Cyclic MultiStructured Designs and Sequences

Ryoh Fuji-Hara University of Tsukuba

Joint work with Ying Miao

Sequence, Difference and Hamming Correlation

$V=\mathbf{Z}_{v} \quad$ the cyclic group of order v
Automorphism $\quad \sigma: V \rightarrow V \quad(V, \mathfrak{B})$ $\sigma: i \mapsto i+1 \quad(\bmod v)$

For any block $\mathbf{B} \in \mathfrak{B}$,

$$
\sigma(\mathbf{B})=\{\sigma(b) \mid b \in \mathbf{B}\}
$$

is also a block of \mathfrak{B}

Sequence

$$
X=\left(x_{0}, x_{1}, x_{2}, x_{3}, \cdots, x_{v-1}\right)
$$

Block

$$
\begin{aligned}
& \tilde{\mathbf{B}}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}, C_{i} \subseteq \mathbf{B} \\
& C_{0}=V \backslash \cup_{i=1}^{n} C_{i}
\end{aligned}
$$

Relation
$C_{i}=\operatorname{supp}_{X}(i)=\left\{j \mid x_{j}=i, 0 \leq j<v\right\}$
for $i=0,1,2, \ldots, n$

Example

$X_{1}=(1, I, 0,0,1,0,0,0,0,0,0,0,0,0,0)$
$X_{2}=(1,0, I, 0,0,0,0,0,1,0,0,0,0,0,0)$
$B_{1}=\{\{0,1,4\}\}$
$B_{2}=\{\{0,2,8\}\}$

Binary Sequences

$$
\begin{aligned}
& X=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{v-1}\right), \\
& Y=\left(y_{0}, y_{1}, y_{2}, \ldots, y_{v-1}\right), x_{i}, y_{i} \in\{0,1\}
\end{aligned}
$$

Hamming correlation

$$
\begin{gathered}
H_{X, Y}^{(1)}(t)=\sum_{i=0}^{v-1} h_{1}\left(x_{i}, y_{i+t(\bmod v)}\right), 0 \leq t<v, \\
h_{z}(a, b)= \begin{cases}1 & \text { if } a=b=z \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

If $X=Y$, it is called auto-correlation,

Example

$$
\begin{aligned}
& X_{1}=(I, I, 0,0, I, 0,0,0,0,0,0,0,0,0,0) \\
& X_{2}=(1,0,1,0,0,0,0,0, I, 0,0,0,0,0,0) \\
& X_{1}=(1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0) \\
& \quad(0,0,0,1,1,0,0, I, 0,0,0,0,0,0,0) \quad x_{i+12}(\bmod 15) \\
& H_{X_{1}, X_{1}}(12)=1
\end{aligned}
$$

Unordered Blocks with single sub-block

$$
\begin{aligned}
& \tilde{\mathbf{B}}_{1}=\left\{\left\{C_{1}\right\}\right\}, C_{1} \subseteq \mathbf{B}_{1} \\
& \tilde{\mathbf{B}}_{2}=\left\{\left\{C_{2}\right\}\right\}, C_{1} \subseteq \mathbf{B}_{2}
\end{aligned}
$$

Internal Differences
$\Delta_{v}\left(C_{1}\right)=\left\{x-y(\bmod v) \mid x, y \in C_{1}\right\}$
External Differences
$\Delta_{v}\left(C_{1}, C_{2}\right)=\left\{x-y(\bmod v) \mid x \in C_{1}, y \in C_{2}\right\}$

Example

$$
C_{1}=\{0,1,4\}, C_{2}=\{0,2,8\}
$$

Internal Differences

$\Delta_{15}\left(C_{1}\right)=\{1,3,4,14,12,11\}, \Delta_{15}\left(C_{2}\right)=\{2,6,8,13,9,7\}$

External Differences

$$
\Delta_{15}\left(C_{1}, C_{2}\right)=\{0,1,4,13,14,2,8,11\}
$$

Cross correlation

$\Delta_{15}(\{0,2,6\},\{3,5,8\})=\{1,2,3,3,5,6,8,12,14\}$ $\lambda_{3}(\{0,2,6\},\{3,5,8\})=2$

App. 5 (Optical Orthogonal Code)

$\left(v, k, \lambda_{a}, \lambda_{c}\right)$-OOC (Salehi 1989)
A set of $\{0,1\}$-sequences length $\mathrm{v} X_{1}, X_{2}, \ldots, X_{n}$ with Hamming weight k satisfying

$$
\begin{aligned}
& H_{X_{i}, X_{i}}^{(1)}(t) \leq \lambda_{a} \text { for all } 1 \leq t<v \\
& H_{X_{i}, X_{j}}^{(1)}(t) \leq \lambda_{c} \text { for all } 0 \leq t<v \\
& 1 \leq i, j \leq n, i \neq j
\end{aligned}
$$

$\lambda_{t}\left(C_{1}\right)$ and $\lambda_{t}\left(C_{1}, C_{2}\right)$ are the numbers of the integer t contained in $\Delta_{v}\left(C_{1}\right)$ and $\Delta_{v}\left(C_{1}, C_{2}\right)$, respectively

Property

$$
\begin{aligned}
& \lambda_{t}\left(C_{1}\right)=H_{X_{1}, X_{1}}^{(1)}(t) \\
& \lambda_{t}\left(C_{1}, C_{2}\right)=H_{X_{1}, X_{2}}^{(1)}(t)
\end{aligned}
$$

Theorem (Bird and Keedwell)

If there exists a cyclic Steiner t-design $S(t ; k, v)$, then there exists an optimal (v,k,t-1)-OOC.

Related Code

Conflict-avoiding code (Levenshtein)

A code deleting the auto-correlation condition from OOC with

$$
\lambda_{c}=1
$$

Condition

$$
H_{X_{i}, X_{j}}^{(1)}(t) \leq 1 \text { for all } 0 \leq t<v, 1 \leq i, j \leq n, i \neq j
$$

App. 6 (Comma Free Code)

15

Structure of Codeword

Ordinal Codeword

Comma Free Codeword

Separator

16

If every element of $\mathbf{Z}_{v} \backslash\{0\}$ appears in $\sum_{i \neq j} \Delta_{v}\left(C_{i}, C_{j}\right)$
at least ρ times, then

$$
\begin{aligned}
\tilde{\mathbf{B}}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}, & C_{i} \subseteq \mathbf{Z}_{v} \\
& C_{i} \cap C_{j}=\emptyset
\end{aligned}
$$

is called a DSS (Difference System of Sets),
denoted by $\operatorname{DSS}(v, n, \rho)$

$$
\text { regular: if }\left|C_{i}\right|=k \text { for all } 1 \leq i \leq n
$$

Theorem

$$
D S S(v, n, \rho) \quad \tilde{\mathbf{B}}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\} \text { exists }
$$

if and only if
there exists an n - ary comma free code, where
length is v
length of separators is $s=\sum_{i=1}^{n}\left|C_{i}\right|$
minimum separation distance is ρ

App. 7 (Frequency Hopping Sequence)

Frequences $\quad \mathcal{F}=\{0,1,2, \ldots, n\}$
Sequence $\quad X=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right), x_{i} \in \mathcal{F}$
an ($\mathrm{n}+1$)-ary sequence
auto-correlation
$H_{X, X}(t)=\sum_{k=0}^{n} H_{X, X}^{(k)}(t)$
cross-correlation $\quad H_{X, Y}(t)=\sum_{k=0}^{n} H_{X, Y}^{(k)}(t)$

Correlations

$$
\begin{aligned}
& H(X)=\max _{1 \leq t<v}\left\{H_{X, X}(t)\right\} \\
& H(X, Y)=\max _{0 \leq t<v}\left\{H_{X, Y}(t)\right\} \\
& M(X, Y)=\max \{H(X), H(Y), H(X, Y)\}
\end{aligned}
$$

22

Bounds

Lempel and Greenberger(1974)
Fuji-Hara, Miao and Mishima(2004)

$$
\mathrm{X}: \text { an m-ary sequence of length } v
$$

$H(X) \geq\lceil v / m\rceil$ when $v \neq m$
Peng and Fan (2004)
\mathcal{X} : a set of m-ary sequences of length $v,|\mathcal{X}|=n$

$$
M(\mathcal{X})=\max \left\{\max _{X \in \mathcal{X}} H(X), \max _{X, Y \in \mathcal{X}, X \neq Y} H(X, Y)\right\}
$$

$$
M(\mathcal{X}) \geq\left\lceil\frac{(v n-m) v}{(v n-1) m}\right\rceil
$$

The set of sequences meeting the bound is called optimal Frequency Hopping Sequences ${ }_{24}$

MSD and FH sequences

$$
\begin{gathered}
\overrightarrow{\mathbf{B}}_{1}=\left(C_{0}, C_{1}, \ldots, C_{n}\right), C_{i} \subseteq \mathbf{Z}_{v} \quad \cup C_{i}=\mathbf{Z}_{v} \\
\overrightarrow{\mathbf{B}}_{2}=\left(D_{0}, D_{1}, \ldots, D_{n}\right), D_{i} \subseteq \mathbf{Z}_{v} \quad \cup D_{i}=\mathbf{Z}_{v} \\
C_{i}=\operatorname{supp}_{X}(i), \quad D_{i}=\operatorname{supp}_{Y}(i)
\end{gathered}
$$

Differences

$$
\mathcal{B}_{1}=\sum_{i=0}^{n} \Delta_{v}\left(C_{i}\right), \mathcal{B}_{12}=\sum_{i=0}^{n} \Delta_{v}\left(C_{i}, D_{i}\right)
$$

Correlations

$$
\begin{aligned}
& H(X)=\max _{t} \lambda_{t}\left(\mathcal{B}_{1}\right) \\
& H(X, Y) \underset{25}{ } \max _{t} \lambda_{t}\left(\mathcal{B}_{12}\right)
\end{aligned}
$$

Example $\quad v=24, n+1=3$

$X=(0, I, 2, I, 2,2,0,2, I, 2, I, I, 0,2,0,2,2, I, 0,0, I, I, 0,0)$
$Y=(I, 2,0,2,0,0, I, 0,2,0,2,2, I, 0, I, 0,0,2, I, I, 2,2, I, I)$

$$
\begin{array}{ll}
C 0=\{0,6,12,14,18,19,22,23\}, & \\
C 1=\{1,3,8,10,11,17,20,21\}, & \\
C 2=\{2,4,5,7,9,13,15,16\})=8 \\
\text { D0 }=\{2,4,5,7,9,13,15,16\}, & \\
\text { DI }=\{0,6,12,14,18,19,22,23\}, & H(Y)=8 \\
\text { D2 }=\{1,3,8,10,11,17,20,21\} & \\
& H(X, Y)=10
\end{array}
$$

Related Code

Cyclic Code and FHS

$\mathcal{X} \quad$: a set of FH sequences of m symbols and length $v,|\mathcal{X}|=n$ $M(\mathcal{X})=h$

m-ary Cyclic Code code length: v the number of codewords: $n v$ minimum distance: $v-h$

UWB correlation

$$
\begin{array}{ll}
\underset{(\text { m-ary sequence })}{\text { Time hopping sequence }} & X=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{v-1}\right) \\
\text { Binary sequence } & A=\left(a_{0}, a_{1} . a_{2}, \ldots, a_{m v-1}\right)
\end{array}
$$

$a_{i}= \begin{cases}1 & \text { if there is an integer } j \text { such that } i=j m+x_{j} \\ 0 & \text { other wise }\end{cases}$ 0 other wise.

$$
H_{X X}(l)=\sum_{k=0}^{m v-1} a_{k} a_{k+l}
$$

see Chu and Colbourn 2004

UWB correlation (by differences)

$\overrightarrow{\mathbf{B}}_{X}=\left(C_{0}, C_{1}, \ldots, C_{m-1}\right), C_{i}=\operatorname{supp}_{X}(i)$
$\overrightarrow{\mathbf{B}}_{Y}=\left(D_{0}, D_{1}, \ldots, D_{m-1}\right), D_{i}=\operatorname{supp}_{Y}(i)$
Lemma
Let $\mathcal{B}_{X Y}(t)=\sum_{i=0}^{m-1} \Delta_{v}\left(C_{i}, D_{i}^{\prime}\right)$, where

$$
D_{i}^{\prime}= \begin{cases}D_{m-t+i}+1(\bmod v) & \text { for } 0 \leq i \leq t-1 \\ D_{i-t} & \text { for } t \leq i \leq m-1\end{cases}
$$

then UWB correlation is

$$
M_{X, Y}(l)=\lambda_{s}\left(\mathcal{B}_{X Y}(t)\right), \text { where } l=s m+t
$$

Maximum correlation $M(X, Y)=\max _{s, t} \lambda_{s}\left(\mathcal{B}_{X Y}(t)\right)$
Note: $D_{i}^{\prime}, i=0,1,2 \ldots m-1$, ar2 not mutually disjoint

When $X=Y$

$$
\begin{array}{c|c|}
\Delta\left(C_{0},\right. & \left.C_{m-t}+1\right) \\
\Delta\left(C_{1},\right. & \left.C_{m-t+1}+1\right) \\
\vdots & \vdots \\
\Delta\left(C_{t-1}, C_{m-1}+1\right)
\end{array} \quad t
$$

Theorem

If there exists a partition of V

$$
C_{0}, C_{1}, \ldots, C_{m-1}
$$

such that external difference of every pair of distinct subsets is perfect

$$
\Delta_{v}\left(C_{i}, C_{j}\right)=\lambda\left(\mathbf{Z}_{v} \backslash\{0\}\right)
$$

then auto-correlation of the UWB sequence is minimum.

Open problem: Is there a such sets ?
Example $\quad v=e f+1=4 \cdot 4+1$

$\mathrm{C}_{0}=\{1,13,16,4\}$	$\mathrm{D}^{\prime}{ }_{0}=\mathrm{C}_{2}+1=\{10,16,9,3\}$
$\mathrm{C}_{1}=\{3,5,14,12\}$	$\mathrm{D}^{\prime}{ }_{1}=\mathrm{C}_{3}+1=\{11,12,8,7\}$
$\mathrm{C}_{2}=\{9,15,8,2\}$	$\mathrm{D}^{\prime}{ }_{2}=\mathrm{C}_{4}+1=\{1\}$
$\mathrm{C}_{3}=\{10,11,7,6\}$	$\mathrm{D}^{\prime}{ }_{3}=\mathrm{C}_{0}=\{1,13,16,4\}$
$\mathrm{C}_{4}=\{0\}$	$\mathrm{D}^{\prime}{ }_{4}=\mathrm{C}_{1}=\{3,5,14,12\}$

$$
M(X, X)=5
$$

34

App. 9

New Problem
(Multi-access Comma Free Code)

Two or more codes are used on a channel

3 Cases

Case I

Case 2

Case 3

Condition 2

$\operatorname{In} \sum_{i \neq j} \Delta_{v}\left(A_{i}, B_{j}\right)$, every element of \mathbb{Z}_{v}
appears at least $\mu(\geq 1)$ times.
($(\mathcal{A}, \mathcal{B})$ is called Mutual Difference System of Sets, $\operatorname{MDSS}(\nu, m, \mu))$
Note: $\quad(\mathcal{A}, \mathcal{B})$ is a $\operatorname{MDSS}(\mathrm{v}, \mathrm{m}, \mu) \ll>(\mathcal{B}, \mathcal{A})$ is a $\operatorname{MDSS}(\mathrm{v}, \mathrm{m}, \mu)$
Let $\quad C_{i}=A_{i} \cup\left(B_{i}+v\right)$

$$
\mathcal{C}=\left(C_{i} \mid i=0,1, \ldots, m-1\right)
$$

Condition 3

$\ln \sum_{i \neq j} \Delta_{2 v}\left(C_{i}, A_{j}\right)$ and $\sum_{i \neq j} \Delta_{2 v}\left(C_{i}, B_{j}\right)$
every element of $\mathbb{Z}_{2 v}$ appears at least $\sigma(\geq 1)$ times.
$((\mathcal{C}, \mathcal{A})$ and $(\mathcal{C}, \mathcal{B})$ are $\operatorname{MDSS}(2 v, m, \sigma))$

39

Example, From a Line Partition of PG(4,2)
$\mathcal{A}(\{1,14,15\},\{2,28,30\},\{4,25,29\},\{8,19,27\},\{16,7,23\})$
$\mathcal{B}(\{4,25,29\},\{8,19,27\},\{16,7,23\},\{1,14,15\},\{2,28,30\})$
$\mathcal{C} \quad\{1,14,15,35,56,60\},\{2,28,30,39,50,58\}$,
$\{4,25,29,47,38,54\},\{8,19,27,32,45,46\}$,
$\{16,7,23,33,59,61\})$

Cond. I: $\quad \mathcal{A}$ and \mathcal{B} are $\operatorname{DSS}(31,5,6)$
Cond. 2: $\quad(\mathcal{A}, \mathcal{B})$ is an $\operatorname{MDSS}(31,5,5)$
Cond. 3: $\quad(\mathcal{C}, \mathcal{A})$ is an $\operatorname{MDSS}(62,5,4)$
$(\mathcal{C}, \mathcal{B})$ is an $\operatorname{MDSS}(62,5,4)$

Hints

$\Delta_{2 v}\left(C_{i}, A_{j}\right)=\Delta_{2 v}\left(A_{i}+\left(B_{i}+v\right), A_{j}\right)$
$=\Delta_{2 v}\left(A_{i}, A_{j}\right)+\Delta_{2 v}\left(\left(B_{i}+v\right), A_{j}\right)$
$=\Delta_{2 v}\left(A_{i}, A_{j}\right)+\left(\Delta_{2 v}\left(B_{i}, A_{j}\right)+v\right)$
$=\operatorname{Mod}\left(\Delta\left(A_{i}, A_{j}\right), 2 v\right)+\left(\Delta\left(B_{i}, A_{j}\right)+v\right)$
Δ : integer differences

Perfect difference Family: $B_{1}, B_{2}, . ., B_{m}$ $\Delta\left(\mathrm{B}_{\mathrm{i}}\right)$: the correction of positive integer differences

If every integer from I to $\mathrm{v} / 2$ appear exactly λ times in $\sum \Delta\left(B_{i}\right)$, it is called a PDF.
(I) $(13,4,1)$-PDF:
$\{0,1,4,6\}=\Rightarrow 1,4,3,6,5,2$
(2) $(49,4,1)-\mathrm{PDF}$:
$\{0,5,22,24\}=\Rightarrow 5,22,17,24,19,2$
$\{0,7,13,23\}=\Rightarrow 7,13,6,23,16,10$
$\{0,3,14,18\}=\Rightarrow 3,14,11,18,15,4$
$\{0,1,9,21\}=\Rightarrow 1,9,8,21,20,12$

Open Problem

Is there a (near) perfect difference family

$$
A_{1}, A_{2}, \ldots, A_{m}
$$

such that

- mutually disjoint
- their union is also a (near)PDF

