$y_{i j k l}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\delta_{l}+\epsilon_{i j k l}$
α_{i} : variety effect
β_{j} : block effect
γ_{k} : row effect
δ_{l} : column effect

Orthogonal MSDs

Two "MSD with a 2-design"s with the conditions
I. $(V, \mathfrak{C}) \mathfrak{C}=\left\{C_{i j} \mid 1 \leq i \leq b, 1 \leq j \leq n\right\}$
(I) regular
(2) pair balance
2. $(V, \mathfrak{D}) \quad \mathfrak{D}=\left\{D_{i j} \mid 1 \leq i \leq b, 1 \leq j \leq m\right\}$
(I) regular
(2) pair balance
3. For each i,
$\left|C_{i j} \cap D_{i k}\right|=1,1 \leq j \leq n, 1 \leq k \leq m$

App. 3 (Authentication Code)

E : common encryption function set
$e: S \rightarrow M, e \in E$
S : source set, M :message set

$$
\kappa(e)=\left(e\left(s_{1}\right), e\left(s_{2}\right), \ldots\right): \text { the images of } e
$$

$$
\begin{array}{lll}
\text { Transformer } & \stackrel{\text { select } e \in E}{ } & \begin{array}{l}
\text { Receiver } \\
\text { for some } \\
s_{1}, s_{2}, \ldots \in S
\end{array}
\end{array} \xrightarrow[\begin{array}{c}
\text { Check: uniquely } \\
\text { determined } \\
\kappa(e)
\end{array}]{\left(s_{i}, e\left(s_{i}\right)\right) \in M} \begin{array}{ll}
\kappa(e)
\end{array}
$$

encryption functions	eo$e_{1}$$e_{2}$		urc		There are no two images including $e_{i}\left(s_{j}\right), e_{i}\left(s_{k}\right), j \neq k$$M=\{0,1,2\}$
		so	S।	S2	
		0	0	0	
		1	1	2	
		2	2	1	
	e_{3}	0	1		
		1	2	0	
	e_{5}	2	0	2	
	e_{6}	0	2	2	
	e7	1	0	1	
	е8	2	1	0	
			19		

MSD with External Packing

Each block \mathbf{B}_{i} consists of a set of disjoint n_{i} sub-blocks

$$
\tilde{\mathbf{B}}_{i}=\left\{C_{i 1}, C_{i 2}, \ldots, C_{i n_{i}}\right\}, C_{i j} \subseteq \mathbf{B}_{i}
$$

Conditions

(I) For any $x, y \in V$, there is at most one super block which contains x, y in distinct sub-blocks
(2) $\left|C_{i j}\right| \geq 1, n_{i}=n$, for any $i=1,2, \ldots, b$ 20

Splitting Authentication

W. Ogata, K. Kurosawa, D. R. Stinson and H. Saido (2004)

Encryption function
$e(s, r), e \in E, s \in S$
r : a random number
for some
$s_{1}, s_{2}, \ldots \in S \quad\left(s_{i}, e\left(s_{i}, r_{i}\right)\right) \in M \quad$ Check: uniquely
Get random \square determined?
$\kappa(e)$

[^0]| 0,1 | 2,4 | 12,20 |
| :---: | :---: | :---: |
| 7,8 | 9,11 | 19,2 |
| 5,6 | 7,9 | 17,0 |
| 3,4 | 5,7 | 15 |
| 9,10 | 11 | 21,4 |
| 2,3 | 4,6 | 14,22 |
| 10,11 | 12,14 | 5 |
| 4,5 | 6,8 | 16 |
| 6,7 | 8,10 | 18,1 |
| 1,2 | 3,5 | 13,21 |
| 8,9 | 10,12 | 20,3 |
| 11,12 | 13,15 | 23,6 |

There are no two rows which contain $e_{i}\left(s_{j}, r\right), e_{i}\left(s_{k}, r^{\prime}\right), j \neq k$ in different columns
c-splitting: $\quad|e(s)|=c$ for any $e \in E$ and any $s \in S . \quad$ (regular)
Optimality Theorem $\begin{aligned} & \text { w. Ogata, K. Kurosawa, D. R. } \\ & \text { Stinson and H. Saido (2004) }\end{aligned}$
(I) For any c-splitting authentication code, the following inequalities always hold:
$|E| \geq|M|(|M|-1) /\left(c^{2}|S|(|S|-1)\right)$.
A c-splitting authentication code is said to be optimal if it satisfies all the equalities in the Theorem.
(2) If there exists an MSD with an externally balanced ($\quad \lambda=1)$ sub-design (u sub-blocks of size c)
then there exists an optimal c-splitting authentication code such that
(1) $|M|=v,|S|=u$;
(2) each source state occurs with equal probability.

App. 4 (Balanced and Orthogonal Arrays)

Ordered Form

Each block \mathbf{B}_{i} is partitioned into n sub-blocks and they are placed in an order (some of them can be empty)

$$
\overrightarrow{\mathbf{B}}_{i}=\left(C_{i 1}, C_{i 2}, \ldots, C_{i n}\right), C_{i j} \subseteq \mathbf{B}_{i}
$$

\mathfrak{C}_{j} : the set of j-th sub-blocks $1 \leq j \leq n$

Correspondence between multi-structured blocks and vectors of length \mathbf{v}

Ordered multi-
structured block $\quad V=\{0,1,2, \ldots, v-1\}$

$$
\overrightarrow{\mathbf{B}}_{i}=\left(C_{i 1}, C_{i 2}, \ldots, C_{i n}\right), C_{i j} \subseteq \mathbf{B}_{i}
$$

$(\mathrm{n}+\mathrm{I})$-ary vector of length v

$$
\begin{aligned}
& \mathbf{x}_{i}=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{v-1}\right) \\
& x_{t}= \begin{cases}j & \text { if } t \in C_{i j} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Balanced Array Chakravarti (1956, 1961)

As a generalization of orthogonal array In order to use in orthogonal experiments
$b \times v$ array , entries are from $F=\{0,1,2, \ldots, n\}$
(I) In any two columns, a pair $(x, y) \in F^{2}$ occurs exactly $\mu_{x y}$ times.
(2) $\mu_{x y}=\mu_{y x}$ for any $x, y \in F$

If $\mu_{x y}=\mu$ for any $x, y \in F$, the array is called orthogonal array

1	1	2	1	0	0	0	11	1	0	2	0	2	0
2	1	1	0	0	1	0	12	2	0	1	0	2	0
3	2	0	2	0	0	1	13	1	0	0	1	0	1
4	2	0	0	0	1	2	14	1	0	0	2	0	2
5	0	2	2	2	0	0	15	0	1	1	0	0	1
6	0	1	0	1	2	0	16	0	1	2	0	0	2
7	0	0	1	1	0	2	17	0	2	0	0	1	1
8	0	0	0	2	2	1	18	0	2	0	0	2	2
9	2	1	0	2	0	0	19	0	0	1	2	1	0
10	2	2	0	1	0	0	20	0	0	2	1	1	0

Ordered MSD with Mutually Balanced (r, λ)-designs

[I] $(V, \mathfrak{B}) \quad$ (I) singleton balance (r)
(2) pair balance (λ)
[2] $\left(V, \mathfrak{C}_{j}\right)$
(I) singleton balance $\left(r_{j}\right)$
(2) pair balance $\left(\lambda_{j}\right)$
for $j=1,2, \ldots, n$
[3] External Balance :
For any distinct $x, y \in V$, there are exactly $\mu_{i j}$ super blocks, each of which contains x in the i-th and y in the j-th sub-block.

Example

$$
V=\{0,1,2, \ldots, 6\}
$$

$$
\overrightarrow{\mathbf{B}}_{1}=(\{0,1\},\{2,5\}) \quad \mathbf{x}_{1}=(1,1,2,0,0,2,0)
$$

$$
\overrightarrow{\mathbf{B}}_{2}=(\{0,4\},\{3,6\}) \quad \mathbf{x}_{2}=(1,0,0,2,1,0,2)
$$

$\mu_{00}=4, \mu_{01}=\mu_{02}=3$ and $\mu_{11}=\mu_{12}=\mu_{22}=1$.

$$
\text { Let } \mathfrak{C}_{0}=\left\{V \backslash \mathbf{B}_{i} \mid 1 \leq i \leq b\right\}
$$

Lemma
If the conditions [1] and [2] are satisfied then (V, \mathfrak{C}_{0}) holds singleton and pair balance property

$$
\begin{aligned}
& r_{0}=b-r \\
& \lambda_{0}=b-2 r+\lambda
\end{aligned}
$$

Lemma
Further, if the condition [3] is satisfied for $\mathrm{i}, \mathrm{j}=$ $\mathrm{I}, 2, \ldots \mathrm{n}$ then it works for $0 \leq i, j \leq n$

$$
\mu_{i 0}=\mu_{0 i}=r_{i}-\sum_{j=1}^{n} \mu_{i j}
$$

Theorem (S.Kuriki and R.Fuji-Hara, 1994)
There exists an ordered multi-structured design which satisfies [1],[2] and [3] if and only if there exists a $b \times v$ balanced array with entries from $\mathrm{F}=\{0, \mathrm{I}, \ldots, \mathrm{n}\}$ and parameters $\mu_{x y}, 0 \leq x, y \leq n$

31

Example $\quad V=\{1,2,3,4,5,6\}$

$\left.\begin{array}{llll:l}(1,3 & 2\end{array}\right) \quad(3,1,5)$

The Intermission
休憩

33

[^0]: e_{0}

