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LINEAR CODES

q = prime number,
Prime fields: Fq = {1, . . . , q} (mod q),
Finite fields (Galois fields): Fq: q prime power,
Linear [n, k , d ]-code C over Fq is:

k -dimensional subspace of V (n, q),
minimum distance d = minimal number of positions in which
two distinct codewords differ.
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EXAMPLE

Example [5, 1, 5]-code over F2;
yes = (0, 0, 0, 0, 0),
no = (1, 1, 1, 1, 1).
(0, 0, 0, 0, 1) or (0, 0, 0, 1, 1) received, most likely (0, 0, 0, 0, 0) =
yes transmitted.

THEOREM

If in transmitted codeword at most (d − 1)/2 errors, it is
possible to correct these errors by replacing the received
n-tuple by the codeword at minimal distance.
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LINEAR CODES

Generator matrix of [n, k , d ]-code C

G = (g1 · · ·gn)

G = (k × n) matrix of rank k ,
rows of G form basis of C,
codeword of C = linear combination of rows of G.
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EXAMPLE OF GENERATOR MATRIX

Matrix

G =


1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 0 0 0 1


generates [7, 4, 3]-code over F2.
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LINEAR CODES

Parity check matrix H for C

(n − k)× n matrix of rank n − k ,
c ∈ C ⇔ c · HT = 0̄.
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EXAMPLE OF PARITY CHECK MATRIX

Matrix

H =

 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


is parity check matrix for [7, 4, 3]-code over F2.
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REMARK

Remark: For linear [n, k , d ]-code C, n, k , d do not change
when column gi in generator matrix

G = (g1 · · ·gn)

is replaced by non-zero scalar multiple.
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FROM VECTOR SPACE TO PROJECTIVE SPACE
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THE FANO PLANE PG(2, 2)

From V (3, 2) to PG(2, 2)
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PG(3, 2)

From V (4, 2) to PG(3, 2)
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GRIESMER BOUND AND MINIHYPERS

Question: Given

dimension k ,
minimal distance d ,

find minimal length n of [n, k , d ]-code over Fq.
Result: Griesmer (lower) bound

n ≥
k−1∑
i=0

⌈
d
qi

⌉
= gq(k , d).
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MINIHYPERS AND GRIESMER BOUND

Equivalence: (Hamada and Helleseth)

Griesmer (lower) bound
equivalent with

minihypers in finite projective spaces
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DEFINITION

DEFINITION

{f , m; k − 1, q}-minihyper F is:

set of f points in PG(k − 1, q),
F intersects every (k − 2)-dimensional space in at least m
points.

(m-fold blocking sets with respect to the hyperplanes of
PG(k − 1, q))
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MINIHYPERS AND GRIESMER BOUND

Let C = [gq(k , d), k , d ]-code over Fq.
If generator matrix

G = (g1 · · ·gn),

minihyper = PG(k − 1, q) \ {g1, . . . , gn}.
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MINIHYPERS AND GRIESMER BOUND
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EXAMPLE

Example: Griesmer [8,4,4]-code over F2

G =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0


minihyper = PG(3, 2)\ {columns of G} = plane (X0 = 0).
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CORRESPONDING MINIHYPER
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OTHER EXAMPLES

Example 1. Subspace PG(µ, q) in PG(k − 1, q) = minihyper of
[n = (qk − qµ+1)/(q − 1), k , qk−1 − qµ]-code (McDonald code).
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BOSE-BURTON THEOREM

THEOREM (BOSE-BURTON)

A minihyper consisting of |PG(µ, q)| points intersecting every
hyperplane in at least |PG(µ− 1, q)| points is equal to a
µ-dimensional space PG(µ, q).
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RAJ CHANDRA BOSE

R.C. Bose and R.C. Burton, A characterization of flat spaces in
a finite geometry and the uniqueness of the Hamming and the
McDonald codes. J. Combin. Theory, 1:96-104, 1966.
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OTHER EXAMPLES

Example 2. t < q pairwise disjoint subspaces PG(µ, q)i ,
i = 1, . . . , t , in PG(k − 1, q) = minihyper of
[n = (qk − 1)/(q− 1)− t(qµ+1 − 1)/(q− 1), k , qk−1 − tqµ]-code.
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CHARACTERIZATION RESULT

THEOREM (GOVAERTS AND STORME)

For q odd prime and 1 ≤ t ≤ (q + 1)/2,
[n = (qk − 1)/(q − 1)− t(qµ+1 − 1)/(q − 1), k , qk−1 − tqµ]-code
C: minihyper is union of t pairwise disjoint PG(µ, q).
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DEFINITION

DEFINITION

Let C be linear [n, k , d ]-code over Fq. The covering radius of C
is smallest integer R such that every n-tuple in Fn

q differs in at
most R positions from some codeword in C.

THEOREM

Let C be linear [n, k , d ]-code over Fq with parity check matrix

H = (h1 · · ·hn).

Then covering radius of C is equal to R if and only if every
(n − k)-tuple over Fq can be written as linear combination of at
most R columns of H.
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DEFINITION

DEFINITION

Let S be subset of PG(N, q). The set S is called ρ-saturating
when every point P from PG(N, q) can be written as linear
combination of at most ρ + 1 points of S.

Covering radius ρ for linear [n, k , d ]-code
equivalent with

(ρ− 1)-saturating set in PG(n − k − 1, q)
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1-SATURATING SETS

H = (h1 · · ·hn)
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2-SATURATING SETS

H = (h1 · · ·hn)
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1-SATURATING SET IN PG(3, q) OF SIZE 2q + 2
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1-SATURATING SET IN PG(3, q) OF SIZE 2q + 2
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EXAMPLE OF ÖSTERGÅRD AND DAVYDOV

Let Fq = {a1 = 0, a2, . . . , aq}.

H1 =


1 · · · 1 0 0 0 · · · 0
a1 · · · aq 1 0 0 · · · 0
a2

1 · · · a2
q 0 0 1 · · · 1

0 · · · 0 0 1 a2 · · · aq


Columns of H1 define 1-saturating set of size 2q + 1 in
PG(3, q).
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EXAMPLE OF ÖSTERGÅRD AND DAVYDOV

Leo Storme Galois geometries contributing to coding theory



Coding theory
Griesmer bound and minihypers

Covering radius and saturating sets
Linear MDS codes and arcs

Extendability results and blocking sets

EXAMPLE OF ÖSTERGÅRD AND DAVYDOV

H2 =



1 · · · 1 0 0 · · · 0 0 · · · 0 0
a1 · · · aq 1 0 · · · 0 0 · · · 0 0
a2

1 · · · a2
q 0 1 · · · 1 0 · · · 0 0

0 · · · 0 0 a2 · · · aq a2
1 · · · a2

q 0
0 · · · 0 0 0 · · · 0 a1 · · · aq 1
0 · · · 0 0 0 · · · 0 1 · · · 1 0

 ,

Columns of H2 define 2-saturating set of size 3q + 1 in
PG(5, q).
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EXAMPLE OF ÖSTERGÅRD AND DAVYDOV
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LINEAR MDS CODES AND ARCS

Question:
Given

length n,
dimension k ,

find maximal value of d .
Result: Singleton (upper) bound

d ≤ n − k + 1.

Notation: MDS code = [n, k , n − k + 1]-code.
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ARCS

Equivalence:

Singleton (upper) bound (MDS codes)
equivalent with

Arcs in finite projective spaces (Segre)
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DEFINITION

DEFINITION

n-Arc in PG(k − 1, q): set of n points, every k linearly
independent.

Example:

1 n-arc in PG(2, q): n points, no three collinear.
2 Conic X 2

1 = X0X2

{(1, t , t2)||t ∈ Fq} ∪ {(0, 0, 1)}
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NORMAL RATIONAL CURVE

Classical example of arc:

{(1, t , . . . , tk−1)||t ∈ Fq} ∪ {(0, . . . , 0, 1)}

defines [q + 1, k , d = q + 2− k ]-GDRS (Generalized
Doubly-Extended Reed-Solomon) code with generator matrix

G =


1 · · · 1 0
t1 · · · tq 0
...

...
...

...
tk−2
1 · · · tk−2

q 0
tk−1
1 · · · tk−1

q 1
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CHARACTERIZATION RESULT

THEOREM (SEGRE, THAS)
For

q odd prime power,
2 ≤ k <

√
q/4,

[n = q + 1, k , d = q + 2− k ]-MDS code is GDRS.
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BALL RESULT

THEOREM (BALL)

For q odd prime, n ≤ q + 1 for every [n, k , n− k + 1]-MDS code.

Technique: Polynomial techniques
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WELL-KNOWN EXTENDABILITY RESULT

THEOREM

Every linear binary [n, k , d ]-code C, d odd, is extendable to
linear binary [n + 1, k , d + 1]-code.
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HILL-LIZAK RESULT

THEOREM (HILL AND LIZAK)

Let C be linear [n, k , d ]-code over Fq, with gcd(d , q) = 1 and
with all weights congruent to 0 or d (mod q). Then C can be
extended to [n + 1, k , d + 1]-code Ĉ all of whose weights are
congruent to 0 or d + 1 (mod q).

Proof: Subcode of all codewords of weight congruent to 0
(mod q) is linear subcode C0 of dimension k − 1. If G0 defines
C0 and

G =

(
x

G0

)
,

then
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HILL-LIZAK RESULT

Ĝ =


x 1

0

G0
...
0


defines Ĉ.
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GEOMETRICAL COUNTERPART OF LANDJEV

DEFINITION

Multiset K in PG(k − 1, q) is (n, w ; k − 1, q)-multiarc or
(n, w ; k − 1, q)-arc if

1 sum of all weights of points of K is n,
2 hyperplane H of PG(k − 1, q) contains at most w

(weighted) points of K and some hyperplane H0 contains
w (weighted) points of K .
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LINEAR CODES AND MULTIARCS

Let C = [n, k , d ]-code over Fq.
If generator matrix

G = (g1 · · ·gn),

then {g1, . . . , gn} = (n, w = n − d ; k − 1, q)-multiarc.
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LINEAR CODES AND MULTIARCS
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GEOMETRICAL COUNTERPART OF LANDJEV

C linear [n, k , d ]-code over Fq, gcd(d , q) = 1 and with all
weights congruent to 0 or d (mod q). Then C can be
extended to [n + 1, k , d + 1]-code all of whose weights are
congruent to 0 or d + 1 (mod q).
K =(n, w ; k − 1, q)-multiarc with gcd(n − w , q) = 1 and
intersection size of K with all hyperplanes congruent to n
or w (mod q). Then K can be extended to
(n + 1, w ; k − 1, q)-multiarc.
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GEOMETRICAL COUNTERPART OF LANDJEV

Proof: Hyperplanes H containing n (mod q) points of K form
dual blocking set B̃ with respect to codimension 2 subspaces of
PG(k − 1, q). Also

B̃ =
qk−1 − 1

q − 1
.

By dual of Bose-Burton, B̃ consists of all hyperplanes through
particular point P.
This point P extends K to (n + 1, w ; k − 1, q)-multiarc.
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BLOCKING SETS IN PG(2, q)

DEFINITION

Blocking set B in PG(2, q): intersects every line in at least one
point.

Trivial example: Line.

DEFINITION

Non-trivial blocking set in PG(2, q): contains no line.
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BLOCKING SETS IN PG(2, q)

q + r(q) + 1 = size of smallest non-trivial blocking set in
PG(2, q).

(Blokhuis) r(q) = (q + 1)/2 for q > 2 prime,
(Bruen) r(q) =

√
q + 1 for q square,

(Blokhuis) r(q) = q2/3 + 1 for q cube (non-square) power.
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IMPROVED RESULTS

THEOREM (LANDJEV AND ROUSSEVA)

Let K be (n, w ; k − 1, q)-arc, q = ps, with spectrum (ai)i≥0. Let
w 6≡ n (mod q) and∑

i 6≡w (mod q)

ai < qk−2 + qk−3 + · · ·+ 1 + qk−3 · r(q), (1)

where q + r(q) + 1 is minimal size of non-trivial blocking set of
PG(2, q). Then K is extendable to (n + 1, w ; k − 1, q)-arc.
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IMPROVED RESULTS

THEOREM

Let C be non-extendable [n, k , d ]-code over Fq, q = ps, with
gcd(d , q) = 1. If (Ai)i≥0 is spectrum of C, then∑

i 6≡0,d (mod q) Ai ≥ qk−3 · r(q), where q + r(q) + 1 is minimal
size of non-trivial blocking set of PG(2, q).
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Thank you very much for your attention!
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