Finite projective spaces

Leo Storme

Ghent University
Dept. of Mathematics
Krijgslaan 281-S22
9000 Ghent
Belgium

Opatija, 2010

Outline

(1) Finite fields

- Prime fields
(2) Projective plane $\operatorname{PG}(2, q)$
- Points and lines
- Coordinates
(3) Projective space $\operatorname{PG}(3, q)$
- Points, lines, and planes
- Equations
- PG(3,2)
(4) BLOCKING SETS

Outline

(1) Finite fields

- Prime fields
(2) Projective plane $\operatorname{PG}(2, q)$
- Points and lines
- Coordinates
(3) Projective space $\operatorname{PG}(3, q)$
- Points, lines, and planes
- Equations
- PG(3,2)
(4) BLOCKING SETS

Finite FIELDS

- $q=$ prime number.
- Prime fields $\mathbb{F}_{q}=\{0,1, \ldots, q-1\}(\bmod q)$.
- Binary field $\mathbb{F}_{2}=\{0,1\}$.
- Ternary field $\mathbb{F}_{3}=\{0,1,2\}=\{-1,0,1\}$.
- Finite fields $\mathbb{F}_{q}: q$ prime power.

Finite fields
Projective plane $\mathrm{PG}(2, q)$
Projective space PG $(3, q)$
Blocking sets

Outline

(1) Finite Fields

- Prime fields
(2) Projective plane $\operatorname{PG}(2, q)$
- Points and lines
- Coordinates
(3) Projective space $\operatorname{PG}(3, q)$
- Points, lines, and planes
- Equations
- PG(3,2)
(4) Blocking sets

Finite fields
Projective plane PG $(2, q)$
Projective space $\mathrm{PG}(3, q)$
Blocking sets

Points and lines
Coordinates

From $V(3, q)$ то $\operatorname{PG}(2, q)$

Projective point $\mathrm{PG}(0, q)$

Vector plane $\mathrm{V}(2, \mathrm{q})$

Projective line $P G(1, q)$

Leo Storme
Projective spaces

Finite fields
Projective plane PG $(2, q)$
Projective space PG(3, q)
Blocking sets

Points and lines
Coordinates

From $V(3, q)$ то $\operatorname{PG}(2, q)$

Vector space $V(3, q)$

Projective plane $\mathrm{PG}(2, q)$

Points and lines

Coordinates

POINTS AND LINES

THEOREM

$P G(2, q)$ has $q^{2}+q+1$ points and $q^{2}+q+1$ lines.

Proof:

- $\left(q^{3}-1\right) /(q-1)=q^{2}+q+1$ vector lines in $V(3, q)$.
- Vector plane in $V(3, q): a_{0} X_{0}+a_{1} X_{1}+a_{2} X_{2}=0$. $\left(q^{3}-1\right) /(q-1)=q^{2}+q+1$ vector planes in $V(3, q)$.

Finite fields
Projective plane PG(2, q)
Projective space $\mathrm{PG}(3, q)$ Blocking sets

Points and lines
Coordinates

Points on Lines

THEOREM

(1) Two points in $P G(2, q)$ belong to unique line of $P G(2, q)$.
(2) Two lines in $P G(2, q)$ intersect in unique point.

Proof:

- Two vector lines in $V(3, q)$ define unique vector plane in $V(3, q)$.
- Two vector planes in $V(3, q)$ intersect in unique vector line in $V(3, q)$.

Finite fields

Points and lines
Coordinates

Points on Lines

THEOREM

(1) Line of $P G(2, q)$ has $q+1$ points.
(2) Point of $P G(2, q)$ lies on $q+1$ lines of $P G(2, q)$.

Proof:

- Vector plane of $V(3, q)$ has $q^{2}-1$ non-zero vectors; each vector line has $q-1$ non-zero vectors, so vector plane of $V(3, q)$ has $\left(q^{2}-1\right) /(q-1)=q+1$ vector lines.
- Take vector line $\langle(1,0,0)\rangle$. This lies in vector planes $a_{1} X_{1}+a_{2} X_{2}=0$. Up to non-zero scalar multiple of $\left(a_{1}, a_{2}\right) \neq(0,0)$, these equations define $\left(q^{2}-1\right) /(q-1)=q+1$ vector planes of $V(3, q)$.

Finite fields
Projective plane PG(2, q)
Projective space PG(3, q) Blocking sets

Points and lines

Coordinates

The Fano Plane PG(2, 2)

Finite fields

Points and lines
Coordinates

Properties of Fano plane

- $\operatorname{PG}(2,2)$ has 7 points:
$\left\langle\left(a_{0}, a_{1}, a_{2}\right)\right\rangle=\left\{(0,0,0),\left(a_{0}, a_{1}, a_{2}\right)\right\} \equiv\left(a_{0}, a_{1}, a_{2}\right)$.
- $\mathrm{PG}(2,2)$ has 7 lines: $a_{0} X_{0}+a_{1} X_{1}+a_{2} X_{2}=0$.

Finite fields
Projective plane $\operatorname{PG}(2, q)$
Projective space $\mathrm{PG}(3, q)$ Blocking sets

Points and lines
Coordinates

The plane PG(2, 3)

Finite fields

Points and lines

Coordinates

Properties of PG(2, 3)

- $P G(2,3)$ has 13 points.

Vector line
$\left\langle\left(a_{0}, a_{1}, a_{2}\right)\right\rangle=\left\{(0,0,0),\left(a_{0}, a_{1}, a_{2}\right), 2 \cdot\left(a_{0}, a_{1}, a_{2}\right)\right\}$.

- $\mathrm{PG}(2,3)$ has 13 lines: $a_{0} X_{0}+a_{1} X_{1}+a_{2} X_{2}=0$.

NORMALIZED COORDINATES

- Projective point $=$ vector line $\left\langle\left(a_{0}, a_{1}, a_{2}\right)\right\rangle$.
- Select leftmost non-zero coordinate equal to one.
- Example: In PG(2,3),

Point $(2,2,0) \equiv(1,1,0)$.

Finite fields
Projective plane $\mathrm{PG}(2, q)$
Projective space PG(3, q)
Blocking sets

Points, lines, and planes
Equations
PG(3, 2)

Outline

(1) Finite Fields

- Prime fields

2. Projective plane $\operatorname{PG}(2, q)$

- Points and lines
- Coordinates
(3) Projective space $\operatorname{PG}(3, q)$
- Points, lines, and planes
- Equations
- PG(3,2)
(4) Blocking SETS

Finite fields
Projective plane $\mathrm{PG}(2, q)$
Projective space PG(3, q)
Blocking sets

Points, lines, and planes
Equations
PG(3, 2)

From $V(4, q)$ то $\operatorname{PG}(3, q)$

Projective point $P G(0, q)$

Vector plane $\mathrm{V}(2, \mathrm{q})$

Leo Storme
Projective spaces

Finite fields
Projective plane $\operatorname{PG}(2, q)$
Projective space PG(3, q)
Blocking sets

Points, lines, and planes
Equations
PG(3, 2)

From $V(4, q)$ то $\operatorname{PG}(3, q)$

Vector space $\mathrm{V}(3, \mathrm{q})$

Projective plane $\mathrm{PG}(2, \mathrm{q})$

Projective 3-space $\operatorname{PG}(3, q)$

POINTS AND PLANES

THEOREM

$P G(3, q)$ has $q^{3}+q^{2}+q+1$ points and $q^{3}+q^{2}+q+1$ planes.

Proof:

- $\left(q^{4}-1\right) /(q-1)=q^{3}+q^{2}+q+1$ vector lines in $V(4, q)$.
- 3-dimensional vector space in $V(4, q)$: $a_{0} X_{0}+a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}=0$. $\left(q^{4}-1\right) /(q-1)=q^{3}+q^{2}+q+1$ 3-dimensional vector spaces in $V(4, q)$.

Lines in PG $(3, q)$

THEOREM

$P G(3, q)$ has $\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ lines.
Proof: 2 points define a line, containing $q+1$ points. So

$$
\frac{\left(q^{3}+q^{2}+q+1\right)\left(q^{3}+q^{2}+q\right)}{(q+1) q}=\left(q^{2}+1\right)\left(q^{2}+q+1\right)
$$

lines in $\operatorname{PG}(3, q)$.

Finite fields
Projective plane PG(2,q)
Projective space $\mathrm{PG}(3, q)$
Blocking sets

Points, lines, and planes
Equations
PG(3, 2)

Points on Lines

THEOREM

(1) Two points in $P G(3, q)$ belong to unique line of $P G(3, q)$.
(2) Two lines in $P G(3, q)$ intersect in zero or one points.

Proof:

- Two vector lines in $V(4, q)$ define unique vector plane in $V(4, q)$.
- Two vector planes in $V(4, q)$ intersect in unique vector line in $V(4, q)$, or only in zero vector.

Finite fields
Projective plane $\mathrm{PG}(2, q)$
Projective space PG $(3, q)$ Blocking sets

Points, lines, and planes
PG(3, 2)

Points on Lines

THEOREM

(1) Two planes in $P G(3, q)$ intersect in unique line of $P G(3, q)$.
(2) A line and a plane in $P G(3, q)$ intersect in one point if the line is not contained in this plane.

Proof:

- Two 3-dimensional vector spaces in $V(4, q)$ intersect in unique vector plane in $V(4, q)$.
- Vector plane in $V(4, q)$ and 3 -dimensional vector space in $V(4, q)$ intersect in unique vector line in $V(4, q)$, if vector plane is not contained in 3 -dimensional vector space.

Equations

EQUations For lines and planes in PG $(3, q)$

- Plane: $a_{0} X_{0}+a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}=0$.
- Line:

$$
\left\{\begin{array}{l}
a_{0} X_{0}+a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}=0 \\
b_{0} X_{0}+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}=0
\end{array}\right.
$$

where $\left(a_{0}, a_{1}, a_{2}, a_{3}\right),\left(b_{0}, b_{1}, b_{2}, b_{3}\right) \neq(0,0,0,0)$ and where $\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \neq \rho\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$.

Finite fields
Projective plane PG $(2, q)$
Projective space PG(3, q)
Blocking sets

Points, lines, and planes
Equations
PG(3, 2)

PG(3,2)

From $V(n+1, q)$ TO $\operatorname{PG}(n, q)$

(1) From $V(1, q)$ to $\mathrm{PG}(0, q)$ (projective point),
(2) From $V(2, q)$ to $\operatorname{PG}(1, q)$ (projective line),
(3) \cdots
(0) From $V(i+1, q)$ to $\mathrm{PG}(i, q)$ (i-dimensional projective subspace),
(5) \cdots
(3) From $V(n, q)$ to $\operatorname{PG}(n-1, q)((n-1)$-dimensional subspace $=$ hyperplane),
(0) From $V(n+1, q)$ to $\operatorname{PG}(n, q)$ (n-dimensional space).

Outline

(1) Finite fields

- Prime fields
(2) Projective plane $\operatorname{PG}(2, q)$
- Points and lines
- Coordinates
(3) Projective space $\operatorname{PG}(3, q)$
- Points, lines, and planes
- Equations
- PG(3,2)
(4) BLOCKING SETS

DEFINITION AND EXAMPLE

DEFINITION

Blocking set B in $\mathrm{PG}(2, q)$ is set of points, intersecting every line in at least one point.

EXAMPLE

Line L in $\operatorname{PG}(2, q)$.

Example

$$
\operatorname{PG}(2, q)
$$

Leo Storme
Projective spaces

DEFINITION

DEFINITION

(1) Point r of blocking set B in $\operatorname{PG}(2, q)$ is essential if $B \backslash\{r\}$ is no longer blocking set.
(2) Tangent line L to blocking set B in $\operatorname{PG}(2, q)$ is line for which $|L \cap B|=1$.

THEOREM

Point r of blocking set B is essential if and only if r belongs to tangent line L to B.

Finite fields
Projective plane PG(2,q)
Projective space PG(3, q)
Blocking sets
$P G(2, q)$

Finite fields

Minimal BLOCKING SETS

DEFINITION

Blocking set B is minimal if and only if all of its points are essential.

EXAMPLE

Line L of $P G(2, q)$ is minimal blocking set B of size $q+1$.

BOSE-BURTON THEOREM

THEOREM

For every blocking set B in $P G(2, q),|B| \geq q+1$ and $|B|=q+1$ if and only if B is equal to line L.

Proof: (1) Let $r \notin B$.

(2) Let $|B|=q+1$.

Part (1) shows that line L not contained in B only contains one point of B.
So, let $r_{1}, r_{2} \in B$, then line $r_{1} r_{2}$ contains at least 2 points of B, then $r_{1} r_{2} \subseteq B$.

LOWER BOUND ON SIZE OF NON-TRIVIAL BLOCKING SET IN $\operatorname{PG}(2, q)$

DEFINITION

Non-trivial blocking set B in $\mathrm{PG}(2, q)$ does not contain a line.

THEOREM

For non-trivial blocking set B in $P G(2, q),|B| \geq q+\sqrt{q}+1$.

Lower bound on size of non-trivial blocking SET IN $\operatorname{PG}(2, q)$

Proof: (1) Suppose some line L contains more than $\sqrt{q}+1$ points of B, then $|B|>q+\sqrt{q}+1$.

Lower bound on size of non-trivial blocking SET IN $\operatorname{PG}(2, q)$

(2) From now on, assume every line contains at most $\sqrt{9}+1$ points of B.
Let τ_{i} be number of i-secants to B; let n be largest number of points of B on line of $\operatorname{PG}(2, q)$. Then

LOWER BOUND ON SIZE OF NON-TRIVIAL BLOCKING SET IN PG(2, q)

$$
\begin{align*}
\sum_{i=1}^{n} \tau_{i} & =q^{2}+q+1 \tag{1}\\
\sum_{i=1}^{n} i \tau_{i} & =|B|(q+1) \tag{2}\\
\sum_{i=2}^{n} i(i-1) \tau_{i} & =|B|(|B|-1) \tag{3}
\end{align*}
$$

LOWER BOUND ON SIZE OF NON-TRIVIAL BLOCKING $\operatorname{SET} \operatorname{IN} \operatorname{PG}(2, q)$

Meaning of (1), (2), and (3):
(1) number of lines in $\operatorname{PG}(2, q)$,
(2) count pairs (P, ℓ), with $P \in B$, line ℓ, and $P \in \ell$,
(3) count triples $\left(P, P^{\prime}, \ell\right)$, with $P, P^{\prime} \in B, P \neq P^{\prime}$, line ℓ, and $P, P^{\prime} \in \ell$.

LOWER BOUND ON SIZE OF NON-TRIVIAL BLOCKING SET IN $\operatorname{PG}(2, q)$

Since $1 \leq|L \cap B| \leq n \leq \sqrt{q}+1$, for all lines L,

$$
\begin{aligned}
\sum_{i=1}^{n}(i-1)(i-\sqrt{q}-1) \tau_{i} & \leq 0, \\
\sum_{i=1}^{n} i(i-1) \tau_{i}-(\sqrt{q}+1) \sum_{i=1}^{n} i \tau_{i}+(\sqrt{q}+1) \sum_{i=1}^{n} \tau_{i} & \leq 0, \\
|B|(|B|-1)-(\sqrt{q}+1)|B|(q+1)+ & \\
(\sqrt{q}+1)\left(q^{2}+q+1\right) & \leq 0, \\
(|B|-(q+\sqrt{q}+1))(|B|-(q \sqrt{q}+1)) & \leq 0 .
\end{aligned}
$$

So $|B| \geq q+\sqrt{q}+1$.

Finite fields
Projective plane PG(2, q)

GENERAL BLOCKING SETS

DEFINITION

Blocking set B in $P G(n, q)$ with respect to k-subspaces is set of points, intersecting every k-subspace in at least one point.

EXAMPLE
 $(n-k)$-dimensional subspace $\mathrm{PG}(n-k, q)$ in $\mathrm{PG}(n, q)$.

BOSE-BURTON THEOREM

THEOREM

For every blocking set B in $P G(n, q)$, with respect to the
k-subspaces, $|B| \geq P G(n-k, q)$ and $|B|=|P G(n-k, q)|$ if and only if B is equal to $(n-k)$-dimensional subspace $P G(n-k, q)$.

Thank you very much for your attention!

