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Abstract

Abstract

We will discuss two methods for constructing codes and
designs from finite groups (mostly simple finite groups).
This is a survey of the collaborative work by the author with
J D Key and B Rorigues.
In this talk (Talk 1) we first discuss background material
and results required from finite groups, permutation groups
and representation theory. Then we aim to describe our
first method of constructing codes and designs from finite
groups.
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Error-correcting codes that have large automorphism groups
can be useful in applications as the group can help in
determining the code’s properties, and can be useful in
decoding algorithms: see Huffman [15] for a discussion of
possibilities, including the question of the use of permutation
decoding by searching for PD-sets.

We will discuss two methods for constructing codes and
designs for finite groups (mostly simple finite groups).
In the first method we discuss construction of symmetric
1-designs and binary codes obtained from the primitive
permutation representations, that is from the action on the
maximal subgroups, of a finite group G.
This method has been applied to several sporadic simple
groups, for example in [18], [22], [23], [27], [28], [29] and
[30].
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The second method introduces a technique from which a large
number of non-symmetric 1-designs could be constructed.

Let G be a finite group, M be a maximal subgroup of G and
Cg = [g] = nX be the conjugacy class of G containing g.
We construct 1− (v , k , λ) designs D = (P,B), where
P = nX and B = {(M ∩ nX )y |y ∈ G}. The parameters v , k ,
λ and further properties of D are determined.
We also study codes associated with these designs. In
Subsections 5.1, 5.2 and 5.3 we apply the second method
to the groups A7, PSL2(q) and J1 respectively.
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Our notation will be standard. For finite simple groups and their
maximal subgroups we follow the ATLAS notation.

An incidence structure D = (P,B, I), with point set P,
block set B and incidence I is a t-(v , k , λ) design, if
|P| = v , every block B ∈ B is incident with precisely k
points, and every t distinct points are together incident with
precisely λ blocks.
The complement of D is the structure D̃ = (P,B, Ĩ), where
Ĩ = P × B − I. The dual structure of D is Dt = (B,P, I t),
where (B, P) ∈ I t if and only if (P, B) ∈ I. Thus the
transpose of an incidence matrix for D is an incidence
matrix for Dt .
We will say that the design is symmetric if it has the same
number of points and blocks, and self dual if it is
isomorphic to its dual.
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A t-(v , k , λ) design is called self-orthogonal if the block
intersection numbers have the same parity as the block
size.
The code CF of the design D over the finite field F is the
space spanned by the incidence vectors of the blocks over
F . We take F to be a prime field Fp, in which case we write
also Cp for CF , and refer to the dimension of Cp as the
p-rank of D.
If Q is any subset of P, then we will denote the incidence
vector of Q by vQ. Thus CF =

〈
vB |B ∈ B

〉
, and is a

subspace of FP , the full vector space of functions from P
to F .
For any code C, the dual code C⊥ is the orthogonal
subspace under the standard inner product. The hull of a
design’s code over some field is the intersection C ∩ C⊥.
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If a linear code over the finite field F of order q is of length
n, dimension k , and minimum weight d , then we write
[n, k , d ]q to represent this information.
If c is a codeword then the support of c, s(c), is the set of
non-zero coordinate positions of c.
A constant word in the code is a codeword all of whose
coordinate entries are either 0 or 1. The all-one vector will
be denoted by , and is the constant vector of weight the
length of the code.
Two linear codes of the same length and over the same
field are equivalent if each can be obtained from the other
by permuting the coordinate positions and multiplying each
coordinate position by a non-zero field element. They are
isomorphic if they can be obtained from one another by
permuting the coordinate positions.
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An automorphism of a code is any permutation of the
coordinate positions that maps codewords to codewords.
An automorphism thus preserves each weight class of C.
A binary code with all weights divisible by 4 is said to be a
doubly-even binary code.

Terminology for graphs is standard:
our graphs are undirected
the valency of a vertex is the number of edges containing
the vertex
A graph is regular if all the vertices have the same valence
a regular graph is strongly regular of type (n, k , λ, µ) if it
has n vertices, valence k , and if any two adjacent vertices
are together adjacent to λ vertices, while any two
non-adjacent vertices are together adjacent to µ vertices.
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The groups G.H, G : H, and G·H denote a general
extension, a split extension (semi-direct product) and a
non-split extension respectively.
For a prime p, pn denotes the elementary abelian group of
order pn, that is Zp × Zp × · · · × Zp, n copies.
If G is a permutation group on Ω = {1, 2, · · · , n} and M is a
group, then the wreath product M oG, is the split extension
Mn : G, where

Mn = M ×M × · · · ×M = {(m1, m2, · · · , mn) | mi ∈ M},

and G acts on Mn by permuting the indices.
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If G is a group and M is a G-module, the socle of M,
written Soc(M), is the largest semi-simple G-submodule of
M.
Soc(M) is the direct sum of all the irreducible
G-submodules of M.
Determination of Soc(V ) for each of the relevant full-space
G-modules V = F n is highly desirable.
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CFSG Theorem

The classification of finite simple groups was completed in
1981. It has a history of nearly 150 years and its proof occupies
15000 journal pages. The classification theorem (CFSG) is
precisely:
Every finite simple group is isomorphic to one of the following
groups

a group of prime order,
an alternating group An for n ≥ 5,
one of the finite groups of Lie type (classical or
exceptional),
one of the 26 sporadic simple groups.
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Permutation and Matrix Representations
Permutation Characters

Theorem (Cayley)

Every group G is isomorphic to a subgroup of SG. In particular
if |G| = n, then G is isomorphic to a subgroup of Sn.

Proof: For each x ∈ G, define Tx : G −→ G by Tx(g) = xg.
Then Tx is one-to-one and onto; so that Tx ∈ SG. Now if we
define τ : G −→ SG by τ(x) = Tx , then τ is a monomorphism.
Hence G ∼= Image(τ) ≤ SG. �

Definition
The homomorphism τ defined in Theorem 4.1 is called the left
regular representation of G.
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Corrolary

Let GL(n, F ) denote the general linear group over a field F . If
G is a finite group of order n, then G can be embedded in
GL(n, F ), that is G is isomorphic to a subgroup of GL(n, F ).

Proof: Let Tx be as in Cayley’s Theorem. Assume that
G = {g1, g2, · · · , gn}. Let Px = (aij) denote the n × n matrix
given by aij = 1F if Tx(gi) = gj and aij = 0F , otherwise. Then
Px is a permutation matrix, that is a matrix obtained from the
identity matrix by permuting its columns. Define
ρ : G −→ GL(n, F ) by ρ(x) = Px , then it is not difficult to check
that ρ is a monomorphism. �

J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes



Abstract
Introduction

Terminology and notation
Group Actions and Permutation Characters

Method 1
References

Permutation and Matrix Representations
Permutation Characters

Theorem (Generalized Cayley Theorem)

Let H be a subgroup of G and let Ω be the set of all left cosets
of H in G. Then there is a homomorphism ρ : G −→ SΩ such
that

Ker(ρ) =
⋂

g∈G

gHg−1.

Proof: For any x ∈ G, define ρx : Ω −→ Ω by ρx(gH) = x(gH).
Now define ρ : G −→ SΩ by ρ(x) = ρx for all x ∈ G. Then ρ is a
homomorphism. We claim that Ker(ρ) =

⋂
g∈G gHg−1. �

The homomorphism ρ defined above is called the permutation
representation of G on the left cosets of H in G. The kernel of
ρ, Ker(ρ), is called the core of H in G.
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Definition
Let G be a group. Let f : G −→ GL(n, F ) be a homomorphism.
Then we say that f is a Matrix Representation of G of degree
n (or dimension n), over the field F .

If Ker(f ) = {1G}, then we say that f is a faithful representation
of G. In this situation G ∼= Image(f ); so that G is isomorphic to
a subgroup of GL(n, F ).
(i) The map f : G −→ GL(1, F ) = F ∗ given by f (g) = 1F for all
g ∈ G is called the trivial representation of G over F .
(ii) Let G be a permutation group acting on a finite set Ω, where
Ω = {x1, x2, · · · , xn}. Define π : G → GL(n, F ) by π(g) = πg for
all g ∈ G, where πg is the permutation matrix induced by g on
Ω. That is πg = (aij) an n×n matrix having 0F and 1F as entries
in such a way that aij = 1F if g(xi) = xj and 0F otherwise.
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Then π is a representation of G over F , and π is called the
permutation representation of G.
(iii) Take Ω = G in part (ii). Define a permutation action on G by
g : x → xg for all x ∈ G. Then the associated representation π
is called the right regular representation of G.

Definition (Characters)

Let f : G → GL(n, F ) be a representation of G over the field F.
The function χ : G → F defined by χ(g) = trace(f (g)) is called
the character of f .

Definition (Class functions)
If φ : G → F is a function that is constant on conjugacy classes
of G, that is φ(g) = φ(xgx−1), for all x ∈ G, then we say that φ
is a class function.

It is not difficult to see that a character is a class function.J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes
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Suppose that G is a finite group acting on a finite set Ω. For
α ∈ Ω, the stabilizer of α in G is given by

Gα = {g ∈ G|αg = α}.

Then Gα ≤ G and [G : Gα] = |∆|, where ∆ is the orbit
containing α.

The action of G on Ω gives a permutation representation π
with corresponding permutation character χπ denoted by
χ(G|Ω).

Then from elementary representation theory we deduce
that
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Lemma

(i) The action of G on Ω is isomorphic to the action of G on
the G/Gα, that is on the set of all left cosets of Gα in G.
Hence χ(G|Ω) = χ(G|Gα).

(ii) χ(G|Ω) = (IGα
)G, the trivial character of Gα induced to G.

(iii) For all g ∈ G, we have χ(G|Ω)(g) = number of points in Ω
fixed by g.

Proof: For example see Isaacs [11] or Ali [1]. �
In fact for any subgroup H ≤ G we have

χ(G|H)(g) =
k∑

i=1

|CG(g)|
|CH(hi)|

,

hi ’s are rep. of the conj. classes of H that fuse to [g] = Cg in G.
J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes



Abstract
Introduction

Terminology and notation
Group Actions and Permutation Characters

Method 1
References

Permutation and Matrix Representations
Permutation Characters

Lemma

(i) The action of G on Ω is isomorphic to the action of G on
the G/Gα, that is on the set of all left cosets of Gα in G.
Hence χ(G|Ω) = χ(G|Gα).

(ii) χ(G|Ω) = (IGα
)G, the trivial character of Gα induced to G.

(iii) For all g ∈ G, we have χ(G|Ω)(g) = number of points in Ω
fixed by g.

Proof: For example see Isaacs [11] or Ali [1]. �
In fact for any subgroup H ≤ G we have

χ(G|H)(g) =
k∑

i=1

|CG(g)|
|CH(hi)|

,

hi ’s are rep. of the conj. classes of H that fuse to [g] = Cg in G.
J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes



Abstract
Introduction

Terminology and notation
Group Actions and Permutation Characters

Method 1
References

Permutation and Matrix Representations
Permutation Characters

Lemma

(i) The action of G on Ω is isomorphic to the action of G on
the G/Gα, that is on the set of all left cosets of Gα in G.
Hence χ(G|Ω) = χ(G|Gα).

(ii) χ(G|Ω) = (IGα
)G, the trivial character of Gα induced to G.

(iii) For all g ∈ G, we have χ(G|Ω)(g) = number of points in Ω
fixed by g.

Proof: For example see Isaacs [11] or Ali [1]. �
In fact for any subgroup H ≤ G we have

χ(G|H)(g) =
k∑

i=1

|CG(g)|
|CH(hi)|

,

hi ’s are rep. of the conj. classes of H that fuse to [g] = Cg in G.
J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes



Abstract
Introduction

Terminology and notation
Group Actions and Permutation Characters

Method 1
References

Permutation and Matrix Representations
Permutation Characters

Lemma

(i) The action of G on Ω is isomorphic to the action of G on
the G/Gα, that is on the set of all left cosets of Gα in G.
Hence χ(G|Ω) = χ(G|Gα).

(ii) χ(G|Ω) = (IGα
)G, the trivial character of Gα induced to G.

(iii) For all g ∈ G, we have χ(G|Ω)(g) = number of points in Ω
fixed by g.

Proof: For example see Isaacs [11] or Ali [1]. �
In fact for any subgroup H ≤ G we have

χ(G|H)(g) =
k∑

i=1

|CG(g)|
|CH(hi)|

,

hi ’s are rep. of the conj. classes of H that fuse to [g] = Cg in G.
J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes



Abstract
Introduction

Terminology and notation
Group Actions and Permutation Characters

Method 1
References

Permutation and Matrix Representations
Permutation Characters

Lemma

Let H be a subgroup of G and let Ω be the set of all conjugates
of H in G. Then we have

(i) GH = NG(H) and χ(G|Ω) = χ(G|NG(H).
(ii) For any g in G, the number of conjugates of H in G

containing g is given by

χ(G|Ω)(g) =
m∑

i=1

|CG(g)|
|CNG(H)(xi)|

= [NG(H) : H]−1
k∑

i=1

|CG(g)|
|CH(hi)|

,

where xi ’s and hi ’s are representatives of the conjugacy
classes of NG(H) and H that fuse to [g] = Cg in G,
respectively.
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Proof:
(i)

GH = {x ∈ G|Hx = H} = {x ∈ G|x ∈ NG(H)} = NG(H).

Now the results follows from Lemma 4.8 part (i).
(ii) The proof follows from part (i) and Corollary 3.1.3 of Ganief

[10] which uses a result of Finkelstien [8]. �

Remark
Note that

χ(G|Ω)(g) = |{Hx : (Hx)g = Hx}| = |{Hx |Hx−1gx = H}

= |{Hx |x−1gx ∈ NG(H)}| = |{Hx |g ∈ xNG(H)x−1}|

= |{Hx |g ∈ (NG(H))x}|.
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Corrolary

If G is a finite simple group and M is a maximal subgroup of G,
then number λ of conjugates of M in G containing g is given by

χ(G|M)(g) =
k∑

i=1

|CG(g)|
|CM(xi)|

,

where x1, x2, ..., xk are representatives of the conjugacy classes
of M that fuse to the class [g] = Cg in G.

Proof: It follows from Lemma 4.9 and the fact that NG(M) = M.
It is also a direct application of Remark 1, since

χ(G|Ω)(g) = |{Mx |g ∈ (NG(M))x}| = |{Mx |g ∈ Mx}|. �
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Let B be a subset of Ω. If Bg = B or Bg ∩ B = ∅ for all g ∈ G,
we say B is a block for G. Clearly ∅,Ω and {α} for all α ∈ Ω
are blocks, called trivial blocks. Any other block is called
non-trivial. If G is transitive on Ω such that G has no non-trivial
block on Ω, then we say G is primitive. Otherwise we say G is
imprimitive.

Classification of Finite Simple Groups (CFSG) implies that
no 6-transitive finite groups exist other than Sn (n ≥ 6) and
An (n ≥ 8), and that the Mathieu groups are the only
faithful permutation groups other than Sn and An providing
examples for 4- and 5-transitive groups.
It is well-known that every 2-transitive group is primitive. By
using CFSG, all finite 2-transitive groups are known.
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The following is a well-known theorem that gives a
characterisation of primitive permutation groups.
Since by Lemma 4.8 the permutation action of a group G on a
set Ω is equivalent to the action of G on the set of the left
cosets G/Gα, determination of the primitive actions of G
reduces to the classification of its maximal subgroups.

Theorem

Let G be transitive permutation group on a set Ω. Then G is
primitive if and only if Gα is a maximal subgroup of G for every
α ∈ Ω.

Proof: See Rotman [33]. �
If G is transitive on Ω and Gα has r orbits on Ω, then we say
that G is a rank-r permutation group.
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We know that GL(V ) acts transitively on V ∗ = V − {0}. If
Z (GL(V )) denotes the centre of GL(V ), then Z (GL(V )) is
the normal subgroup of GL(V ) of all the scalar
transformations. We can easily see that Z (GL(V )) is not
transitive on V ∗, and we can deduce that GL(V ) acts
imprimitively on V ∗.
A general approach towards the classification of finite
primitive permutation groups is based on O’Nan-Scot
theorem [34]. It classifies the finite primitive permutation
groups according to the type and the action of their
minimal normal subgroups. It divides the primitive
permutation groups into the affine and non-affine classes.
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Currently the primitive permutation groups of degree n with
n < 1000 and primitive solvable permutation groups of
degree less than 6561 have been classified (see [14]).
Most of the computational procedures have been
implemented in MAGMA [4] and GAP [12].
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Construction of 1-Designs and Codes from Maximal
Subgroups

In this section we consider primitive representations of a finite
group G. Let G be a finite primitive permutation group acting on
the set Ω of size n. We can consider the action of G on Ω× Ω
given by (α, β)g = (αg , βg) for all α, β ∈ Ω and all g ∈ G. An
orbit of G on Ω× Ω is called an orbital. If ∆̄ is an orbital, then
∆̄∗ = {(α, β) : (β, α) ∈ ∆̄} is also an orbital of G on Ω× Ω,
which is called the paired orbital of ∆̄. We say that ∆̄ is
self-paired if ∆̄ = ∆̄∗.
For α ∈ Ω, let ∆ 6= {α} be an orbit of the stabilizer M = Gα of α.
Then ∆̄ given by ∆̄ = {(α, δ)g : δ ∈ ∆, g ∈ G} is an orbital. We
say that ∆ is self-paired if and only if ∆̄ is a self paired orbital.
The primitivity of G on Ω implies that M is maximal in G.
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Our construction for the symmetric 1-designs is based on the
following results, mainly Theorem 5.1 below, which is the
Proposition 1 of [18] with its corrected version in [19]:

Theorem

Let G be a finite primitive permutation group acting on the set Ω
of size n. Let α ∈ Ω, and let ∆ 6= {α} be an orbit of the
stabilizer Gα of α. If B = {∆g : g ∈ G} and, given δ ∈ ∆,
E = {{α, δ}g : g ∈ G}, then D = (Ω,B) forms a 1-(n, |∆|, |∆|)
design with n blocks. Further, if ∆ is a self-paired orbit of Gα,
then Γ = (Ω, E) is a regular connected graph of valency |∆|, D
is self-dual, and G acts as an automorphism group on each of
these structures, primitive on vertices of the graph, and on
points and blocks of the design.
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Proof: We have |G| = |∆G||G∆|, and clearly G∆ ⊇ Gα. Since
G is primitive on Ω, Gα is maximal in G, and thus G∆ = Gα,
and |∆G| = |B| = n. This proves that we have a 1-(n, |∆|, |∆|)
design. Since ∆ is self-paired, Γ is a graph rather than only a
digraph. In Γ we notice that the vertices adjacent to α are the
vertices in ∆. Now as we orbit these pairs under G, we get the
nk ordered pairs, and thus nk/2 edges, where k = ∆. Since
the graph has G acting, it is clearly regular, and thus the
valency is k as required, i.e. the only vertices adjacent to α are
those in the orbit ∆. The graph must be connected, as a
maximal connected component will form a block of imprimitivity,
contradicting the group’s primitive action.
Now notice that an adjacency matrix for the graph is simply an
incidence matrix for the 1-design, so that the 1-design is
necessarily self-dual. This proves all our assertions. �
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Note that if we form any union of orbits of Gα, including the orbit
{α}, and orbit this under the full group, we will still get a
self-dual symmetric 1-design with the group operating. Thus
the orbits of the stabilizer can be regarded as “building blocks”.
Since the complementary design (i.e. taking the complements
of the blocks to be the new blocks) will have exactly the same
properties, we will assume that our block size is at most v/2.
In fact this will give us all possible designs on which the group
acts primitively on points and blocks:

Lemma

If the group G acts primitively on the points and the blocks of a
symmetric 1-design D, then the design can be obtained by
orbiting a union of orbits of a point-stabilizer, as described in
Theorem 5.1.
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Proof: Suppose that G acts primitively on points and blocks of
the 1-(v , k , k) design D. Let B be the block set of D; then if B is
any block of D, B = BG. Thus |G| = |B||GB|, and since G is
primitive, GB is maximal and thus GB = Gα for some point.
Thus Gα fixes B, so this must be a union of orbits of Gα. �

Lemma

If G is a primitive simple group acting on Ω, then for any α ∈ Ω,
the point stabilizer Gα has only one orbit of length 1.

Proof: Suppose that Gα fixes also β. Then Gα = Gβ. Since G
is transitive, there exists g ∈ G such that αg = β. Then
(Gα)g = Gαg = Gβ = Gα, and thus g ∈ NG(Gα) = N. Since Gα

is maximal in G, we have N = G or N = Gα. But G is simple, so
we must have N = Gα, so that g ∈ Gα and so β = α. �
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We have considered various finite simple groups, for
example J1; J2; McL; PSp2m(q), where q is a power of an
odd prime, and m ≥ 2; Co2; HS and Ru.
For each group, using Magma [4], we construct designs
and graphs that have the group acting primitively on points
as automorphism group, and, for a selection of small
primes, codes over that prime field derived from the
designs or graphs that also have the group acting as
automorphism group. For each code, the code
automorphism group at least contains the associated
group G.
We took a closer look at some of the more interesting
codes that arose, asking what the basic coding properties
were, and if the full automorphism group could be
established.
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It is well known, and easy to see, that if the group is rank-3,
then the graph formed as described in Theorem 5.1 will be
strongly regular. In case the group is not of rank 3, this
might still happen, and we examined this question also for
some of the groups we studied.
Clearly G ≤ Aut(D) ≤ Aut(C). Note that we could in some
cases look for the full group of the hull, and from that
deduce the group of the code, since
Aut(C) = Aut(C⊥) ⊆ Aut(C ∩ C⊥).
A sample of our results for example for J1 and J2 is given
below. We looked at some of the codes that were
computationally feasible to find out if the groups J1 and
Aut(J2) = J2 : 2 = J̄2 formed the full automorphism group
in any of the cases when the code was not the full vector
space. We first mention the following lemma:
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Lemma

Let C be the linear code of length n of an incidence structure I
over a field F. Then the automorphism group of C is the full
symmetric group if and only if C = F n or C = F⊥.

Proof: Suppose Aut(C) is Sn. Then C is spanned by the
incidence vectors of the blocks of I; let B be such a block and
suppose it has k points, and so it gives a vector of weight k in
C. Clearly C contains the incidence vector of any set of k
points, and thus, by taking the difference of two such vectors
that differ in just two places, we see that C contains all the
vectors of weight 2 having as non-zero entries 1 and −1. Thus
C = F⊥ or F n. The converse is clear. �
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Here we give a brief discussion on the application of Method 1
to the sporadic simple groups J1, J2 and Co2. For full details
the readers are referred to [18], [19], [20] and [28].

Computations for J1 and J2

The first Janko sporadic simple group J1 has order
175560 = 23 × 3× 5× 7× 11× 19 and it has seven
distinct primitive representations, of degree 266, 1045,
1463, 1540, 1596, 2926, and 4180, respectively (see Table
1 and [5, 9]).
For each of the seven primitive representations, using
Magma, we constructed the permutation group and formed
the orbits of the stabilizer of a point. For each of the
non-trivial orbits, we formed the symmetric 1-design as
described in Theorem 5.1.
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We took set of the {2, 3, 5, 7, 11} of primes and found the
dimension of the code and its hull for each of these primes.
Note also that since 19 is a divisor of the order of J1, in
some of the smaller cases it is worthwhile also to look at
codes over the field of order 19.
We also found the automorphism group of each design,
which will be the same as the automorphism group of the
regular graph. Where computationally possible we also
found the automorphism group of the code.
Conclusions from our results are summarized below. In
brief, we found that there are 245 designs formed in this
manner from single orbits and that none of them is
isomorphic to any other of the designs in this set. In every
case the full automorphism group of the design or graph is
J1.
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Table 1: Maximal subgroups of J1

No. Order Index Structure
Max[1] 660 266 PSL(2, 11)

Max[2] 168 1045 23:7:3
Max[3] 120 1463 2× A5
Max[4] 114 1540 19:6
Max[5] 110 1596 11:10
Max[6] 60 2926 D6 × D10
Max[7] 42 4180 7:6

In Table 2, 1st column gives the degree, 2nd the number of
orbits, and the remaining columns give the length of the orbits
of length greater than 1 (with the number of that length in case
there is more than one of that length).
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Table 2: Orbits of a point-stabilizer of J1

Degree # length
266 5 132 110 12 11

1045 11 168(5) 56(3) 28 8
1463 22 120(7) 60(9) 20(2) 15(2) 12
1540 21 114(9) 57(6) 38(4) 19
1596 19 110(13) 55(2) 22(2) 11
2926 67 60(34) 30(27) 15(5)
4180 107 42(95) 21(6) 14(4) 7

In summary we have the following result:
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Proposition

If G is the first Janko group J1, there are precisely 245
non-isomorphic self-dual 1-designs obtained by taking all the
images under G of the non-trivial orbits of the point stabilizer in
any of G’s primitive representations, and on which G acts
primitively on points and blocks. In each case the full
automorphism group is J1. Every primitive action on symmetric
1-designs can be obtained by taking the union of such orbits
and orbiting under G.

We tested the graphs for strong regularity in the cases of the
smaller degree, and did not find any that were strongly regular.
We also found the designs and their codes for some of the
unions of orbits in some cases.
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The second Janko sporadic simple group J2 has order
604800 = 27 × 33 × 52 × 7, and it has nine primitive
permutation representations (see Table 3), but we did not
compute with the largest degree.
Our results for J2 are different from those for J1, due to the
existence of an outer automorphism. The main difference
is that usually the full automorphism group is J̄2 = J2 : 2,
and that in the cases where it was only J2, there would be
another orbit of that length that would give an isomorphic
design, and which, if the two orbits were joined, would give
a design of double the block size and automorphism group
J̄2. A similar conclusion held if some union of orbits was
taken as a base block.
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Table 3: Maximal subgroups of J2

No. Order Index Structure
Max[1] 6048 100 PSU(3, 3)
Max[2] 2160 280 3.PGL(2, 9)
Max[3] 1920 315 21+4:A5
Max[4] 1152 525 22+4:(3× S3)
Max[5] 720 840 A4 × A5
Max[6] 600 1008 A5 × D10
Max[7] 336 1800 PSL(2, 7):2
Max[8] 300 2016 52:D12
Max[9] 60 10080 A5
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Table 4: Orbits of a point-stabilizer of J2 (of degree ≤ 2016)

Degree # length
100 3 63 36
280 4 135 108 36
315 6 160 80 32(2) 10
525 6 192(2) 96 32 12
840 7 360 240 180 24 20 15

1008 11 300 150(2) 100(2) 60(2) 50 25 12
1800 18 336 168(6) 84(3) 42(3) 28 21 14(2)
2016 18 300(2) 150(6) 75(5) 50(2) 25 15

From these eight primitive representations, we obtained in all 51
non-isomorphic symmetric designs on which J2 acts primitively.
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We also found three strongly regular graphs (all of which are
known: see Brouwer [6]): that of degree 100 from the rank-3
action, of course, and two more of degree 280 from the orbits of
length 135 and 36, giving strongly regular graphs with
parameters (280,135,70,60) and (280,36,8,4) respectively. The
full automorphism group is J̄2 in each case.
In each of the following we consider the primitive action of J2 on
a design formed as described in Method 1 from an orbit or a
union of orbits, and the codes are the codes of the associated
1-design.
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For J2 of degree 100, J̄2 is the full automorphism group of
the design with parameters 1-(100, 36, 36), and it is the
automorphism group of the self-orthogonal doubly-even
[100, 36, 16]2 binary code of this design.
For J2 of degree 280, J̄2 is the full automorphism group of
the design with parameters 1-(280, 108, 108), and it is the
automorphism group of the self-orthogonal doubly-even
[280, 14, 108]2 binary code of this design. The weight
distribution of this code is
< 0, 1 >, < 108, 280 >, < 128, 1575 >, < 136, 2520 >, < 140, 7632 >, < 144, 2520 >,

< 152, 1575 >, < 172, 280 >, < 280, 1 >

Thus the words of minimum weight (i.e. 108) are the
incidence vectors of the design.
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For J2 of degree 315, J̄2 is the full automorphism group of
the design with parameters 1-(315, 64, 64) (by taking the
union of the two orbits of length 32), and it is the
automorphism group of the self orthogonal doubly-even
[315, 28, 64]2 binary code of this design. The weight
distribution of the code is as follows:
< 0, 1 >, < 64, 315 >, < 96, 6300 >, < 104, 25200 >, < 112, 53280 >, < 120, 242760 >,

< 124, 201600 >, < 128, 875700 >, < 132, 1733760 >, < 136, 4158000 >, < 140, 5973120 >,

< 144, 12626880 >, < 148, 24232320 >, < 152, 35151480 >, < 156, 44392320 >,

< 160, 53040582 >, < 164, 41731200 >, < 168, 28065120 >, < 172, 13023360 >,

< 176, 2129400 >, < 180, 685440 >, < 184, 75600 >, < 192, 10710 >, < 200, 1008 >

Thus the words of minimum weight (i.e. 64) are the
incidence vectors of the blocks of the design.
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Furthermore, the designs from the two orbits of length 32
in this case, i.e. 1-(315, 32, 32) designs, each have J2 as
their automorphism group. Their binary codes are equal,
and are [315, 188]2 codes, with hull the 28-dimensional
code described above. The automorphism group of this
188-dimensional code is again J̄2. The minimum weight is
at most 32.
For J2 of degree 315, J̄2 is the full automorphism group of
the design with parameters 1-(315, 160, 160) and it is the
automorphism group of the [315, 265]5 5-ary code of this
design. This code is also the 5-ary code of the design
obtained from the orbit of length 10, and from that of the
orbit of length 80, so we can deduce that the minimum
weight is at most 10. The hull is a [315, 15, 155]5 code and
again with J̄2 as full automorphism group.
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For J2 of degree 315, J̄2 is the full automorphism group of
the design with parameters 1-(315, 80, 80) from the orbit of
length 80, and it is the automorphism group of the
self-orthogonal doubly-even [315, 36, 80]2 binary code of
this design. The minimum words of this code are precisely
the 315 incidence vectors of the blocks of the design.

Irreducible Modules of J1 and J2: In [20] we used Method 1 to
obtain all irreducible modules of J1 (as codes) over F2, F3, F5.
Most of irreducible modules of J2 can be represented in this
way as the code, the dual code or the hull of the code of a
design, or of codimension 1 in one of these. For J2, if no such
code was found for a particular irreducible module, then we
checked that it could not be so represented for the relevant
degrees of the primitive permutation representations up to and
including 1008. In summary, we obtained:
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Proposition

Using the construction described in Method 1 above (see
Theorem 5.1 and Lemma 5.2), taking unions of orbits, the
following constructions of the irreducible modules of the Janko
groups J1 and J2 as the code, the dual code or the hull of the
code of a design, or of codimension 1 in one of these, over Fp
where p = 2, 3, 5, were found to be possible:

1 J1: all the seven irreducible modules for p = 2, 3, 5;
2 J2: all for p = 2 apart from dimensions 12, 128; all for

p = 3 apart from dimensions 26, 42, 114, 378; all for p = 5
apart from dimensions 21, 70, 189, 300. For these
exclusions, none exist of degree ≤ 1008.
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Notes

We do not claim that we have all the constructions of the
modular representations as codes; we were seeking
mainly existence.
In the tables, the row labelled “Dim” denotes the
dimensions of the distinct irreducible modules, and the row
labelled “Deg” denotes the degree of the permutation
representation i.e. the length of the code. An entry “−”
indicates that none were found for that dimension, and that
none of degree ≤ 1008 exist.
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Codes of irreducible modules of J1 for p = 2, 3, 5

p = 2 Dim 20 76 76
Deg 1045, 1463, 1540 266, 1045, 1463 1463
Dim 112 112 360
Deg 266, 1045 1463 1045

p = 3 Dim 76 76 112 133
Deg 266, 1045, 1596 1596 266, 1045 1045
Dim 154 360
Deg 1045 1045

p = 5 Dim 56 76 76 77 133 360
Deg 266 1045 1596 266 1596 1045
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We constructed three self-orthogonal binary codes of
dimension 20 invariant under J1 of lengths 1045, 1463, and
1540. These are irreducible by [16] or Magma data. The
Magma simgps library is used. In the following we only discuss
one of these: J1 of Degree 1045 - Code: [1045, 20, 456]2 Dual
Code: [1045, 1025, 4]2

Permutation group J1 acting on a set of cardinality 1045
Orbit lengths of stabilizer of a point: [ 1, 8, 28, 56, 56, 56,
168, 168, 168, 168, 168 ];
Orbits chosen: 1,3,5,10,11. Defining block is the union of
these orbits, length 421
1− (1045, 421, 421) Design with 1045 blocks
C is the code of the design, of dimension 21
The 20-dimensional code is C ∩ C⊥ = Hull(C)
C = Hull(C)⊕ <  >, has type [1045, 21, 421]
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The full space can be completely decomposed into
J1-modules: V = F1045

2 = C76 ⊕ C112 ⊕ C360 ⊕ C496 ⊕ C1,
where all but C496 are irreducible. C496 has composition
factors of dimentions:
20, 112, 1, 76, 20, 1, 112, 20, 1, 1, 112, 20.
Note that Soc(V ) =Hull(C)⊕ <  > ⊕C76 ⊕ C112 ⊕ C360,
with dim(Soc(V ) = 569.

Weight Distribution of Hull(C): < 0, 1 >, < 456, 3080 >,
< 488, 29260 >, < 496, 87780 >, < 504, 87780 >,
< 512, 36575 >, < 520, 299706 >, < 528, 234080 >,
< 536, 175560 >, < 544, 58520 >, < 552, 14630 >,
< 560, 19019 >, < 608, 1540 >, < 624, 1045 >.
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Weight Distribution of C: < 0, 1 >, < 421, 1405 >,
< 437, 1540 >, < 456, 3080 >, < 485, 19019 >,
< 488, 29260 >, < 493, 14630 >, < 496, 87780 >,
< 501, 58520 >, < 504, 87780 >, < 509, 175560 >,
< 512, 36575 >, < 517, 234080 >, < 520, 299706 >,
< 525, 299706 >, < 528, 234080 >, < 533, 36575 >,
< 536, 175560 >, < 541, 87780 >, < 544, 58520 >,
< 549, 87780 >, < 552, 14630 >, < 557, 29260 >,
< 560, 19019 >, < 589, 3080 >, < 608, 1540 >,
< 624, 1045 >, < 1045, 1 >.
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Codes of irreducible modules of J2 for p = 2, 3, 5

p = 2 Dim 12 28 36 84 128 160
Deg – 315 100 840 – 315

p = 3 Dim 26 36 42 63 90 114
Deg – 100 – 100 280 –
Dim 133 225 378
Deg 525 1008 –

p = 5 Dim 14 21 41 70 85 90 175
Deg 315 – 280 – 1008 315 525
Dim 189 225 300
Deg – 840 –
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We now look at the smallest representations for J2. We have
not been able to find any of dimension 12, and none can exist
for degree ≤ 1008, as we have verified computationally by
examining the permutation modules.

We give below four representations of J2 acting on
self-orthogonal binary codes of small degree that are
irreducible or indecomposable codes over J2.

The full automorphism group of each of these codes is J̄2.
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Janko groups J1 and J2
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Degree 100, dimension 36, code [100, 36, 16]2 ; dual
code: [100, 64, 8]2

Permutation group J2 acting on a set of cardinality 100
Orbit lengths of stabilizer of a point: 1, 36, 63
1-(100, 36, 36) Design with 100 blocks
Second orbit gave a block of the design
C = C36 is the code of the design of dimension 36,
Aut(C) = J̄2, and it is irreducible.
C36 has type [100, 36, 16]2
Weigh distribution of C36 has been determined
C64 = C⊥ contains C36 and <  >, but it is indecomposable
V = F100

2 is indecomposable. Also Soc(V ) =C36 ⊕ <  >
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Janko groups J1 and J2
Conway group Co2

Degree 315, dimension 28, code [315, 28, 64]2; dual
code: [315, 287, 3]2

Permutation group J2 acting on a set of cardinality 315
Orbit lengths a point stabilizer: [ 1, 10, 32, 32, 80, 160 ]
Orbits chosen: 3 and 4
1-(315, 64, 64) Design with 315 blocks
C = C28 is the code of the design of dimension 28, it is
irreducible, Aut(C) = J̄2.
Weight distribution of C28 has been determined
F315

2 = C160 ⊕ C154⊕ <  >, where C160 is irreducible and
and C154⊕ <  >= C⊥

160 is the binary code of the
1-(315, 33, 33) design from orbits 1 and 4.
Soc(V ) =C28 ⊕ <  > ⊕C36⊕ C160, with
dim(Soc(V )) = 225.
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Soc(V ) =C28 ⊕ <  > ⊕C36⊕ C160, with
dim(Soc(V )) = 225.
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The Leech lattice is a certain 24-dimensional Z-submodule
of the Euclidean space R24 whose automorphism group is
the double cover 2.Co1 of the Conway group Co1. The
Conway groups Co2 and Co3 are stabilizers of sublattices
of the Leech lattice.
We give a brief discussion of the Conway group Co2. The
group Co2 admits a 23-dimensional indecomposable
representation (say M) over GF (2) obtained from the
24-dimensional Leech lattice by reducing modulo 2 and
factoring out a fixed vector.
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On the other hand, reduction modulo 2 of the
23-dimensional ordinary irreducible representation results
in a decomposable 23-dimensional
GF (2)-representation (say L). We construct this
decomposable 23-dimensional GF (2)-representation as a
binary code.
Furthermore, we show that this code contains a binary
code of dimension 22 invariant and irreducible under the
action of Co2.
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S(5, 8, 24)

Octads and Dodecads

Let Ω = {1, 2, 3, ..., 24}. Consider the Steiner system S(5, 8, 24)
on this set. Each block is called an Octad and is denoted by 8◦.

There are 759 octads.
Any two octads O1 and O2 intersect in a set of cardinality
0, 2, 4 or 8
If |O1 ∩O2| = 2, then O1 4O2 is called a dodecad and is
denoted by 12◦.
There are 2576 dodecads in S(5, 8, 24).
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Leech Lattice

The Leech lattice Λ was discovered by John Leech
(1926–1992), in three papers written in 1964, 1965 and 1967,
in connection with close packing of spheres in 24 dimension. Λ
consists of (x1, x2, ..., x24) ∈ Z24 such that

(i)
∑24

i=1 xi ≡ 4m(mod8)

(ii)xi ≡ m(mod2)

(iii){i : xi ≡ m(mod4)} for any given m is either ∅, an 8◦, an
12◦, or their complements.
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Leech Lattice 2

If (, ) denotes the Euclidean bilinear form on R24. Then for all
x , y ∈ Λ we have

(x , y) ≡ 0(mod8) and (x , x) ≡ 0(mod16)

‖x‖2 = (x , x) = 16k ,

length(x) = ‖x‖ = 4
√

k .
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The Conway Group .0 = Co0

The Leech group (Conway group .0 in 1967) is the Aut(Λ).
Conway proved that

(i) N = 212.M24 is a maximal subgroup of .0
(ii)|.0| = 22239547211× 13× 23.

(iii) .0 is a new perfect group; |Z (.0)| = 2;
(iv).0/Z (.0) is a new simple group, denoted by .1 = Co1.
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.0 = Co0 Action on Λ

We define Λn by

Λn = {x ∈ Λ : ‖x‖ = 4
√

n}.

Then .0 acts transitively on Λi , i = 2, 3, 4.

(i) |Λ2| = 196560, (.0)λ2 = .2 = Co2 new simple group
(ii)|Λ3| = 16737120, (.0)λ3 = .3 = Co3 new simple group
(iii) |Λ4| = 398034000, (.0)λ4 = .4 = 211.M23 not simple

λi ∈ Λi

Many other sporadic simple groups can be constructed as
the stabilizers.
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Conway Group Co2

The group Co2 admits a 23-dimensional indecomposable
representation over GF (2) obtained from the
24-dimensional Leech lattice by reducing modulo 2 and
factoring out a fixed vector. The action of Co2 on the
vectors of this 23-dimensional indecomposable
GF (2)-module (say M) produces eight orbits.

M contains an irreducible GF (2)-submodule N of
dimension 22.

In the following table we give the orbit lengths and
stabilizers for the actions of Co2 on M and N respectively.
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Table 5: Action of Co2 on M and N

M-Stabilizer M-Orbit length N-Stabilizer N-Orbit length

Co2 1 Co2 1

U6(2) : 2 2300 U6(2) : 2 2300

McL 47104

210:M22:2 46575 210:M22:2 46575

HS:2 476928 HS:2 476928

U4(3).D8 1619200 U4(3).D8 1619200

M23 4147200

21+8
+ :S8 2049300 21+8

+ :S8 2049300
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Maximal subgroups of Co2

No. Max. sub. Deg.
1 U6(2):2 2300
2 210:M22:2 46575
3 McL 47104
4 21+8

+ :S6(2) 56925
5 HS:2 476928
6 (21+6

+ × 24) · A8 1024650
7 U4(3) · D8 1619200
8 24+10(S5 × S3) 3586275
9 M23 4147200

10 31+4
+ :21+4

− · S5 45337600
11 51+2

+ 4S4 3525451776
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Permutation Representation of Degree 2300

Co2 acts on the left cosets of U6(2):2 as a rank-3 primitive
permutation representation of degree 2300.

The stabilizer of a point α in this representation is a
maximal subgroup isomorphic to U6(2):2, producing three
orbits {α}, ∆1, ∆2 of lengths 1, 891 and 1408 respectively.

The self-dual symmetric 1-designs Di and associated
binary codes Ci are constructed from the sets ∆1,
{α} ∪∆1, ∆2, {α} ∪∆2, and ∆1 ∪∆2, respectively. We let
Ω = {α} ∪∆1 ∪∆2.
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Let

S = {|∆1|, |{α} ∪∆1|, |∆2|, |{α} ∪∆2|, |∆1 ∪∆2|}.

Then
S = {891, 892, 1408, 1409, 2299}.

Then we have the following main result concerning Di and Ci
for i ∈ S
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Proposition 11

Proposition

(i) Aut(D891) = Aut(D892) = Aut(D1408) =
Aut(D1409) = Aut(C892) = Aut(C1408) = Co2.

(ii) dim(C892) = 23, dim(C1408) = 22,
C892 ⊃ C1408 and Co2 acts irreducibly on C1408.

(iii) C891 = C1409 = C2299 = V2300(GF (2)).

(iv) Aut(D2299) = Aut(C891) = Aut(C1049) =
Aut(C2299) = S2300.
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Proof of Proposition 11

The proof of the theorem follows from a series of lemmas.

In fact we will show that the codes C892 and C1408 are of
types [2300, 23, 892]2 and [2300, 22, 1024]2 respectively.

Furthermore

C892 = 〈C1408, 〉 = C1408 ∪ {w +  : w ∈ C1408}

= C1408 ⊕ 〈〉,

where  denotes the all-one vector.

We find the weight distribution of C892 and then the weight
distribution of C1408 follows.

J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes



Abstract
Introduction

Terminology and notation
Group Actions and Permutation Characters

Method 1
References

Janko groups J1 and J2
Conway group Co2

Proof of Proposition 11

The proof of the theorem follows from a series of lemmas.

In fact we will show that the codes C892 and C1408 are of
types [2300, 23, 892]2 and [2300, 22, 1024]2 respectively.

Furthermore

C892 = 〈C1408, 〉 = C1408 ∪ {w +  : w ∈ C1408}

= C1408 ⊕ 〈〉,

where  denotes the all-one vector.

We find the weight distribution of C892 and then the weight
distribution of C1408 follows.

J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes



Abstract
Introduction

Terminology and notation
Group Actions and Permutation Characters

Method 1
References

Janko groups J1 and J2
Conway group Co2

Proof of Proposition 11

The proof of the theorem follows from a series of lemmas.

In fact we will show that the codes C892 and C1408 are of
types [2300, 23, 892]2 and [2300, 22, 1024]2 respectively.

Furthermore

C892 = 〈C1408, 〉 = C1408 ∪ {w +  : w ∈ C1408}

= C1408 ⊕ 〈〉,

where  denotes the all-one vector.

We find the weight distribution of C892 and then the weight
distribution of C1408 follows.

J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes



Abstract
Introduction

Terminology and notation
Group Actions and Permutation Characters

Method 1
References

Janko groups J1 and J2
Conway group Co2

Proof of Proposition 11

The proof of the theorem follows from a series of lemmas.

In fact we will show that the codes C892 and C1408 are of
types [2300, 23, 892]2 and [2300, 22, 1024]2 respectively.

Furthermore

C892 = 〈C1408, 〉 = C1408 ∪ {w +  : w ∈ C1408}

= C1408 ⊕ 〈〉,

where  denotes the all-one vector.

We find the weight distribution of C892 and then the weight
distribution of C1408 follows.

J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes



Abstract
Introduction

Terminology and notation
Group Actions and Permutation Characters

Method 1
References

Janko groups J1 and J2
Conway group Co2

Proof of Proposition 11 Cont.

We also determine the structures of the stabilizers (Co2)wl ,
for all nonzero weight l , where wl ∈ C1408 is a codeword of
weight l . The structures of the stabilizers (Co2)wl for C892
follows clearly from those of C1408.

we show that the code C1408 is the 22 dimensional
irreducible representation of Co2 over GF (2) contained in
the 23-dimensional decomposable C892 (we called L)

C1408 is also contained in the 23-dimensional
indecomposable representation (M) of Co2 over GF (2)
obtained from the Leech lattice, which we discussed
earlier.
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The weight distribution of C892 = L

l Al = |Wl |
0, 2300 1

892, 1408 2300

1024, 1276 46575

1100, 1200 476928

1136, 1164 1619200

1148, 1152 2049300
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Action of Co2 on C892 = L

Stabilizer (two copies) Orbit length (two copies)

Co2 1

U6(2) : 2 2300

210:M22:2 46575

HS:2 476928

U4(3).D8 1619200

21+8
+ :S8 non-maximal 2049300
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The weight distribution of C1408 = N

l Al
0 1

1024 46575

1136 1619200

1152 2049300

1200 476928

1408 2300
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Stabilizer of a word wl ∈ C1408

l (Co2)wl Maximality
1024 210:M22:2 Yes

1136 U4(3).D8 Yes

1152 21+8
+ : S8 No

1200 HS:2 Yes

1408 U6(2):2 Yes
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The code C892 is self-orthogonal doubly-even, with
minimum distance 892. It is a [2300, 23, 892]2 code.

Its dual C892
⊥ is a [2300, 2277, 4]2 code.

Moreover  ∈ C892
⊥ and  ∈ C892.

C1408 is self-orthogonal doubly even, with minimum
distance 1024. It is a [2300, 22, 1024]2 code.

Its dual C1408
⊥ is a [2300, 2278, 4]2 code with 3586275

words of weight 4.  ∈ C1408
⊥ and C1408 ⊂ C892.

We should also mention that computation with Magma shows
the codes over some other primes, in particular, p = 3 are of
some interest. In a separate paper we plan to deal with the
ternary codes invariant under Co2 [31].
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