Finite projective spaces

Leo Storme

Ghent University Dept. of Mathematics Krijgslaan 281 - S22 9000 Ghent Belgium

Opatija, 2010

UNIVERSITE GENT

æ

<ロ> <=> <=> <=> <=> <=>

OUTLINE

(日) (四) (三) (三)

Finite fields

Projective plane PG(2, q) Projective space PG(3, q) Blocking sets

Prime fields

OUTLINE

Prime fields

FINITE FIELDS

- q = prime number.
 - Prime fields $\mathbb{F}_q = \{0, 1, \dots, q-1\} \pmod{q}$.
 - Binary field $\mathbb{F}_2 = \{0, 1\}$.
 - Ternary field $\mathbb{F}_3 = \{0,1,2\} = \{-1,0,1\}.$
- Finite fields \mathbb{F}_q : *q* prime power.

<ロ> <=> <=> <=> <=> <=>

Points and lines Coordinates

OUTLINE

Points and lines Coordinates

From V(3, q) to PG(2, q)

UNIVERSITE

æ

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Points and lines Coordinates

FROM *V*(3, *q*) TO PG(2, *q*)

Points and lines Coordinates

POINTS AND LINES

THEOREM

PG(2, q) has $q^2 + q + 1$ points and $q^2 + q + 1$ lines.

Proof:

•
$$(q^3 - 1)/(q - 1) = q^2 + q + 1$$
 vector lines in $V(3, q)$.

• Vector plane in
$$V(3, q)$$
: $a_0X_0 + a_1X_1 + a_2X_2 = 0$.
 $(q^3 - 1)/(q - 1) = q^2 + q + 1$ vector planes in $V(3, q)$.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

æ

Points and lines Coordinates

POINTS ON LINES

Theorem

(1) Two points in PG(2, q) belong to unique line of PG(2, q).
(2) Two lines in PG(2, q) intersect in unique point.

Proof:

- Two vector lines in *V*(3, *q*) define unique vector plane in *V*(3, *q*).
- Two vector planes in V(3, q) intersect in unique vector line in V(3, q).

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Points and lines Coordinates

POINTS ON LINES

THEOREM

(1) Line of PG(2, q) has q + 1 points.
(2) Point of PG(2, q) lies on q + 1 lines of PG(2, q).

Proof:

- Vector plane of V(3, q) has q² 1 non-zero vectors; each vector line has q 1 non-zero vectors, so vector plane of V(3, q) has (q² 1)/(q 1) = q + 1 vector lines.
- Take vector line $\langle (1,0,0) \rangle$. This lies in vector planes $a_1X_1 + a_2X_2 = 0$. Up to non-zero scalar multiple of $(a_1, a_2) \neq (0,0)$, these equations define $(q^2 1)/(q 1) = q + 1$ vector planes of V(3,q).

ヘロト ヘ部ト ヘヨト ヘヨト

Points and lines Coordinates

The Fano plane PG(2, 2)

æ

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Points and lines Coordinates

PROPERTIES OF FANO PLANE

- PG(2,2) has 7 points: $\langle (a_0, a_1, a_2) \rangle = \{ (0,0,0), (a_0, a_1, a_2) \} \equiv (a_0, a_1, a_2).$
- PG(2,2) has 7 lines: $a_0X_0 + a_1X_1 + a_2X_2 = 0$.

< □ > < □ > < □ > < □ > < □ >

Points and lines Coordinates

THE PLANE PG(2,3)

æ

Leo Storme

Projective spaces

Points and lines Coordinates

PROPERTIES OF PG(2,3)

- PG(2,3) has 13 points. Vector line $\langle (a_0, a_1, a_2) \rangle = \{ (0, 0, 0), (a_0, a_1, a_2), 2 \cdot (a_0, a_1, a_2) \}.$
- PG(2,3) has 13 lines: $a_0X_0 + a_1X_1 + a_2X_2 = 0$.

< □ > < □ > < □ > < □ > < □ >

Points and lines Coordinates

NORMALIZED COORDINATES

- Projective point = vector line $\langle (a_0, a_1, a_2) \rangle$.
- Select leftmost non-zero coordinate equal to one.
- Example: In PG(2,3), Point (2,2,0) ≡ (1,1,0).

Points, lines, and planes Equations PG(3, 2)

OUTLINE

Points, lines, and planes Equations PG(3, 2)

From V(4, q) to PG(3, q)

UNIVERSITER

æ

<ロ> <同> <同> < 同> < 同> < 同> <

Points, lines, and planes Equations **PG**(3, 2)

FROM V(4, q) TO PG(3, q)

ヘロン 人間 とくほど 人間と

Leo Storme

• P2

P2 _

Projective spaces

Points, lines, and planes Equations PG(3, 2)

POINTS AND PLANES

THEOREM

$$PG(3, q)$$
 has $q^3 + q^2 + q + 1$ points and $q^3 + q^2 + q + 1$ planes.

Proof:

•
$$(q^4 - 1)/(q - 1) = q^3 + q^2 + q + 1$$
 vector lines in $V(4, q)$.

• 3-dimensional vector space in
$$V(4, q)$$
:
 $a_0X_0 + a_1X_1 + a_2X_2 + a_3X_3 = 0.$
 $(q^4 - 1)/(q - 1) = q^3 + q^2 + q + 1$ 3-dimensional vector
spaces in $V(4, q)$.

UNIVERSITER GENT

3

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Points, lines, and planes Equations PG(3,2)

THEOREM

$$PG(3,q)$$
 has $(q^2+1)(q^2+q+1)$ lines.

Proof: 2 points define a line, containing q + 1 points. So

$$\frac{(q^3+q^2+q+1)(q^3+q^2+q)}{(q+1)q}=(q^2+1)(q^2+q+1)$$

lines in PG(3, q).

Points, lines, and planes Equations PG(3, 2)

POINTS ON LINES

Theorem

(1) Two points in PG(3, q) belong to unique line of PG(3, q).
(2) Two lines in PG(3, q) intersect in zero or one points.

Proof:

- Two vector lines in V(4, q) define unique vector plane in V(4, q).
- Two vector planes in V(4, q) intersect in unique vector line in V(4, q), or only in zero vector.

Points, lines, and planes Equations PG(3, 2)

POINTS ON LINES

THEOREM

(1) Two planes in PG(3,q) intersect in unique line of PG(3,q). (2) A line and a plane in PG(3,q) intersect in one point if the line is not contained in this plane.

Proof:

- Two 3-dimensional vector spaces in V(4, q) intersect in unique vector plane in V(4, q).
- Vector plane in V(4, q) and 3-dimensional vector space in V(4, q) intersect in unique vector line in V(4, q), if vector plane is not contained in 3-dimensional vector space.

(日) (四) (三) (三)

Points, lines, and planes Equations PG(3, 2)

EQUATIONS FOR LINES AND PLANES IN PG(3, q)

- Plane: $a_0X_0 + a_1X_1 + a_2X_2 + a_3X_3 = 0$.
- Line: $\begin{cases}
 a_0X_0 + a_1X_1 + a_2X_2 + a_3X_3 = 0 \\
 b_0X_0 + b_1X_1 + b_2X_2 + b_3X_3 = 0,
 \end{cases}$

where $(a_0, a_1, a_2, a_3), (b_0, b_1, b_2, b_3) \neq (0, 0, 0, 0)$ and where $(a_0, a_1, a_2, a_3) \neq \rho(b_0, b_1, b_2, b_3)$.

Points, lines, and planes Equations PG(3, 2)

PG(3,2)

æ

Leo Storme

Projective spaces

・ロト ・ 四ト ・ ヨト ・ ヨト

Points, lines, and planes Equations PG(3, 2)

From V(n+1,q) to PG(n,q)

- From V(1, q) to PG(0, q) (projective point),
- 2 From V(2, q) to PG(1, q) (projective line),
- 3 . . .
- From V(i + 1, q) to PG(i, q) (i-dimensional projective subspace),
- 5 ...
- From V(n,q) to PG(n-1,q) ((n-1)-dimensional subspace = hyperplane),
- Solution V(n+1,q) to PG(n,q) (*n*-dimensional space).

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

OUTLINE

DEFINITION AND EXAMPLE

DEFINITION

Blocking set B in PG(2, q) is set of points, intersecting every line in at least one point.

EXAMPLE

Line L in PG(2, q).

EXAMPLE

DEFINITION

DEFINITION

(1) Point *r* of blocking set *B* in PG(2, *q*) is *essential* if $B \setminus \{r\}$ is no longer blocking set.

(2) *Tangent line L* to blocking set *B* in PG(2, *q*) is line for which $|L \cap B| = 1$.

Theorem

Point r of blocking set B is essential if and only if r belongs to tangent line L to B.

(日)

◆□→ ◆□→ ◆三→ ◆三→ 三三

MINIMAL BLOCKING SETS

DEFINITION

Blocking set *B* is *minimal* if and only if all of its points are essential.

EXAMPLE

Line L of PG(2, q) is minimal blocking set B of size q + 1.

BOSE-BURTON THEOREM

THEOREM

For every blocking set B in PG(2, q), $|B| \ge q + 1$ and |B| = q + 1 if and only if B is equal to line L.

Proof: (1) Let $r \notin B$.

(2) Let |B| = q + 1. Part (1) shows that line *L* not contained in *B* only contains one point of *B*. So, let $r_1, r_2 \in B$, then line r_1r_2 contains at least 2 points of *B*, then $r_1r_2 \subseteq B$.

Lower bound on size of non-trivial blocking set in PG(2, q)

DEFINITION

Non-trivial blocking set B in PG(2, q) does not contain a line.

Theorem

For non-trivial blocking set B in PG(2, q), $|B| \ge q + \sqrt{q} + 1$.

Lower bound on size of non-trivial blocking set in PG(2, q)

Proof: (1) Suppose some line *L* contains more than $\sqrt{q} + 1$ points of *B*, then $|B| > q + \sqrt{q} + 1$.

Leo Storme

Projective spaces

(日) (四) (三) (三)

Lower bound on size of non-trivial blocking set in PG(2, q)

(2) From now on, assume every line contains at most $\sqrt{q} + 1$ points of *B*.

Let τ_i be number of *i*-secants to *B*; let *n* be largest number of points of *B* on line of PG(2, *q*). Then

-

Lower bound on size of non-trivial blocking set in PG(2, q)

$$\sum_{i=1}^{n} \tau_i = q^2 + q + 1, \qquad (1)$$

$$\sum_{i=1}^{n} i\tau_i = |B|(q+1), \qquad (2)$$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

GENI

æ

$$\sum_{i=2}^{n} i(i-1)\tau_i = |B|(|B|-1).$$
 (3)

Lower bound on size of non-trivial blocking set in PG(2, q)

Meaning of (1), (2), and (3):

- (1) number of lines in PG(2, q),
- (2) count pairs (P, ℓ) , with $P \in B$, line ℓ , and $P \in \ell$,
- (3) count triples (P, P', ℓ) , with $P, P' \in B, P \neq P'$, line ℓ , and $P, P' \in \ell$.

(日)

Lower bound on size of non-trivial blocking set in PG(2, q)

Since $1 \le |L \cap B| \le n \le \sqrt{q} + 1$, for all lines *L*,

So $|B| \ge q + \sqrt{q} + 1$.

GENERAL BLOCKING SETS

DEFINITION

Blocking set B in PG(n, q) with respect to k-subspaces is set of points, intersecting every k-subspace in at least one point.

EXAMPLE

(n-k)-dimensional subspace PG(n-k,q) in PG(n,q).

(日)

BOSE-BURTON THEOREM

THEOREM

For every blocking set B in PG(n, q), with respect to the k-subspaces, $|B| \ge PG(n-k, q)$ and |B| = |PG(n-k, q)| if and only if B is equal to (n-k)-dimensional subspace PG(n-k, q).

Thank you very much for your attention!

