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Abstract

Permutation decoding was introduced by MacWilliams [Mac64] in the early 60’s.

It can be used when a linear code has a sufficiently large automorphism group to
ensure the existence of a set of automorphisms, called a PD-set, that has some
specifed properties.

This series of talks will describe the method and some recent developments in
finding PD-sets for codes defined through the row-span over finite fields of
incidence matrices of classes of designs or graphs, and adjacency matrices of
classes of regular graphs.
These codes have many properties that can be deduced from the combinatorial
properties of the designs or graphs, and often have a great deal of symmetry and
large automorphism groups.
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Permutation decoding
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Linear codes terminology

� A linear code is a subspace of a finite-dimensional vector space over
a finite field. (All codes are linear here.)

� The weight, wt(x), of a vector x is the number of non-zero
coordinate entries. If a code has smallest non-zero weight d then the
code can correct up to bd−1

2 c errors by nearest-neighbour decoding.

� A code C is [n, k, d]q if it is over Fq and of length n, dimension k ,
and minimum weight d .

� A generator matrix for a [n, k, d ]q code C is a k × n matrix made
up of a basis for C .

� The dual code C⊥ is the orthogonal under the standard inner product
(, ), i.e. C⊥ = {v ∈ F n|(v , c) = 0 for all c ∈ C}.

� A code C is self-orthogonal if C ⊆ C⊥ and is self-dual if C = C⊥.
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Linear codes terminology continued

� A check matrix for C is a generator matrix H for C⊥.

� The syndrome of a vector y ∈ F n is HyT .

� Two linear codes of the same length and over the same field are
isomorphic if they can be obtained from one another by permuting
the coordinate positions.

� An automorphism of a code C is an isomorphism from C to C .

� Any code is isomorphic to a code with generator matrix in standard
form, i.e. the form [Ik |A]; a check matrix then is given by
[−AT | In−k ]. The first k coordinates are the information symbols
and the last n − k coordinates are the check symbols.
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Permutation decoding

From [Huf98, Mac64, MS83] and [KMM05, KV05]

Definition

C is a t-error-correcting code with information set I and check set C.
A PD-set for C is a set S of automorphisms of C which is such that
every t-set of coordinate positions is moved by at least one member of S
into the check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that
every s-set of coordinate positions is moved by at least one member of S
into C.

In particular, if I = {1, . . . , k} and C = {k + 1, . . . , n}, then every s-tuple
from {1, . . . , n} can be moved by some element of S into C.
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Algorithm for permutation decoding

C is a [n, k, d ]q code where d = 2t + 1 or 2t + 2.
G = [Ik |A] is a k × n generator matrix for C :
Any k-tuple v is encoded as vG .
The first k columns are the information symbols, the last n − k are check
symbols.
H = [−AT |In−k ] is an (n − k)× n check matrix for C :
S = {g1, . . . , gm} is a PD-set for C , written in some chosen order.
Suppose x is sent and y is received and at most t errors occur:

� for i = 1, . . . ,m, compute ygi and the syndrome si = H(ygi )
T until

an i is found such that the weight of si is t or less;

� if u = u1u2 . . . uk are the information symbols of ygi , compute the
codeword c = uG ;

� decode y as cg−1
i .
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Why permutation decoding works

Result

Let C be an [n, k , d ]q t-error-correcting code.
Suppose H is a check matrix for C in standard form, i.e. such that In−k is
in the check positions.

Let y = c + e be a vector in Fn
q, where c ∈ C and e has weight ≤ t.

Then the information symbols in y are correct if and only if

wt(HyT ) ≤ t.
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Proof

Proof: Suppose C has generator matrix G in standard form, i.e.
G = [Ik |A] and that the encoding is done using G , i.e. the data set
x = (x1, . . . , xk) is encoded as xG .
The information symbols of a vector in Fn

q are the first k symbols.

The check matrix is H = [−AT |In−k ].
Suppose the information symbols of y = c + e are correct, c ∈ C . Then

HyT = H(cT + eT ) = HeT = eT ,

since the first k coordinates of e are 0. Thus wt(HyT ) ≤ t.
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Proof continued

Conversely, suppose that not all the information symbols are correct. Then
if e = e1 . . . en, and e ′ = e1 . . . ek , e ′′ = ek+1 . . . en, we assume that e ′ is
not the zero vector. Now use the fact that for any vectors

wt(x + y) ≥ wt(x)− wt(y).

Then

wt(HyT ) = wt(HeT ) = wt(−AT e ′
T

+ e ′′
T

)

≥ wt(−AT e ′
T

)− wt(e ′′
T

) = wt(e ′A)− wt(e ′′)

= wt(e ′A) + wt(e ′)− wt(e ′)− wt(e ′′) = wt(e ′G )− wt(e)

≥ d − t ≥ t + 1

since d ≥ 2t + 1, which proves the result. �
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Minimum size for a PD-set

Counting shows that there is a minimum size a PD-set can have; most the
sets known have size larger than this minimum. The following is due to
Gordon [Gor82], using a result of Schönheim [Sch64]:

Result

If S is a PD-set for a t-error-correcting [n, k, d ]qcode C , and r = n − k,
then

|S| ≥
⌈

n

r

⌈
n − 1

r − 1

⌈
. . .

⌈
n − t + 1

r − t + 1

⌉
. . .

⌉⌉⌉
.

(Proof in Huffman [Huf98].)
This result can be adapted to s-PD-sets for s ≤ t by replacing t by s in
the formula.
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Example meeting bound

Example: The binary extended Golay code, parameters [24, 12, 8], has
n = 24, r = 12 and t = 3, so

|S| ≥
⌈

24

12

⌈
23

11

⌈
22

10

⌉⌉⌉
= 14

and PD-sets of this size has been found (see Gordon [Gor82] and
Wolfmann [Wol83]).
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Designs, geometries and graphs
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Designs

An incidence structure D = (P,B, I), or (P,B), with point set P, block
set B and incidence I ⊆ P × B, is a t-(v , k , λ) design, if

|P| = v ,

every block B ∈ B is incident with precisely k points,

every t distinct points are together incident with precisely λ blocks.
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Codes from designs

The code of the design D over the finite field F is the space
spanned by the incidence vectors of the blocks over F .

If D = (P,B) and Q ⊆ P, then

vQ

is the incidence vector of Q .

Thus the code of a design over F is

C =
〈

vB |B ∈ B
〉
,

and is a subspace the full vector space FP of functions from P to F .
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Finite geometries

Fq denotes the finite field of order q.

The set of points and r -dimensional subspaces of an m-dimensional
projective geometry forms a 2-design PGm,r (Fq).

The set of points and r -dimensional flats of an m-dimensional affine
geometry forms a 2-design, AGm,r (Fq).

The automorphism groups of these designs (and codes) are the full
projective or affine semi-linear groups, PΓLm+1(Fq) or AΓLm(Fq),
and are 2-transitive on points.

If q = pe where p is a prime, the codes of these designs are over Fp

and are subfield subcodes of the generalized Reed-Muller codes and
the dimension and minimum weight is known in each case: see
[AK92, Theorem 5.7.9].
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Graphs

The graphs, Γ = (V ,E ) with vertex set V and edge set E , discussed here
are undirected with no loops.

If x , y ∈ V and x and y are adjacent, so x ∼ y , [x, y] denotes the
edge in E between them.

A graph is regular if all the vertices have the same valency.

An adjacency matrix A of a graph with N vertices is an N × N
matrix with entries aij such that aij = 1 if vertices vi and vj are
adjacent, and aij = 0 otherwise.
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Graphs continued

The neighbourhood design of a regular graph of valency k is the
1-(N, k , k) symmetric design formed by taking the points to be the
vertices, and the blocks to be the sets of neighbours of a vertex, for
each vertex.

An incidence matrix of Γ is an N × |E | matrix B with bi ,j = 1 if the
vertex labelled by i is on the edge labelled by j , and bi ,j = 0 otherwise.

If Γ is regular with valency k , then the 1-(Nk
2 , k , 2) design with

incidence matrix B is called the incidence design of Γ.

The line graph L(Γ) of Γ = (V ,E ) is the graph with vertex set E and
e and f in E are adjacent in L(Γ) if e and f as edges of Γ share a
vertex in V .
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Graphs continued

The code of Γ over Fp is the row span of an adjacency matrix A over
Fp, denoted Cp(Γ) = Cp(A) = Cp(D), where D is the neighbourhood
design. So dim(Cp(Γ)) = rankp(A).

If B is an incidence matrix for Γ, Cp(B) is Cp(G) where G is the
incidence design if Γ is regular.

If [xi , xi+1] for i = 1 to r − 1, and [xr , x1] are all edges of Γ, and the
xi are all distinct, then the sequence written (x1, . . . , xr ) will be called
a closed path of length r for Γ.
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Line graphs

If M is an adjacency matrix for L(Γ) where Γ is regular of valency k , N
vertices, e edges, A is an adjacency matrix, and B an incidence matrix, for
Γ, then

BBT = A + kIN and BT B = M + 2Ie .

So, for the binary code, C2(L(Γ)) ⊆ C2(B). These equations tell us little
for codes over Fp for p odd.
However, we get nothing more of interest from Cp(L(Γ)) when p is odd,
because ...
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Codes from adjacency matrices of line graphs

Γ = (V ,E ), D(Γ) its neighbourhood design.
[P,Q] ∈ E is a point of the line graph L(Γ) and [P,Q] is a block of
D(L(Γ)):

[P,Q] = {[P,R] | R 6= Q} ∪ {[R,Q] | R 6= P}.

Lemma

Let Γ be a graph and [P,Q,R, S ] a closed path in Γ, p an odd prime.
Then

v [P,Q] + v [R,S] − v [P,S] − v [Q,R] ∈ Cp(L(Γ)).

Proof:

v [P,Q] + v [R,S] − v [P,S] − v [Q,R] = −2(v [P,Q] + v [R,S] − v [P,S] − v [Q,R]),

�
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Finding PD-sets

First we need an information set. These are not known in general.
Different information sets will yield different possibilities for PD-sets,
and for some information sets there can be no PD-set.

For symmetric designs with a symmetric incidence matrix (e.g.
desarguesian projective planes), a basis of incidence vectors of blocks
will yield a corresponding information set, by duality. This links to the
question of finding bases of minimum-weight vectors in the geometric
case, again something not known in general.

For planes, Moorhouse [Moo91] or Blokhuis and Moorhouse [BM95]
give bases in the prime-order case. For the designs of points and
hyperplanes of prime order see [KMM06]

NOTE: Magma [CSW06, BCP97] has been a great help in looking at small
cases to get the general idea of what to might hold for the general case
and infinite classes of codes.
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Cyclic codes and generalizations

MacWilliams [Mac64] found PD-sets for cyclic codes.
An [n, k , d ]q code C is cyclic if whenever c = c1c2 . . . cn ∈ C then every
cyclic shift of c is in C . So τ ∈ Sn defined by

τ : i 7→ i + 1

for i ∈ {1, 2, . . . n}, is in the automorphism group of C , and τn = 1.
If a message c is sent and t errors occur, then if e is the error vector and if
there is a sequence of k zeros between two of the error positions, then τ j

for some j will move the sequence of zeros into the information positions,
and thus the t errors will be in the check positions.
Thus the cyclic group < τ > will be a PD-set for C if k < n

t .
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s-PD-sets for any information set

Result ([KMM06])

Let C = [n, k , d ]p, I an information set, C the corresponding check set
and G ≤ Aut(C ).
Let m = max(|O ∩ I|/|O|) over the G -orbits O.
If s = min(d 1

me − 1, bd−1
2 c), then G is an s-PD-set for C .

This result is true for any information set.
If the group G is transitive then m = k/n.
Thus sharply 1-transitive subgroups would be best for this result.
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Incidence matrix for a graph

Result 3 is applicable to codes from incidence matrices of connected
regular graphs with automorphism groups transitive on edges:

Result ([FKM])

Let Γ = (V ,E ) be a regular graph of valency k with an automorphism
group A transitive on edges.
Let G be an incidence matrix for Γ. If, for p a prime,

Cp(Γ) = [|E |, |V | − ε, k]p,

where ε ∈ {0, 1, . . . , |V | − 1}, then any transitive subgroup of A will serve
as a PD-set for full error correction for Cp(Γ).

This is used in the following sections discussing PD-sets for some classes
of graphs.
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Classes for which PD-sets or s-PD-sets found

NOTE:

Individual codes from designs, graphs or elsewhere can be studied or
computed with the help of Magma [CSW06, BCP97], and information
sets, and PD-sets, or s-PD-sets found.
Our interest here is with general methods that apply to infinite classes of
designs or graphs, or finite geometries.
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Classes of graphs

Codes from adjacency and incidence matrices for the classes:

Triangular graphs L(Kn) and incidence designs of Kn;

Lattice graphs L(Kn,n)and incidence designs of Kn,n;

Rectangular lattice graphs L(Kn,m);

Line graphs of complete multi-partite graphs Knm ;

Paley graphs;

Uniform subset graphs on 3-sets;

Hamming graphs Hk(n,m).
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Classes of finite geometries

Desarguesian affine and projective planes of prime order;

Cp(AG3,1(Fp)) for p prime;

Cp(AGm,m−1(Fp)) and Cp(PGm,m−1(Fp))for p prime;

First- and second-order Reed Muller codes.
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Example from a class of graphs
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EXAMPLE: Lattice graph, L2(n) = L(Kn,n)

From [KR, KS08]
The lattice graph L2(n) is the line graph of the complete bipartite graph
Kn,n. We will try permutation decoding on C2(L2(n)), but first look at the
p-ary code of the incidence design of Kn,n.
For n ≥ 2, let Gn be the 1-(n2, n, 2) incidence design of Kn,n.
The point set of Gn is Pn = A× B, where
A = {a1, . . . , an} and B = {b1, . . . , bn},
i.e. the edges of Kn,n.
An incidence matrix Gn has first n rows labelled by the vertices of Kn,n in
A, and the next n rows by B. The columns are labelled

[a1, b1], . . . , [a1, bn], [a2, b1], . . . [a2, bn], . . . , [an, b1], . . . , [an, bn]. (1)

J.D.Key (keyj@clemson.edu) Permutation decoding ASI Croatia June 2010 31 / 81



Gn

For ai ∈ A, bi ∈ B the blocks of Gn defined by the rows ai and bi are
denoted

ai = {[ai , bj ] | 1 ≤ j ≤ n}, bi = {[aj , bi ] | 1 ≤ j ≤ n}.

Cp(Gn) is the row span of Gn over Fp.
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L2(n)

The lattice graph L2(n) is the line graph L(Kn,n). The rows of an
adjacency matrix Mn for L2(n) give the blocks of the neighbourhood
design Dn of L2(n). We have

GT
n Gn = Mn + 2In2 .

The blocks of Dn (rows of Mn) are

[ai , bj ] = {[ai , bk ] | k 6= j} ∪ {[ak , bj ] | k 6= i}

for each point [ai , bj ] ∈ Pn.

Dn is a symmetric 1-(n2, 2(n − 1), 2(n − 1)) design for n ≥ 2.

Kn,n has closed paths of length 4, so, by Lemma 2, only Cp(L2(n)) for
p = 2 is of any use, and then C2(L2(n)) ⊆ C2(Gn).
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Automorphism groups

The group G = Sn o S2 is the automorphism group of Kn,n.
It acts on the edge set Pn = A× B by its construction as an extension of
the group H = Sn × Sn by S2 = {1, τ}, where τ = (1, 2). The element τ
then acts on H via (α, β)τ = (β, α), for α, β ∈ Sn.
Then G acts as a rank-3 group on Pn as follows:

[ai , bj ]
(α,β) = [aiα , bjβ ], and [ai , bj ]

τ = [aj , bi ]. (2)

Furthermore, G acts on each of these graphs, designs and codes.
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Codes from Gn

Let Ω = {1, . . . , n}.

Lemma

For n ≥ 2, if {i , j , k ,m} ⊆ Ω where i 6= k, and j 6= m, then the vector

u = u([ai , bj ], [ak , bm]) = v [ai ,bj ] + v [ak ,bm] − v [ai ,bm] − v [ak ,bj ] (3)

is in Cp(Gn)⊥ for any prime p.

Proof: This is clear since ( x , u) = 0 for all choices of x ∈ A ∪ B, recalling
that

ai = {[ai , bj ] | 1 ≤ j ≤ n}, bi = {[aj , bi ] | 1 ≤ j ≤ n}.

�
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Codes from Gn continued

Proposition

For n ≥ 2, any prime p,

Cp(Gn) = [n2, 2n − 1, n]p,

where Gn is the incidence design of Kn,n.
For n ≥ 3 the minimum-weight vectors are the scalar multiples of the
incidence vectors of the blocks of Gn.

Proof: It is easy to see that the incidence matrix Gn has rank 2n − 1 over
any field; clearly the minimum weight is at most n.
Now let Bn be the set of supports of the vectors u([ai , bj ], [ak , bm]) as
defined in Equation (3). Then (Pn,Bn) is a 1-(n2, 4, r) design, where
r = (n − 1)2.
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Proof continued

Let w ∈ Cn and Supp(w) = S, where |S| = s. Let P ∈ S. We first count
the number of blocks of Bn through P and another point Q.
Recall that

u = u([ai , bj ], [ak , bm]) = v [ai ,bj ] + v [ak ,bm] − v [ai ,bm] − v [ak ,bj ].

Suppose P = [ai , bj ]. Then

1 if Q = [ai , bk ] then P,Q ∈ Supp(u([ai , bj ], [am, bk ]) for all m 6= i ,
giving n − 1 such blocks;

2 if Q = [am, bj ] then P,Q are on n − 1 blocks again;

3 if Q = [am, bk ] where m 6= i , k 6= j , then
P,Q ∈ Supp(u([ai , bj ], [am, bk ]), giving just one block.
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Proof continued

Suppose that in S there are k points of the type [ai , bk ] or [am, bj ], and `
of the type [am, bk ] where m 6= i , k 6= j . Then s = k + `+ 1.
Counting blocks of Bn through the point P, suppose that there are zi that
meet S in i points.
Then z0 = z1 = zi = 0 for i ≥ 5.
Thus r = z2 + z3 + z4 and, counting incidences,
z2+2z3+3z4 = (n−1)k +` = (n−1)(s−`−1)+` = (n−1)(s−1)−`(n−2).
So r = (n − 1)2 ≤ (n − 1)(s − 1)− `(n − 2) ≤ (n − 1)(s − 1) for n ≥ 2.
It follows that s ≥ n for n ≥ 2, and the minimum weight is n.
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Proof continued

Need to show that for n ≥ 3 the vectors of weight n are the scalar
multiples of the blocks of Gn. Recall that P = [ai , bj ].
Suppose s = n with the same notation as above. Putting s = n in the
equations we get

(n − 1)2 ≤ z2 + 2z3 + 3z4 = (n − 1)2 − (n − 2)`.

Since n − 2 > 0 this implies that ` = 0, and
r = z2 + z3 + z4 = z2 + 2z3 + 3z4. Thus z3 = z4 = 0, k = n − 1 and
S \ {P} consists of at least n − 1 ≥ 2 points and they are all of the form
[ai , bk ] or [am, bj ].
Suppose there are k1 of the form [ai , bk ] and k2 of the form [am, bj ]. If
k1 = 0 or k2 = 0 then S = ai or bj . If k1, k2 ≥ 1 then we can make the
same counting argument using the point [ai , bk ] for P and get a
contradiction for ` = 0.
Thus S = ai , say. If w 6= α vai for some α ∈ Fp then wt(w + β vai ) < n
for some β ∈ Fp, contradicting the minimum weight being n. �
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PD-sets for Cp(Gn)

Proposition

If Cn = Cp(Gn) where n ≥ 3, and p is any prime, then

In = {[ai , bn] | 1 ≤ i ≤ n} ∪ {[an, bi ] | 1 ≤ i ≤ n − 1}

is an information set for Cn and the set

S = {((n, i), (n, i)) | 1 ≤ i ≤ n},

of elements of Sn × Sn, where (i , j) ∈ Sn is a transposition and (k , k) is
the identity of Sn, is a PD-set for Cn of size n for the information set In.
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Proof

Proof: That In is an information set follows easily. Let Cn be the
corresponding check set.
To prove that S is a PD-set for Cn, note that Cn can correct t = bn−1

2 c
errors. Let

T = {[ai1 , bji ], . . . , [ait , bjt ]}

be a set of t points of Pn, and
Ω1 = {i1, . . . , it}, Ω2 = {j1, . . . , jt}, O = Ω1 ∪ Ω2.
Then since t ≤ n−1

2 , |O| ≤ 2t ≤ n − 1.
If n 6∈ O then we use the identity ι.
If n ∈ O then there is a k ∈ Ω, k 6= n, such that k 6∈ O and the element
((n, k), (n, k)) will move T into Cn.
Thus S is a PD-set. �

NOTE: Result 2 gives the bounds n
2 for n even, and n+3

2 for n odd for the
smallest size possible for a PD-set.
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C2(L2(n))

From GT
n Gn = Mn + 2In2 , where Mn is an adjacency matrix for L2(n) we

get C = C2(Mn) ⊆ C2(Gn).
Let V be the row span of GT

n over F2. Then dim(V ) = 2n − 1. The map
τ : V → C is defined by τ : v = (v1, . . . , v2n) 7→ (v1, . . . , v2n)Gn, so that
V τ = C and dim(C ) + dim ker(τ) = dim(V ) = 2n − 1. A vector v is in
the kernel if and only if v ∈ V and vGn = 0, and since Gn = 0, where
 = 2n, we need to see if  ∈ V . This is easy to prove, so
dim(C ) = 2n − 2.
Let En = { v x − v y | x , y ∈ A ∪ B}.
Then C2(L2(n)) = C2(En), the row span of En over F2.
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Cp(En)

More generally, consider Cp(En), any prime p.

Proposition

For n ≥ 3, any prime p, Cp(En) = [n2, 2n − 2, 2n − 2]p and the words of

weight 2n − 2 are the scalar multiples of vai − vbj , for 1 ≤ i , j ≤ n.

Proof: To be found in [KR].

In particular, this is true for C2(L2(n)) = C2(En).
(See also [Ton88, HPvR99])
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PD-sets for Cp(En)

Proposition

For n ≥ 3, p any prime,

I∗n = {[ai , bn] | 2 ≤ i ≤ n} ∪ {[an, bi ] | 1 ≤ i ≤ n − 1}

is an information set for Cp(En) and the set

S = {((n, i), (n, j)) | 1 ≤ i , j ≤ n}, (4)

of elements of Sn × Sn, where (i , j) ∈ Sn is a transposition and (k , k) is
the identity of Sn, is a PD-set of size n2 for Cp(En) using I∗n.
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Proof

Proof: That I∗n is an information set follows easily. Let Cn be the
corresponding check set. To prove that S is a PD-set for Cp(En), note
that the code can correct up to n − 2 errors. Let

T = {[ai1 , bji ], . . . , [ait , bjt ]}

be a set of t ≤ n − 2 points of Pn, and
Ω1 = {i1, . . . , it}, Ω2 = {j1, . . . , jt}, O = Ω1 ∪ Ω2.
If n 6∈ O then we use the identity ι.
Otherwise, since t ≤ n − 2 there is a k 6= n, k 6∈ Ω1 and an ` 6= n, ` 6∈ Ω2,
and ((n, k), (n, `)) will move T into Cn. Thus S is a PD-set, of size n2. �

NOTE: This is the PD-set used in the binary case in [KS08].
Result 2 gives a bound linear in n.
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Time complexity of permutation decoding

The worst-case time complexity for the decoding algorithm using an
s-PD-set of size m on an [n, k , d ]q code is O(nkm).
So we want small PD-sets.
Since the algorithm uses an ordering of the PD-set, good choices of the
ordering of the elements can reduce the complexity.

For example:
find an s-PD-set Ss for each 0 ≤ s ≤ t such that

S0 < S1 . . . < St

and arrange the PD-set S in this order:

S0 ∪ (S1 \ S0) ∪ (S2 \ S1) ∪ . . . ∪ (St \ St−1).

(Usually take S0 = {id}).
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Complexity of permutation decoding

The following can be used to order the PD-set for the binary code of the
square lattice graph.

Result ([Sen07])

For the [n2, 2(n − 1), 2(n − 1)]2 code from the lattice graph L2(n), using
the information set

I∗n = {[ai , bn]|2 ≤ i ≤ n − 1} ∪ {[an, bi ]|1 ≤ i ≤ n},

for 0 ≤ k ≤ t = n − 2,

Sk = {((i , n), (j , n))|n − k ≤ i , j ≤ n}

is a k-PD-set.
( (n, n) is the identity permutation in Sn.)
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Complexity of permutation decoding

Thus ordering the elements of the PD-set as

S0, S1 \ S0, S2 \ S1, . . . ,Sn−2 \ Sn−3

will result in a PD-set where, if s ≤ t = n − 2 errors occur then the search
through the PD-set need only go as far as sth block of elements. Since the
probability of less errors is highest, this will reduce the time complexity.
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Example from another class of graphs
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Incidence matrices of Paley graphs

Let q be a prime power with q ≡ 1 (mod 4).
The Paley graph, denoted by P(q), has the finite field Fq of order q as
vertex set and two vertices x and y are adjacent if and only if x − y is a
non-zero square in Fq.
The Paley graph is a strongly regular graph of type (q, q−1

2 , q−1
4 − 1, q−1

4 )
and is isomorphic to its complement.
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Codes from the incidence matrices of Paley graphs

In [GK] it is shown that

Result

Let Γ = P(q) where q ≥ 9, q a prime power, and q ≡ 1 (mod 4).

Let Gq be the 1-(q(q−1)
4 , q−1

2 , 2) incidence design of P(q).

Then C = C2(Gq) = [q(q−1)
4 , q − 1, q−1

2 ]2 and for p odd,

C = Cp(Gq) = [q(q−1)
4 , q, d ]p where q−1

2 ≥ d ≥ q−1
2 − 1.

For all p, C can correct q−5
4 errors.

This is proved using a combinatorial argument involving the weight-4
vectors from closed paths of length 4.
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Automorphism group

Let q = qe
1 for some prime q1. For any σ ∈ Aut(Fq) and a, b ∈ Fq with a

a non-zero square, we define the map τa,b,σ on Fq by

τa,b,σ : x 7→ axσ + b, (5)

for x ∈ Fq. Then

Aq = {τa,b,σ | σ ∈ Aut(Fq), a, b ∈ Fq, a a non-zero square} (6)

is the automorphism group of P(q), of order 1
2eq(q − 1).

The group Aq acts on Gq and is transitive on points (edges of P(q)).
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Information sets for q prime

Result

The Paley graph P(q) for q ≥ 9, q ≡ 1 (mod 4) is Hamiltonian and if
(x1, . . . , xq) is a closed path of length q, xi 6= xj for i 6= j , then

I = {[x1, x2], [x2, x3], . . . , [xn−1, xn], [xn, x1]}

is an information set for Cp(Gq) for p odd, and I \ {[xn, x1]} is an
information set for C2(Gq).
In particular, if q is a prime, then

(0, 1, . . . , q − 1)

is a Hamiltonian path.
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PD-sets for q prime

When q is a prime, σ = 1, the identity map, so write

τa,b = τa,b,1

in the notation of Equation (5).
If F∗q =< w > and Kq =< w2 >, the subgroup of squares in the

multiplicative group of the field, of order q−1
2 , we write

Tq = {τ1,b | b ∈ Fq} and Qq = {τa,0 | a ∈ Kq}. (7)

Then Aq = Tq o Qq, and Tq is the group of translations.
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PD-sets for q prime

Proposition ([GK])

Let q be a prime with q ≡ 1 (mod 4), P(q) the Paley graph on Fq, Gq its
incidence design. Let

I = {[0, 1], [1, 2], . . . , [q − 1, 0]}, I∗ = I \ {[q − 1, 0]}.

Then Qq of Equation (7) is a PD-set of size q−1
2 for Cp(Gq) for any prime

p with information set I for p odd, or information set I∗ for p = 2.
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Proof

Proof: For all p, C = Cp(Gq) corrects t = q−5
4 errors, by Result 6.

Let C denote the check positions corresponding to I. We wish to find an
element of Qq that will take a given t-set of points into C.
Let u = w2. The points of Gq are of the form [x , x + uk ] where
0 ≤ k ≤ q−1

2 − 1, and a point is in I if and only if k = 0. Let

T = {[xi , xi + uki ] | 1 ≤ i ≤ t}

be a set of t points. If T ⊆ C then we can use the identity map τ1,0.
Otherwise, since

[xi , xi + uki ]τu`,0 = [xiu
`, xiu

` + uki+`],

where 0 ≤ ` ≤ q−1
2 − 1, if we can choose ` such that ki + ` 6= 0 for all

1 ≤ i ≤ t, then all the points will move into C. Since t = q−5
4 and ` can

be chosen from q−1
2 − 1 values (since ` 6= 0), we can clearly find such an `

for any t-set of points. This argument works for all primes p, taking I∗ in
the binary case. �

J.D.Key (keyj@clemson.edu) Permutation decoding ASI Croatia June 2010 56 / 81



Example from finite geometries
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Codes from finite geometries

If q = pe where p is prime, the code of the desarguesian projective plane
PG2(Fq) of order q has parameters: [q2 + q + 1, (p(p+1)

2 )e + 1, q + 1]p.

For the desarguesian affine plane AG2(Fq), the code is [q2, (p(p+1)
2 )e , q]p.

Similarly, the designs formed from points and subspaces of dimension r in
projective or affine space, have codes whose parameters are known.

The codes are subfield subcodes of the generalized Reed-Muller codes, and
the automorphism groups are the semi-linear groups and doubly transitive
on points.
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Finite desarguesian planes

Thus 2-PD-sets (in fact also 3- and 4-PD-sets) always exist but the bound
for full error-correction of Result 2 is greater than the size of the group
(see [KMM05]) as q gets large, so beyond these bounds PD-sets for full
error correction cannot exist:
E.g., for projective desarguesian planes correcting bq+1

2 c errors:

q = p prime and p > 103;
q = 2e and e > 12;
q = 3e and e > 6;
q = 5e and e > 4;
q = 7e and e > 3;
q = 11e and e > 2;
q = 13e and e > 2;
q = pe for p > 13 and e > 1.

Similar results hold for the affine and dual cases, in all of the designs.

J.D.Key (keyj@clemson.edu) Permutation decoding ASI Croatia June 2010 59 / 81



EXAMPLE: Cp(AG2(Fp))

Find 3-PD-sets for Cp(AG2(Fp)) = [p2,
(p+1

2

)
, p]p, p prime, using the fact

that it is the generalized Reed-Muller code, RFp (p − 1, 2). Take p ≥ 7 so
that the code will correct at least 3 errors.
Need an information set.

J.D.Key (keyj@clemson.edu) Permutation decoding ASI Croatia June 2010 60 / 81



Generalized Reed-Muller codes

The ρth-order generalized Reed-Muller code RFq (ρ,m), of length qm

over the field Fq is defined to be

〈x i1
1 x i2

2 · · · x
im
m | 0 ≤ ik ≤ q − 1, for 1 ≤ k ≤ m,

m∑
k=1

ik ≤ ρ〉.

In particular, RFp ((m − r)(p − 1),m) is the p-ary code of the affine
geometry design AGm,r (Fp) of points and r -flats of AGm(Fp), p prime.
In [KMM06] we found information sets for these codes:

J.D.Key (keyj@clemson.edu) Permutation decoding ASI Croatia June 2010 61 / 81



Information sets for generalized Reed-Muller codes

Result ([KMM06])

Let V = Fm
q , where q = pt and p is a prime, and

Fq = {α0, . . . , αq−1}. Then

I = {(αi1 , . . . , αim) |
m∑

k=1

ik ≤ ν, 0 ≤ ik ≤ q − 1}

is an information set for RFq (ν,m).
If q = p is a prime,

I = {(i1, . . . , im) | ik ∈ Fp, 1 ≤ k ≤ m,
m∑

k=1

ik ≤ ν}

is an information set for RFp (ν,m), by taking αik = ik .
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Example to illustrate the result

q = 3 0 0 0 1 1 2 1 2 2
m = 2 0 1 2 0 1 0 2 1 2

x0
1 x0

2 [0,0] 1 1 1 1 1 1 1 1 1

x0
1 x1

2 [0,1] 0 1 2 0 1 0 2 1 2

x0
1 x2

2 [0,2] 0 1 1 0 1 0 1 1 1

x1
1 x0

2 [1,0] 0 0 0 1 1 2 1 2 2

x1
1 x1

2 [1,1] 0 0 0 0 1 0 2 2 1

x2
1 x0

2 [2,0] 0 0 0 1 1 1 1 1 1

Figure: RF3(2, 2) = C3(AG2(F3)) = [9, 6, 3]3

B = {x i1
1 x i2

2 | 0 ≤ ik ≤ 2, i1 + i2 ≤ 2}.

I = {(i1, i2) | ik ∈ F3, 1 ≤ k ≤ 2, i1 + i2 ≤ 2}
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3-PD-sets for Cp(AG2(Fp))

Result ([KMM08])

Let D = AG2,1(Fp), where p is a prime, the design of points and lines in
the affine plane AG2(Fp), and let C = RFp (p − 1, 2) = [p2,

(p+1
2

)
, p]p be

the p-ary code of D. With information set

I = {(i1, i2) | ik ∈ Fp, 1 ≤ k ≤ 2,
2∑

k=1

ik ≤ (p − 1)},

the group TZ, where T is the translation group and Z is the group of
scalar matrices, is a 3-PD-set for C for p ≥ 7, of size p2(p − 1).
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Proof

Proof: Let for a ∈ Fp, a 6= 0 let δa = aIp2 . Thus Z = {δa | a ∈ Fp, a 6= 0}.
Let H = TZ .
A translation can take any three points to the triple X = (0, 0),
P = (a, b), Q = (c , d) where not all of a, b, c , d are 0 and (a, b) 6= (c , d),
i.e. a 6= c or b 6= d .
Assume that a 6= c (the other case will follow similarly). We find maps in
H that move this triple into the check set C.
Since a 6= c , some element of Z will fix X and map P and Q into the pair
(a, b), (a + 1, d), for some a, b, d , where a ≤ p − 2. For this new triple,
the translation T (p − a− 2, p − 1) will map the triple into C unless
a = p − 2 or b ∈ {1, 2} or d = 1.
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Proof continued

If a = p − 2 = −2 then δ−1 will map the points into a triple with
a = 1, a + 1 = 2, so we need only address the other exclusions. If b = 1
then T (p − a− 2, p − 2) will do unless a = −2 or a = −3, or d = 1, or
d = 2. If a = −2,−3 then use δ−1 as before; if d = 1 then T (k, p − 2) for
k 6∈ {0, 1, p − a, p − a− 1}; if d = 2 then T (p − a− 2, p − 3) will work
unless a ∈ {−2,−3,−4}, in which case we use δ−1 as before. Finally, for
the case d = 1 and arbitrary b, T (p − a− 2, p − 2) will work, unless
b = 1, 2, which cases are covered above.
Finally consider the triple X , P = (0, b), Q = (0, c), b, c 6= 0. For this,
the translation T (p − 1, k), where k 6∈ {0, p − b, p − c}, will work.
All cases are covered. �

J.D.Key (keyj@clemson.edu) Permutation decoding ASI Croatia June 2010 66 / 81



Some other results
(if time permits)
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Points and lines in affine 3-space

Result ([KMM08])

Let D be the 2-(p3, p, 1) design AG3,1(Fp) of points and lines in the affine
space AG3(Fp), where p is a prime, and C = RFp (2(p − 1), 3) = Cp(D).
Then C is a [p3, 1

6p(5p2 + 1), p]p code with information set

I = {(i1, i2, i3) | ik ∈ Fp, 1 ≤ k ≤ 3,
3∑

k=1

ik ≤ 2(p − 1)}.

Let T be the translation group, D the invertible diagonal matrices, and for
each d ∈ Fp with d 6= 0, let δd be the associated dilatation.

Using I, for p ≥ 5, T ∪ T δ p−1
2

is a 2-PD-set for C of size 2p3;

for p ≥ 7, TD is a 3-PD-set for C of size p3(p − 1)3.
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Prime-order (desarguesian) planes

2-and 3-PD-sets exist for any information set ; 4-PD-sets exist for
particular information sets;

Using a Moorhouse [Moo91] basis,
2-PD-sets of 37 elements for the [p2,

(p+1
2

)
, p]p codes of the desarguesian

affine planes of any prime order p and
2-PD-sets of 43 elements for the [p2 + p + 1,

(p+1
2

)
+ 1, p + 1]p codes of

the desarguesian projective planes of any prime order p
were constructed in [KMM05].
Also 3-PD-sets for the code and the dual code in the affine prime case of
sizes 2p2(p − 1) and p2, respectively, were found.
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Adjacency matrices of Paley graphs

If n is a prime power with n ≡ 1(mod 4), the Paley graph ,P(n), has Fn as
vertex set and two vertices x and y are adjacent if and only if x − y is a
non-zero square in Fn.

The row span over a field Fp of an adjacency matrix gives an interesting
code (quadratic residue codes) if and only if p is a square in Fn.
For σ ∈ Aut(Fn), a, b ∈ Fn with a a non-zero square, the set of maps
τa,b,σ : x 7→ axσ + b is Aut(Pn).

For n ≥ 1697 and prime or n ≥ 1849 and a square, PD-sets cannot exist
since the bound of Result 2 is bigger than the order of the group (using
the square root bound for the minimum weight, and the actual minimum
weight q + 1 when n = q2 and q is a prime power).
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Paley graphs

If n is prime, n ≡ 1 (mod 8),

Cp(P(n)) = [n,
n − 1

2
, d ]p

where d ≥
√

n, (the square-root bound) for p any prime dividing n−1
4 .

Cp(P(n)) has a 2-PD-set of size 6 by [KL04].
(The automorphism group is not 2-transitive.)
For the dual code a 2-PD-set of size 10 for all n was found.
( Further results in [Lim05].)
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Hamming graphs

The Hamming graph Hk(n,m) has vertex set Rn, where R is a set of size
m, and x , y adjacent if d(x , y) = k.

These are regular graphs with valency (m − 1)
(n
k

)
.

(E.g. H1(n, 2) = H(n, 2) = Qn, the n-cube.)
The neighbourhood design is a symmetric 1-(qn, (q − 1)

(n
k

)
, (q − 1)

(n
k

)
)

design with incidence matrix an adjacency matrix for the graph.
All these graphs, designs and codes have automorphism group containing
T o Sn, where T is the translation group.
The design can have a bigger automorphism group than that of the graph:
e.g. for the n-cube the design’s automorphism group is (E o Sn) o S2,
where E denotes the translations using even-weight vectors.

J.D.Key (keyj@clemson.edu) Permutation decoding ASI Croatia June 2010 72 / 81



Adjacency matrices of Hamming graphs

The 2- and 3-PD-sets for codes from adjacency matrices of Hamming
graphs:

1 For n even C2(H1(n, 2)) = [2n, 2n−1, n]2 is self-dual and has a
3-PD-set of size n2n inside T o Sn (the group of the graph, acting
imprimitively) [KS07, Fis07];

2 for n ≡ 0 (mod 4) C2(H2(n, 2)) = [2n, 2n−1, d ]2 (8 ≤ d ≤
(n
2

)
) is

self-dual, not isomorphic to the case above, but same 3-PD-set,
different information set, works [FKM09b];

3 For n ≥ 3 C2(H1(n, 3)) = [3n, 1
2(3n − (−1)n), 2n]2, (with dual code

the span of the adjacency matrix with 1’s on the diagonal) then
2-PD-sets of size 9 can be found that work for the code or the dual.
(The lower bound is 4 or 7).(The automorphism group is
primitive.) [FKM09a, FKM10] Also 3-PD-sets of size 2n3n.
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Reed-Muller codes

These are the codes of the affine geometry designs AGm,r (F2) and the
punctured codes are those of the projective geometry designs PGm,r (F2).
Some results on these to obtain small s-PD sets for first order Reed-Muller
codes R(1,m) can be found in [KV08, Sen09].

The first- and second-order Reed-Muller codes, R(1,m) and R(2,m), are
binary codes with large minimum weight, being the codes of the affine
geometry designs over F2 of points and (m − 1)-flats or (m − 2)-flats,
respectively, and with the minimum words the incidence vectors of the
blocks.
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Reed-Muller codes

In [KMM] the following was proved, extending results in [Sen09]:

Result ([KMM] Theorem 1)

Let V = Fm
2 and Ci = {v | v ∈ V ,wt(v) = i} for 0 ≤ i ≤ m. Let T (u)

denote the translation of V by u ∈ V ,

Am = {T (u) | u ∈ C0 ∪ C1 ∪ C2 ∪ Cm}, Bm = Am ∪ {T (u) | u ∈ C3},

then

1 Am is an (m − 1)-PD-set of size 1
2(m2 + m + 4) for R(1,m) for

m ≥ 5 for the information set C0 ∪ C1;

2 Bm is an (m + 1)-PD-set of size 1
6(m3 + 5m + 12) for R(1,m) for

m ≥ 6 for the information set C0 ∪ C1;

3 Bm is an (m − 3)-PD-set of size 1
6(m3 + 5m + 12) for R(2,m) for

m ≥ 8 for the information set C0 ∪ C1 ∪ C2.
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Triangular graphs

For any n, the triangular graph T (n) is the line graph of the complete
graph Kn, and is strongly regular.
The vertices are the

(n
2

)
2-sets, with two vertices being adjacent if they

intersect: this is in the class of uniform subset graphs.
The row span over F2 of an adjacency matrix gives codes:
[n(n−1)

2 , n − 1, n − 1]2 for n odd and

[n(n−1)
2 , n − 2, 2(n − 2)]2 for n even

where n ≥ 5. [HPvR99]
The automorphism group is, apart from n = 5, Sn acting naturally;
PD-sets of size n for n odd and n2 − 2n + 2 for n even are found in
[KMR04b].
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Triangular graphs

I = {P1 = {1, n},P2 = {2, n}, . . . ,Pn−1 = {n − 1, n}}

Then for n ≥ 5, with I in first n − 1 positions,

1 C is a [
(n
2

)
, n − 1, n − 1]2 code for n odd and, with I as the

information positions,

S = {1G} ∪ {(i , n) | 1 ≤ i ≤ n − 1}

is a PD-set for C of n elements in Sn;

2 C is a [
(n
2

)
, n − 2, 2(n − 2)]2 code for n even, and with I excluding

Pn−1 as the information positions,

S ∪ {[(i , n − 1)(j , n)]±1 | 1 ≤ i , j ≤ n − 2}

is a PD-set for C of n2 − 2n + 2 elements in Sn.
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Graphs on triples

If Ω is a set of size n, let P = Ω{3}, the set of subsets of Ω of size 3, be the
vertex set of graphs Ai (n), for i = 0, 1, 2, with adjacency defined by two
vertices (as 3-sets) being adjacent if the 3-sets have intersection of size i .
Properties of the binary codes of adjacency matrices of these graphs were
found in [KMR04a]. Again Sn in its natural action acts as an
automorphism group of the graphs and codes:

Result ([KMR06])

If C is the binary code in the case of adjacency matrix of A2(n), then the
dual C⊥ is a [

(n
3

)
,
(n−1

2

)
, n − 2]2 code and a PD-set of size n3 can be

found by
(Similarly for the ternary codes of these graphs.)

W. Fish [Fis07] worked on binary codes from uniform subset graphs in
general (odd graphs, Johnson graphs, Knesner graphs, etc.)
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Rectangular lattice graph

Nested s-PD-sets:

Result ([Sen07])

If C = C2(L2(m, n)) = C2(L(Km,n)) (the rectangular lattice graph) for
2 ≤ m < n, then C is

[mn,m + n − 2, 2m]2 for m + n even;

[mn,m + n − 1,m]2 for m + n odd.

The set I = {(i , n)|1 ≤ i ≤ m} ∪ {(m, i)|1 ≤ i ≤ n − 1} is an information
set for m + n odd, and I\{(1, n)} is an information set for m + n even.
The sets of automorphisms

Ss = {((i ,m), (i , n))|1 ≤ i ≤ 2s} ∪ {id} for m + n odd;

Ss = {((i ,m), (j , n))|1 ≤ i ≤ m, 1 ≤ j ≤ s} ∪ {id} for m + n even

are s−error correcting PD-sets for any 0 ≤ s ≤ t errors.
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