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Prime fields

FINITE FIELDS

q = prime number.

Prime fields Fq = {0, 1, . . . , q − 1} (mod q).
Binary field F2 = {0, 1}.
Ternary field F3 = {0, 1, 2} = {−1, 0, 1}.

Finite fields Fq: q prime power.
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POINTS AND LINES

THEOREM

PG(2, q) has q2 + q + 1 points and q2 + q + 1 lines.

Proof:
(q3 − 1)/(q − 1) = q2 + q + 1 vector lines in V (3, q).
Vector plane in V (3, q): a0X0 + a1X1 + a2X2 = 0.
(q3 − 1)/(q − 1) = q2 + q + 1 vector planes in V (3, q).
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POINTS ON LINES

THEOREM

(1) Two points in PG(2, q) belong to unique line of PG(2, q).
(2) Two lines in PG(2, q) intersect in unique point.

Proof:
Two vector lines in V (3, q) define unique vector plane in
V (3, q).
Two vector planes in V (3, q) intersect in unique vector line
in V (3, q).
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POINTS ON LINES

THEOREM

(1) Line of PG(2, q) has q + 1 points.
(2) Point of PG(2, q) lies on q + 1 lines of PG(2, q).

Proof:
Vector plane of V (3, q) has q2 − 1 non-zero vectors; each
vector line has q − 1 non-zero vectors, so vector plane of
V (3, q) has (q2 − 1)/(q − 1) = q + 1 vector lines.
Take vector line 〈(1, 0, 0)〉. This lies in vector planes
a1X1 + a2X2 = 0. Up to non-zero scalar multiple of
(a1, a2) 6= (0, 0), these equations define
(q2 − 1)/(q − 1) = q + 1 vector planes of V (3, q).
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PROPERTIES OF FANO PLANE

PG(2, 2) has 7 points:
〈(a0, a1, a2)〉 = {(0, 0, 0), (a0, a1, a2)} ≡ (a0, a1, a2).
PG(2, 2) has 7 lines: a0X0 + a1X1 + a2X2 = 0.
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PROPERTIES OF PG(2, 3)

PG(2, 3) has 13 points.
Vector line
〈(a0, a1, a2)〉 = {(0, 0, 0), (a0, a1, a2), 2 · (a0, a1, a2)}.
PG(2, 3) has 13 lines: a0X0 + a1X1 + a2X2 = 0.
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NORMALIZED COORDINATES

Projective point = vector line 〈(a0, a1, a2)〉.
Select leftmost non-zero coordinate equal to one.
Example: In PG(2, 3),
Point (2, 2, 0) ≡ (1, 1, 0).
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POINTS AND PLANES

THEOREM

PG(3, q) has q3 + q2 + q + 1 points and q3 + q2 + q + 1 planes.

Proof:
(q4 − 1)/(q − 1) = q3 + q2 + q + 1 vector lines in V (4, q).
3-dimensional vector space in V (4, q):
a0X0 + a1X1 + a2X2 + a3X3 = 0.
(q4 − 1)/(q − 1) = q3 + q2 + q + 1 3-dimensional vector
spaces in V (4, q).
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LINES IN PG(3, q)

THEOREM

PG(3, q) has (q2 + 1)(q2 + q + 1) lines.

Proof: 2 points define a line, containing q + 1 points. So

(q3 + q2 + q + 1)(q3 + q2 + q)

(q + 1)q
= (q2 + 1)(q2 + q + 1)

lines in PG(3, q).
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POINTS ON LINES

THEOREM

(1) Two points in PG(3, q) belong to unique line of PG(3, q).
(2) Two lines in PG(3, q) intersect in zero or one points.

Proof:
Two vector lines in V (4, q) define unique vector plane in
V (4, q).
Two vector planes in V (4, q) intersect in unique vector line
in V (4, q), or only in zero vector.
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POINTS ON LINES

THEOREM

(1) Two planes in PG(3, q) intersect in unique line of PG(3, q).
(2) A line and a plane in PG(3, q) intersect in one point if the
line is not contained in this plane.

Proof:
Two 3-dimensional vector spaces in V (4, q) intersect in
unique vector plane in V (4, q).
Vector plane in V (4, q) and 3-dimensional vector space in
V (4, q) intersect in unique vector line in V (4, q), if vector
plane is not contained in 3-dimensional vector space.
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EQUATIONS FOR LINES AND PLANES IN PG(3, q)

Plane: a0X0 + a1X1 + a2X2 + a3X3 = 0.
Line: {

a0X0 + a1X1 + a2X2 + a3X3 = 0
b0X0 + b1X1 + b2X2 + b3X3 = 0,

where (a0, a1, a2, a3), (b0, b1, b2, b3) 6= (0, 0, 0, 0) and
where (a0, a1, a2, a3) 6= ρ(b0, b1, b2, b3).

Leo Storme Projective spaces



Finite fields
Projective plane PG(2, q)

Projective space PG(3, q)

Blocking sets

Points, lines, and planes
Equations
PG(3, 2)

PG(3, 2)

Leo Storme Projective spaces
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FROM V (n + 1, q) TO PG(n, q)

1 From V (1, q) to PG(0, q) (projective point),
2 From V (2, q) to PG(1, q) (projective line),
3 · · ·
4 From V (i + 1, q) to PG(i , q) (i-dimensional projective

subspace),
5 · · ·
6 From V (n, q) to PG(n − 1, q) ((n − 1)-dimensional

subspace = hyperplane),
7 From V (n + 1, q) to PG(n, q) (n-dimensional space).

Leo Storme Projective spaces



Finite fields
Projective plane PG(2, q)

Projective space PG(3, q)

Blocking sets

OUTLINE

1 FINITE FIELDS
Prime fields

2 PROJECTIVE PLANE PG(2, q)
Points and lines
Coordinates

3 PROJECTIVE SPACE PG(3, q)
Points, lines, and planes
Equations
PG(3, 2)

4 BLOCKING SETS

Leo Storme Projective spaces



Finite fields
Projective plane PG(2, q)

Projective space PG(3, q)

Blocking sets

DEFINITION AND EXAMPLE

DEFINITION

Blocking set B in PG(2, q) is set of points, intersecting every
line in at least one point.

EXAMPLE

Line L in PG(2, q).
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DEFINITION

DEFINITION

(1) Point r of blocking set B in PG(2, q) is essential if B \ {r} is
no longer blocking set.
(2) Tangent line L to blocking set B in PG(2, q) is line for which
|L ∩ B| = 1.

THEOREM

Point r of blocking set B is essential if and only if r belongs to
tangent line L to B.
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Projective plane PG(2, q)
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Blocking sets

MINIMAL BLOCKING SETS

DEFINITION

Blocking set B is minimal if and only if all of its points are
essential.

EXAMPLE

Line L of PG(2, q) is minimal blocking set B of size q + 1.
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BOSE-BURTON THEOREM

THEOREM

For every blocking set B in PG(2, q), |B| ≥ q + 1 and
|B| = q + 1 if and only if B is equal to line L.

Proof: (1) Let r 6∈ B.
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Blocking sets

(2) Let |B| = q + 1.
Part (1) shows that line L not contained in B only contains one
point of B.
So, let r1, r2 ∈ B, then line r1r2 contains at least 2 points of B,
then r1r2 ⊆ B.
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LOWER BOUND ON SIZE OF NON-TRIVIAL BLOCKING

SET IN PG(2, q)

DEFINITION

Non-trivial blocking set B in PG(2, q) does not contain a line.

THEOREM

For non-trivial blocking set B in PG(2, q), |B| ≥ q +
√

q + 1.
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LOWER BOUND ON SIZE OF NON-TRIVIAL BLOCKING

SET IN PG(2, q)

Proof: (1) Suppose some line L contains more than
√

q + 1
points of B, then |B| > q +

√
q + 1.
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LOWER BOUND ON SIZE OF NON-TRIVIAL BLOCKING

SET IN PG(2, q)

(2) From now on, assume every line contains at most
√

q + 1
points of B.
Let τi be number of i-secants to B; let n be largest number of
points of B on line of PG(2, q). Then
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LOWER BOUND ON SIZE OF NON-TRIVIAL BLOCKING

SET IN PG(2, q)

n∑
i=1

τi = q2 + q + 1, (1)

n∑
i=1

iτi = |B|(q + 1), (2)

n∑
i=2

i(i − 1)τi = |B|(|B| − 1). (3)
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LOWER BOUND ON SIZE OF NON-TRIVIAL BLOCKING

SET IN PG(2, q)

Meaning of (1), (2), and (3):

(1) number of lines in PG(2, q),
(2) count pairs (P, `), with P ∈ B, line `, and P ∈ `,
(3) count triples (P, P ′, `), with P, P ′ ∈ B, P 6= P ′, line `, and

P, P ′ ∈ `.
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LOWER BOUND ON SIZE OF NON-TRIVIAL BLOCKING

SET IN PG(2, q)

Since 1 ≤ |L ∩ B| ≤ n ≤ √
q + 1, for all lines L,

n∑
i=1

(i − 1)(i −
√

q − 1)τi ≤ 0,

n∑
i=1

i(i − 1)τi − (
√

q + 1)
n∑

i=1

iτi + (
√

q + 1)
n∑

i=1

τi ≤ 0,

|B|(|B| − 1)− (
√

q + 1)|B|(q + 1)+

(
√

q + 1)(q2 + q + 1) ≤ 0,

(|B| − (q +
√

q + 1))(|B| − (q
√

q + 1)) ≤ 0.

So |B| ≥ q +
√

q + 1.
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GENERAL BLOCKING SETS

DEFINITION

Blocking set B in PG(n, q) with respect to k-subspaces is set of
points, intersecting every k -subspace in at least one point.

EXAMPLE

(n − k)-dimensional subspace PG(n − k , q) in PG(n, q).
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BOSE-BURTON THEOREM

THEOREM

For every blocking set B in PG(n, q), with respect to the
k-subspaces, |B| ≥ PG(n− k , q) and |B| = |PG(n− k , q)| if and
only if B is equal to (n− k)-dimensional subspace PG(n− k , q).
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Thank you very much for your attention!
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