Galois geometries contributing to coding theory

Leo Storme

Ghent University Dept. of Mathematics Krijgslaan 281 - S22 9000 Ghent Belgium

Opatija, 2010

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- **2** GRIESMER BOUND AND MINIHYPERS
- **3** COVERING RADIUS AND SATURATING SETS
- **4** LINEAR MDS CODES AND ARCS
- **5** EXTENDABILITY RESULTS AND BLOCKING SETS

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

1 CODING THEORY

- 2 GRIESMER BOUND AND MINIHYPERS
- 3 COVERING RADIUS AND SATURATING SETS
- IINEAR MDS CODES AND ARCS
- 5 EXTENDABILITY RESULTS AND BLOCKING SETS

LINEAR CODES

- *q* = prime number,
- Prime fields: $\mathbb{F}_q = \{1, \ldots, q\} \pmod{q}$,
- Finite fields (Galois fields): \mathbb{F}_q : q prime power,
- Linear [n, k, d]-code *C* over \mathbb{F}_q is:
 - k-dimensional subspace of V(n, q),
 - minimum distance d = minimal number of positions in which two distinct codewords differ.

EXAMPLE

Example [5, 1, 5]-code over \mathbb{F}_2 ; yes = (0, 0, 0, 0, 0), no = (1, 1, 1, 1, 1). (0, 0, 0, 0, 1) or (0, 0, 0, 1, 1) received, most likely (0, 0, 0, 0, 0) = yes transmitted.

Theorem

If in transmitted codeword at most (d - 1)/2 errors, it is possible to correct these errors by replacing the received *n*-tuple by the codeword at minimal distance.

A D N A D N A D N A D

LINEAR CODES

• Generator matrix of [n, k, d]-code C

$$G=(g_1\cdots g_n)$$

- $G = (k \times n)$ matrix of rank k,
- rows of *G* form basis of *C*,
- codeword of *C* = linear combination of rows of *G*.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

EXAMPLE OF GENERATOR MATRIX

Matrix

generates [7, 4, 3]-code over \mathbb{F}_2 .

(日) (四) (三) (三)

Griesmer bound and minihypers Covering radius and saturating sets Linear MDS codes and arcs Extendability results and blocking sets

LINEAR CODES

• Parity check matrix *H* for *C*

• $(n-k) \times n$ matrix of rank n-k,

•
$$c \in C \Leftrightarrow c \cdot H^T = \bar{0}.$$

イロト イヨト イヨト イヨト

Griesmer bound and minihypers Covering radius and saturating sets Linear MDS codes and arcs Extendability results and blocking sets

EXAMPLE OF PARITY CHECK MATRIX

Matrix

is parity check matrix for [7, 4, 3]-code over \mathbb{F}_2 .

(日) (四) (三) (三)

Remark: For linear [n, k, d]-code *C*, n, k, d do not change when column g_i in generator matrix

$$G = (g_1 \cdots g_n)$$

is replaced by non-zero scalar multiple.

(日)

Griesmer bound and minihypers Covering radius and saturating sets Linear MDS codes and arcs Extendability results and blocking sets

FROM VECTOR SPACE TO PROJECTIVE SPACE

Griesmer bound and minihypers Covering radius and saturating sets Linear MDS codes and arcs Extendability results and blocking sets

크

Griesmer bound and minihypers Covering radius and saturating sets Linear MDS codes and arcs Extendability results and blocking sets

THE FANO PLANE PG(2, 2)

From *V*(3, 2) to PG(2, 2)

イロト イヨト イヨト イヨト

Griesmer bound and minihypers Covering radius and saturating sets Linear MDS codes and arcs Extendability results and blocking sets

PG(3, 2)

From *V*(4, 2) to PG(3, 2)

Leo Storme Galois geometries contributing to coding theory

イロト イヨト イヨト イヨト

CODING THEORY

- **2** GRIESMER BOUND AND MINIHYPERS
- 3 COVERING RADIUS AND SATURATING SETS
- IINEAR MDS CODES AND ARCS
- 5 EXTENDABILITY RESULTS AND BLOCKING SETS

GRIESMER BOUND AND MINIHYPERS

Question: Given

- dimension k,
- minimal distance d,

find minimal length *n* of [n, k, d]-code over \mathbb{F}_q . **Result: Griesmer (lower) bound**

$$n \geq \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil = g_q(k, d).$$

MINIHYPERS AND GRIESMER BOUND

Equivalence: (Hamada and Helleseth)

Griesmer (lower) bound equivalent with minihypers in finite projective spaces

Leo Storme Galois geometries contributing to coding theory

DEFINITION

DEFINITION

 $\{f, m; k - 1, q\}$ -minihyper *F* is:

- set of f points in PG(k 1, q),
- *F* intersects every (*k* 2)-dimensional space in at least *m* points.

(*m*-fold blocking sets with respect to the hyperplanes of PG(k - 1, q))

MINIHYPERS AND GRIESMER BOUND

- Let $C = [g_q(k, d), k, d]$ -code over \mathbb{F}_q .
- If generator matrix

$$G=(g_1\cdots g_n),$$

minihyper = $PG(k - 1, q) \setminus \{g_1, \ldots, g_n\}$.

(日) (四) (三) (三)

MINIHYPERS AND GRIESMER BOUND

Leo Storme Galois geometries contributing to coding theory

VIVERSITE

(E) < E)</p>

EXAMPLE

Example: Griesmer [8,4,4]-code over \mathbb{F}_2

minihyper = PG(3,2) $\{$ columns of $G \}$ = plane ($X_0 = 0$).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

CORRESPONDING MINIHYPER

Leo Storme Galois geometries contributing to coding theory

イロト イヨト イヨト イヨト

OTHER EXAMPLES

Example 1. Subspace $PG(\mu, q)$ in PG(k - 1, q) = minihyper of $[n = (q^k - q^{\mu+1})/(q - 1), k, q^{k-1} - q^{\mu}]$ -code (McDonald code).

Leo Storme Galois geometries contributing to coding theory

BOSE-BURTON THEOREM

THEOREM (BOSE-BURTON)

A minihyper consisting of $|PG(\mu, q)|$ points intersecting every hyperplane in at least $|PG(\mu - 1, q)|$ points is equal to a μ -dimensional space $PG(\mu, q)$.

RAJ CHANDRA BOSE

R.C. Bose and R.C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the McDonald codes. *J. Combin. Theory*, 1:96-104, 1966.

• • • • • • • • • • • • • •

OTHER EXAMPLES

Example 2. t < q pairwise disjoint subspaces $PG(\mu, q)_i$, i = 1, ..., t, in PG(k - 1, q) = minihyper of $[n = (q^k - 1)/(q - 1) - t(q^{\mu+1} - 1)/(q - 1), k, q^{k-1} - tq^{\mu}]$ -code.

Leo Storme

Galois geometries contributing to coding theory

(日) (四) (三) (三)

CHARACTERIZATION RESULT

THEOREM (GOVAERTS AND STORME)

For q odd prime and $1 \le t \le (q+1)/2$, $[n = (q^k - 1)/(q - 1) - t(q^{\mu+1} - 1)/(q - 1), k, q^{k-1} - tq^{\mu}]$ -code *C*: minihyper is union of t pairwise disjoint PG(μ , q).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CODING THEORY

- 2 GRIESMER BOUND AND MINIHYPERS
- **3** COVERING RADIUS AND SATURATING SETS
- 4 LINEAR MDS CODES AND ARCS
- 5 EXTENDABILITY RESULTS AND BLOCKING SETS

DEFINITION

DEFINITION

Let *C* be linear [n, k, d]-code over \mathbb{F}_q . The *covering radius* of *C* is smallest integer *R* such that every *n*-tuple in \mathbb{F}_q^n differs in at most *R* positions from some codeword in *C*.

THEOREM

Let C be linear [n, k, d]-code over \mathbb{F}_q with parity check matrix

$$H=(h_1\cdots h_n).$$

Then covering radius of *C* is equal to *R* if and only if every (n - k)-tuple over \mathbb{F}_q can be written as linear combination of at most *R* columns of *H*.

DEFINITION

DEFINITION

Let *S* be subset of PG(N, q). The set *S* is called ρ -saturating when every point *P* from PG(N, q) can be written as linear combination of at most ρ + 1 points of *S*.

Covering radius ρ for linear [n, k, d]-code equivalent with $(\rho - 1)$ -saturating set in PG(n - k - 1, q)

1-SATURATING SETS

 $H = (h_1 \cdots h_n)$

PG(n-k-1,q)

2-SATURATING SETS

 $H = (h_1 \cdots h_n)$

PG(n-k-1,q)

1-Saturating set in PG(3, q) of size 2q + 2

1-Saturating set in PG(3, q) of size 2q + 2

EXAMPLE OF ÖSTERGÅRD AND DAVYDOV

Let
$$\mathbb{F}_q = \{a_1 = 0, a_2, \dots, a_q\}.$$

$$H_{1} = \begin{bmatrix} 1 & \cdots & 1 & 0 & 0 & 0 & \cdots & 0 \\ a_{1} & \cdots & a_{q} & 1 & 0 & 0 & \cdots & 0 \\ a_{1}^{2} & \cdots & a_{q}^{2} & 0 & 0 & 1 & \cdots & 1 \\ 0 & \cdots & 0 & 0 & 1 & a_{2} & \cdots & a_{q} \end{bmatrix}$$

Columns of H_1 define 1-saturating set of size 2q + 1 in PG(3, q).

(日) (四) (三) (三)

EXAMPLE OF ÖSTERGÅRD AND DAVYDOV

EXAMPLE OF ÖSTERGÅRD AND DAVYDOV

$$H_2 = \begin{bmatrix} 1 & \cdots & 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \\ a_1 & \cdots & a_q & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \\ a_1^2 & \cdots & a_q^2 & 0 & 1 & \cdots & 1 & 0 & \cdots & 0 & 0 \\ 0 & \cdots & 0 & 0 & a_2 & \cdots & a_q & a_1^2 & \cdots & a_q^2 & 0 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & a_1 & \cdots & a_q & 1 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 1 & \cdots & 1 & 0 \end{bmatrix},$$

Columns of H_2 define 2-saturating set of size 3q + 1 in PG(5, q).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

EXAMPLE OF ÖSTERGÅRD AND DAVYDOV

Leo Storme

Galois geometries contributing to coding theory

GENT

OUTLINE

CODING THEORY

- 2 GRIESMER BOUND AND MINIHYPERS
- 3 COVERING RADIUS AND SATURATING SETS
- **4** LINEAR MDS CODES AND ARCS
- 5 EXTENDABILITY RESULTS AND BLOCKING SETS

LINEAR MDS CODES AND ARCS

Question:

Given

- length n,
- dimension k,

find maximal value of *d*. **Result: Singleton (upper) bound**

$$d\leq n-k+1.$$

Notation: MDS code = [n, k, n - k + 1]-code.

Equivalence:

Singleton (upper) bound (MDS codes) equivalent with Arcs in finite projective spaces (Segre)

Leo Storme Galois geometries contributing to coding theory

(日) (四) (三) (三)

DEFINITION

DEFINITION

n-Arc in PG(k - 1, q): set of *n* points, every *k* linearly independent.

Example:

- *n*-arc in PG(2, q): *n* points, no three collinear.
- 2 Conic $X_1^2 = X_0 X_2$

$$\{(1, t, t^2) | | t \in \mathbb{F}_q\} \cup \{(0, 0, 1)\}$$

(日) (四) (三) (三)

NORMAL RATIONAL CURVE

Classical example of arc:

$$\{(1, t, \dots, t^{k-1}) || t \in \mathbb{F}_q\} \cup \{(0, \dots, 0, 1)\}$$

defines [q + 1, k, d = q + 2 - k]-GDRS (Generalized Doubly-Extended Reed-Solomon) code with generator matrix

$$G = \begin{pmatrix} 1 & \cdots & 1 & 0 \\ t_1 & \cdots & t_q & 0 \\ \vdots & \vdots & \vdots & \vdots \\ t_1^{k-2} & \cdots & t_q^{k-2} & 0 \\ t_1^{k-1} & \cdots & t_q^{k-1} & 1 \end{pmatrix}$$

(日)

CHARACTERIZATION RESULT

THEOREM (SEGRE, THAS)

For

• q odd prime power,

•
$$2 \leq k < \sqrt{q}/4$$
,

[n = q + 1, k, d = q + 2 - k]-MDS code is GDRS.

(日) (四) (三) (三)

BALL RESULT

THEOREM (BALL)

For q odd prime, $n \le q + 1$ for every [n, k, n - k + 1]-MDS code.

Technique: Polynomial techniques

(日) (四) (三) (三)

OUTLINE

CODING THEORY

- 2 GRIESMER BOUND AND MINIHYPERS
- 3 COVERING RADIUS AND SATURATING SETS
- 4 LINEAR MDS CODES AND ARCS

5 EXTENDABILITY RESULTS AND BLOCKING SETS

WELL-KNOWN EXTENDABILITY RESULT

THEOREM

Every linear binary [n, k, d]-code C, d odd, is extendable to linear binary [n + 1, k, d + 1]-code.

HILL-LIZAK RESULT

THEOREM (HILL AND LIZAK)

Let *C* be linear [n, k, d]-code over \mathbb{F}_q , with gcd(d, q) = 1 and with all weights congruent to 0 or $d \pmod{q}$. Then *C* can be extended to [n + 1, k, d + 1]-code \hat{C} all of whose weights are congruent to 0 or $d + 1 \pmod{q}$.

Proof: Subcode of all codewords of weight congruent to 0 (mod *q*) is linear subcode C_0 of dimension k - 1. If G_0 defines C_0 and

$$G=\left(rac{x}{G_0}
ight),$$

then

HILL-LIZAK RESULT

$$\hat{G} = egin{pmatrix} x & 1 \ \hline 0 \ G_0 & dots \ 0 \end{pmatrix}$$

Leo Storme Galois geometries contributing to coding theory

< □ > < □ > < □ > < □ > < □ >

GEOMETRICAL COUNTERPART OF LANDJEV

DEFINITION

Multiset K in PG(k - 1, q) is (n, w; k - 1, q)-multiarc or (n, w; k - 1, q)-arc if

- sum of all weights of points of K is n,
- hyperplane *H* of PG(*k* 1, *q*) contains at most *w* (weighted) points of *K* and some hyperplane *H*₀ contains *w* (weighted) points of *K*.

LINEAR CODES AND MULTIARCS

- Let C = [n, k, d]-code over \mathbb{F}_q .
- If generator matrix

$$G=(g_1\cdots g_n),$$

then $\{g_1, ..., g_n\} = (n, w = n - d; k - 1, q)$ -multiarc.

(日) (四) (三) (三)

LINEAR CODES AND MULTIARCS

(ロ) (部) (注) (こ)

GEOMETRICAL COUNTERPART OF LANDJEV

- C linear [n, k, d]-code over 𝔽_q, gcd(d, q) = 1 and with all weights congruent to 0 or d (mod q). Then C can be extended to [n + 1, k, d + 1]-code all of whose weights are congruent to 0 or d + 1 (mod q).
- K =(n, w; k 1, q)-multiarc with gcd(n w, q) = 1 and intersection size of K with all hyperplanes congruent to n or w (mod q). Then K can be extended to (n + 1, w; k 1, q)-multiarc.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

GEOMETRICAL COUNTERPART OF LANDJEV

Proof: Hyperplanes *H* containing *n* (mod *q*) points of *K* form dual blocking set \tilde{B} with respect to codimension 2 subspaces of PG(k - 1, q). Also

$$\tilde{B}=\frac{q^{k-1}-1}{q-1}.$$

By dual of Bose-Burton, \tilde{B} consists of all hyperplanes through particular point P.

This point *P* extends *K* to (n + 1, w; k - 1, q)-multiarc.

BLOCKING SETS IN PG(2, q)

DEFINITION

Blocking set *B* in PG(2, q): intersects every line in at least one point.

Trivial example: Line.

DEFINITION

Non-trivial blocking set in PG(2, q): contains no line.

BLOCKING SETS IN PG(2, q)

q + r(q) + 1 = size of smallest non-trivial blocking set in PG(2, q).

- (Blokhuis) r(q) = (q + 1)/2 for q > 2 prime,
- (Bruen) $r(q) = \sqrt{q} + 1$ for q square,
- (Blokhuis) $r(q) = q^{2/3} + 1$ for q cube (non-square) power.

IMPROVED RESULTS

THEOREM (LANDJEV AND ROUSSEVA)

Let \mathcal{K} be (n, w; k - 1, q)-arc, $q = p^s$, with spectrum $(a_i)_{i \ge 0}$. Let $w \neq n \pmod{q}$ and

$$\sum_{i \not\equiv w \pmod{q}} a_i < q^{k-2} + q^{k-3} + \dots + 1 + q^{k-3} \cdot r(q), \quad (1)$$

where q + r(q) + 1 is minimal size of non-trivial blocking set of PG(2, q). Then \mathcal{K} is extendable to (n + 1, w; k - 1, q)-arc.

(日)

IMPROVED RESULTS

THEOREM

Let *C* be non-extendable [n, k, d]-code over \mathbb{F}_q , $q = p^s$, with gcd(d, q) = 1. If $(A_i)_{i \ge 0}$ is spectrum of *C*, then $\sum_{i \ne 0, d \pmod{q}} A_i \ge q^{k-3} \cdot r(q)$, where q + r(q) + 1 is minimal size of non-trivial blocking set of PG(2, q).

(日)

Thank you very much for your attention!

Leo Storme Galois geometries contributing to coding theory

(ロ) (部) (注) (こ)