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Abstract

In this talk we discuss the second method for constructing
codes and designs from finite groups (mostly simple finite
groups). Background materials and results together with the full
discussions on the first method were discussed in talks 1 and 2.
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The second method introduces a technique from which a large
number of non-symmetric 1-designs could be constructed.

Let G be a finite group, M be a maximal subgroup of G and
Cg = [g] = nX be the conjugacy class of G containing g.
We construct 1− (v , k , λ) designs D = (P,B), where
P = nX and B = {(M ∩ nX )y |y ∈ G}. The parameters v , k ,
λ and further properties of D are determined.
We also study codes associated with these designs. In
Subsections 5.1, 5.2 and 5.3 we apply the second method
to the groups A7, PSL2(q) and J1 respectively.
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Construction of 1-Designs and Codes from Maximal
Subgroups and Conjugacy Classes of Elements

Here we assume G is a finite simple group, M is a maximal
subgroup of G, nX is a conjugacy class of elements of order n
in G and g ∈ nX . Thus Cg = [g] = nX and |nX | = |G : CG(g)|.
As in Section 3 (Talks 1 and 2) let χM = χ(G|M) be the
permutation character afforded by the action of G on Ω, the set
of all conjugates of M in G. Clearly if g is not conjugate to any
element in M, then χM(g) = 0.
The construction of our 1-designs is based on the following
theorem.
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Theorem (12)

Let G be a finite simple group, M a maximal subgroup of G and
nX a conjugacy class of elements of order n in G such that
M ∩ nX 6= ∅. Let B = {(M ∩ nX )y |y ∈ G} and P = nX . Then we
have a 1− (|nX |, |M ∩ nX |, χM(g)) design D, where g ∈ nX.
The group G acts as an automorphism group on D, primitive on
blocks and transitive (not necessarily primitive) on points of D.

Proof: First note that B = {My ∩ nX |y ∈ G}. We claim that
My ∩ nX = M ∩ nX if and only if y ∈ M or nX = {1G}. Clearly if
y ∈ M or nX = {1G}, then My ∩ nX = M ∩ nX . Conversely
suppose there exits y /∈ M such that My ∩ nX = M ∩ nX .
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Proof Thm 12 Cont.

Then maximality of M in G implies that G =< M, y > and
hence Mz ∩ nX = M ∩ nX for all z ∈ G. We can deduce that
nX ⊆ M and hence < nX >≤ M. Since < nX > is a normal
subgroup of G and G is simple, we must have < nX >= {1G}.
Note that maximality of M and the fact < nX >≤ M, excludes
the case < nX >= G.
From above we deduce that

b = |B| = |Ω| = [G : M].

If B ∈ B, then

k = |B| = |M ∩ nX | =
k∑

i=1

|[xi ]M | = |M|
k∑

i=1

1
|CM(xi)|

,

where x1, x2, ..., xk are the representatives of the conjugacy
classes of M that fuse to g.
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Proof Thm 12 Cont.

Let v = |P| = |nX | = [G : CG(g)]. Form the design
D = (P,B, I), with point set P, block set B and incidence I
given by xIB if and only if x ∈ B. Since the number of blocks
containing an element x in P is λ = χM(x) = χM(g), we have
produced a 1− (v , k , λ) design D, where v = |nX |,
k = |M ∩ nX | and λ = χm(g).
The action of G on blocks arises from the action of G on Ω and
hence the maximality of M in G implies the primitivity. The
action of G on nX , that is on points, is equivalent to the action
of G on the cosets of CG(g). So the action on points is primitive
if and only if CG(g) is a maximal subgroup of G. �
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Remark (4)

Since in a 1− (v , k , λ) design D we have kb = λv, we deduce
that

k = |M ∩ nX | = χM(g)× |nX |
[G : M]

.

Also note that D̃, the complement of D, is 1− (v , v − k , λ̃)
design, where λ̃ = λ× v−k

k .

Remark (5)

If λ = 1, then D is a 1− (|nX |, k ,1) design. Since nX is the
disjoint union of b blocks each of size k, we have
Aut(D) = Sk o Sb = (Sk )b : Sb. Clearly In this case for all p, we
have C = Cp(D) = [|nX |,b, k ]p, with Aut(C) = Aut(D).

J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes



Abstract
Introduction

Method 2
Some 1-designs and Codes from A7

Designs and codes from PSL2(q)

G = PSL2(q) of degree q + 1, M = G1
References

Remark (4)

Since in a 1− (v , k , λ) design D we have kb = λv, we deduce
that

k = |M ∩ nX | = χM(g)× |nX |
[G : M]

.

Also note that D̃, the complement of D, is 1− (v , v − k , λ̃)
design, where λ̃ = λ× v−k

k .

Remark (5)

If λ = 1, then D is a 1− (|nX |, k ,1) design. Since nX is the
disjoint union of b blocks each of size k, we have
Aut(D) = Sk o Sb = (Sk )b : Sb. Clearly In this case for all p, we
have C = Cp(D) = [|nX |,b, k ]p, with Aut(C) = Aut(D).

J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes



Abstract
Introduction

Method 2
Some 1-designs and Codes from A7

Designs and codes from PSL2(q)

G = PSL2(q) of degree q + 1, M = G1
References

Remark (6)
The designs D constructed by using Theorem 12 are not
symmetric in general. In fact D is symmetric if and only if

b = |B| = v = |P| ⇔ [G : M] = |nX | ⇔

[G : M] = [G : CG(g)] ⇔ |M| = |CG(g)|.
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Designs and Codes from A7

A7 has five conjugacy classes of maximal subgroups, which are
listed in Table 6. It has also 9 conjugacy classes of elements
some of which are listed in Table 7.

Table 6: Maximal subgroups of A7

No. Structure Index Order
Max[1] A6 7 360
Max[2] PSL2(7) 15 168
Max[3] PSL2(7) 15 168
Max[4] S5 21 120
Max[5] (A4 × 3):2 35 72

J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes



Abstract
Introduction

Method 2
Some 1-designs and Codes from A7

Designs and codes from PSL2(q)

G = PSL2(q) of degree q + 1, M = G1
References

Table 7: Some of the conjugacy classes of A7

nX |nX | CG(g) Maximal Centralizer
2A 105 D8: 3 No
3A 70 A4 × 3 ∼= (22 × 3): 3 No
3B 280 3× 3 No

We apply the Theorem 12 to the above maximal subgroups and
few conjugacy classes of elements of A7 to construct several
non-symmetric 1- designs. The corresponding binary codes are
also constructed. In the following we only discuss one example
(see Subsection 5.1.1, main paper). For other examples see
Subsections 5.1.2 to 5.1.5 of the main paper.
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G = A7, M = A6 and nX = 3A: 1− (70, 40, 4) Design

Let G = A7, M = A6 and nX = 3A. Then

b = [G : M] = 7, v = |3A| = 70, k = |M ∩ 3A| = 40.

Also using the character table of A7, we have

χM = χ1 + χ2 = 1a + 6a

and for g ∈ 3A

χM(g) = 1 + 3 = 4 = λ.

We produce a non-symmetric 1− (70,40,4) design D.
J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes
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A7 acts primitively on the 7 blocks.
CA7(g) = A4 × 3 is not maximal in A7, sits in the maximal
subgroup (A4 × 3):2 with index two.
Thus A7 acts imprimitivly on the 70 points.
D̃ is a 1− (70,30,3) design.
Aut(D) ∼= 235:S7 ∼= 25 o S7,

|Aut(D)| = 239.32.5.7.
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G = A7, M = A6 and nX = 3A: [70, 6, 32] Code

Construction using MAGMA shows that the binary code C of
this design is a [70,6,32] code. The code C is self-orthogonal
with the weight distribution

< 0,1 >,< 32,35 >,< 40,28 > .

Our group A7 acts irreducibility on C.
If Wi denote the set of all words in C of weight i , then

C =< W32 >=< W40 >,

so C is generated by its minimum-weight codewords.
Aut(C) ∼= 235:S8 with |Aut(C)| = 242.32.5.7, and we note
that Aut(C) ≥ Aut(D) and that Aut(D) is not a normal
subgroup of Aut(C).
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C⊥ is a [70,64,2] code and its weight distribution has been
determined. Since the blocks of D are of even size 40, we
have that  meets evenly every vector of C and hence
 ∈ C⊥.

If W̄i denote the set of all codewords in C⊥ of weight i ,
then |W̄2| = 35,, |W̄3| = 840, |W̄4| = 14035, W̄2 ⊆ W̄4,
 ∈< W̄4 > and

C⊥ =< W̄3 >,dim(< W̄2 >) = 35,dim(< W̄4 >) = 63.

Let eij denote the 2-cycle (i , j) in S7, where {i , j} = s(w̄2) is
the support of a codeword w̄2 ∈ W̄2. Then eij(w̄2) = w̄2,
and < eij |{i , j} = s(w̄2), w̄2 ∈ W̄2 >= 235.
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Using MAGMA we can easily show that V = F 70
2 is

decomposable into indecomposable G-modules of
dimension 40 and 30.
We also have

dim(Soc(V )) = 21, Soc(V ) =<  > ⊕C ⊕ C14,

where C is our 6-dimensional code and C14 is an
irreducible code of dimension 14.
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Stabilizers: Tables 8 and 9

The structure the stabilizers Aut(D)wl and Aut(C)wl , where
l ∈ {32,40} are listed in Table 8 and 9.

Table 8: Stabilizer of a word wl in Aut(D)

l |Wl | Aut(D)wl

32 35 235:(A4 × 3):2

40(1) 7 235:S6

40(2) 21 235:(S5:2)
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Table 9: Stabilizer of a word wl in Aut(C)

l |Wl | Aut(D)wl

32 35 235:(S4 × S4):2

40 28 235:(S6 × 2)
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Designs and codes from PSL2(q)

The main aim of this section to develop a general approach
to G = PSL2(q), where M is the maximal subgroup that is
the stabilizer of a point in the natural action of degree q + 1
on the set Ω. This is fully discussed in Subsection 5.2.1.
We start this section by applying the results discussed for
Method 2, particularly the Theorem 12, to all maximal
subgroups and conjugacy classes of elements of PSL2(11)
to construct 1- designs and their corresponding binary
codes.
The group PSL2(11) has order 660 = 22×3×5×11, it has
four conjugacy classes of maximal subgroups (Table 10). It
has also eight conjugacy classes of elements (Table 11).
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No. Order Index Structure
Max[1] 55 12 F55 = 11 : 5
Max[2] 60 11 A5
Max[3] 60 11 A5
Max[4] 12 55 D12

nX |nX | CG(g) Maximal Centralizer
2A 55 D12 Yes
3A 110 Z6 No
5A 132 Z5 No
5B 132 Z5 No
6A 110 Z6 No

11AB 60 Z11 No
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Max[1]

5A: D = 1− (132,22,2), b = 12;
C = [132,11,22]2, C⊥ = [132,121,2]2;
Aut(D) = Aut(C) = 266 : S12.

5B: As for 5A.
11A: D = 1− (60,5,1), b = 12;

C = [60,12,5]2, C⊥ = [60,48,2]2;
Aut(D) = Aut(C) = (S5)

12 : S12.

11B: As for 11A.
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Max[2]

2A: D = 1− (55,15,3), b = 11;
C = [55,11,15]2, C⊥ = [55,44,4]2;
Aut(D) = PSL2(11),Aut(C) = PSL2(11) : 2.

3A: D = 1− (110,20,2), b = 11;
C = [110,10,20]2, C⊥ = [110,100,2]2;
Aut(D) = Aut(C) = 255 : S11.

5A: : D = 1− (132,12,1), b = 11;
C = [132,11,12]2, C⊥ = [132,121,2]2;
Aut(D) = Aut(C) = (S12)

11 : S11.

5B: As for 5A.

Note: Results for Max[3] are as for Max[2]
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Aut(D) = PSL2(11),Aut(C) = PSL2(11) : 2.

3A: D = 1− (110,20,2), b = 11;
C = [110,10,20]2, C⊥ = [110,100,2]2;
Aut(D) = Aut(C) = 255 : S11.

5A: : D = 1− (132,12,1), b = 11;
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Max[4]

2A: D = 1− (55,7,7), b = 55;
C = [55,35,4]2, C⊥ = [55,20,10]2;
Aut(D) = Aut(C) = PSL2(11) : 2.

3A: D = 1− (110,2,1), b = 55;
C = [110,55,2]2, C⊥ = [110,55,2]2;
Aut(D) = Aut(C) = 255 : S55.

6A : As for 3A.
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Let G = PSL2(q), let M be the stabilizer of a point in the natural
action of degree q + 1 on the set Ω. Let M = G1.

Then it is well known that G acts sharply 2-transitive on Ω
and

M = Fq : F ∗
q = Fq : Zq−1,

if q is even. For q odd we have

M = Fq : Z q−1
2
.

Since G acts 2-transitively on Ω, we have χ = 1 + ψ where
χ is the permutation character and ψ is an irreducible
character of G of degree q. Also since the action is sharply
2-transitive, only 1G fixes 3 distinct elements. Hence for all
1G 6= g ∈ G we have λ = χ(g) ∈ {0,1,2}.
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Proposition (13)

For G = PSL2(q), let M be the stabilizer of a point in the natural
action of degree q + 1 on the set Ω. Let M = G1. Suppose
g ∈ nX ⊆ G is an element fixing exactly one point, and without
loss of generality, assume g ∈ M. Then the replication number
for the associated design is r = λ = 1. We also have

(i) If q is odd then |gG| = 1
2(q2 − 1), |M ∩ gG| = 1

2(q − 1), and
D is a 1-(1

2(q2 − 1), 1
2(q − 1),1) design with q + 1 blocks

and Aut(D) = S 1
2 (q−1) o Sq+1 = (S 1

2 (q−1))
q+1 : Sq+1. For all

p, C = Cp(D) = [1
2(q2 − 1),q + 1, 1

2(q − 1)]p, with
Aut(C) = Aut(D).
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Proposition (13 Cont.)

(ii) If q is even then |gG| = (q2 − 1), |M ∩ gG| = (q − 1), and D
is a 1-((q2 − 1), (q − 1),1) design with q + 1 blocks and

Aut(D) = S(q−1) o Sq+1 = (S(q−1))
q+1 : Sq+1.

For all p, C = Cp(D) = [(q2 − 1),q + 1,q − 1)]p, with
Aut(C) = Aut(D).

Proof: Since χ(g) = 1, we deduce that ψ(g) = 0. We now use
the character table and conjugacy classes of PSL2(q) (for
example see [13]):
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Proof of Proposition 13 Cont.

(i) For q odd, there are two types of conjugacy classes with
ψ(g) = 0. In both cases we have |CG(g)| = q and hence
|nX | = |gG| = |PSL2(q)|/q = (q2 − 1)/2. Since
b = [G : M] = q + 1 and

k =
χ(g)× |nX |

[G : M]
=

1× (q2 − 1)/2
q + 1

= (q − 1)/2,

the results follow from Remark 5
(ii) For q even, PSL2(q) = SL2(q) and there is only one

conjugacy class with ψ(g) = 0. A class representative is

the matrix g =

(
1 0
1 1

)
with |CG(g)| = q and hence

|nX | = |gG| = |PSL2(q)|/q = (q2 − 1).
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conjugacy class with ψ(g) = 0. A class representative is

the matrix g =

(
1 0
1 1

)
with |CG(g)| = q and hence

|nX | = |gG| = |PSL2(q)|/q = (q2 − 1).
J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes



Abstract
Introduction

Method 2
Some 1-designs and Codes from A7

Designs and codes from PSL2(q)

G = PSL2(q) of degree q + 1, M = G1
References

Since b = [G : M] = q + 1 and

k =
χ(g)× |nX |

[G : M]
=

1× (q2 − 1)

q + 1
= q − 1,

the results follow from Remark 5
�

If we have λ = r = 2 then a graph (possibly with multiple
edges) can be defined on b vertices, where b is the
number of blocks, i.e. the index of M in G, by stipulating
that the vertices labelled by the blocks bi and bj are
adjacent if bi and bj meet. Then the incidence matrix for
the design is an incidence matrix for the graph.
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We use the following result from [7, Lemma].

Lemma (14)

Let Γ = (V ,E) be a regular graph with |V | = N, |E | = e and
valency v. Let G be the 1-(e, v ,2) incidence design from an
incidence matrix A for Γ. Then Aut(Γ) = Aut(G).

Proof: See [7]. �
Note: If Γ is connected, then we can show (induction) that
rankp(A) ≥ |V | − 1 for all p with obvious equality when p = 2. If
in addition (as happens for some classes of graphs,
see [7, 25, 24]) the minimum weight is the valency and the
words of this weight are the scalar multiples of the rows of the
incidence matrix, then we also have Aut(Cp(G)) = Aut(G).
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Proposition (15)

For G = PSL2(q), let M be the stabilizer of a point in the natural
action of degree q + 1 on the set Ω. Let M = G1. Suppose
g ∈ nX ⊆ G is an element fixing exactly two points, and without
loss of generality, assume g ∈ M = G1 and that g ∈ G2. Then
the replication number for the associated design is r = λ = 2.
We also have

(i) If g is an involution, so that q ≡ 1 (mod 4), the design D is
a 1-(1

2q(q + 1),q,2) design with q + 1 blocks and
Aut(D) = Sq+1. Furthermore C2(D) = [1

2q(q + 1),q,q]2,
Cp(D) = [1

2q(q + 1),q + 1,q]p if p is an odd prime, and
Aut(Cp(D)) = Aut(D) = Sq+1 for all p.
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Proposition (15, cont.)

(ii) If g is not an involution, the design D is a 1-(q(q + 1),2q,2)

design with q + 1 blocks and Aut(D) = 2
1
2 q(q+1) : Sq+1.

Furthermore C2(D) = [q(q + 1),q,2q]2,
Cp(D) = [q(q + 1),q + 1,2q]p if p is an odd prime, and
Aut(Cp(D)) = Aut(D) = 2

1
2 q(q+1) : Sq+1 for all p.

Proof: A block of the design constructed will be M ∩ gG. Notice
that from elementary considerations or using group characters
we have that the only powers of g that are conjugate to g in G
are g and g−1. Since M is transitive on Ω \ {1}, gM and (g−1)M

give 2q elements in M ∩ gG if o(g) 6= 2, and q if o(g) = 2.
These are all the elements in M ∩ gG since Mj is cyclic.
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1
2 q(q+1) : Sq+1 for all p.

Proof: A block of the design constructed will be M ∩ gG. Notice
that from elementary considerations or using group characters
we have that the only powers of g that are conjugate to g in G
are g and g−1. Since M is transitive on Ω \ {1}, gM and (g−1)M

give 2q elements in M ∩ gG if o(g) 6= 2, and q if o(g) = 2.
These are all the elements in M ∩ gG since Mj is cyclic.
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Proof of Proposition 15 Cont.

So if h1,h2 ∈ Mj and h1 = gx1 ,h2 = gx2 for some x1, x2 ∈ G,
then h1 is a power of h2, so they can only be equal or inverses
of one another.

(i) In this case by the above k = |M ∩ gG| = q and hence

|nX | = k × [G : M]

χ(g)
=

q × (q + 1)

2
.

So D is a 1-(1
2q(q + 1),q,2) design with q + 1 blocks. An

incidence matrix of the design is an incidence matrix of a
graph on q + 1 points labelled by the rows of the matrix,
with the vertices corresponding to rows ri and rj being
adjacent if there is a conjugate of g that fixes both i and j ,
giving an edge [i , j].
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Since G is 2-transitive, the graph we obtain is the complete
graph Kq+1. The automorphism group of the design is the
same as that of the graph (see [7]), which is Sq+1. By [24],
C2(D) = [1

2q(q + 1),q,q]2 and
Cp(D) = [1

2q(q + 1),q + 1,q]p if p is an odd prime.
Further, the words of the minimum weight q are the scalar
multiples of the rows of the incidence matrix, so
Aut(Cp(D)) = Aut(D) = Sq+1 for all p.

(ii) If g is not an involution, then k = |M ∩ gG| = 2q and hence

|nX | = k × [G : M]

χ(g)
=

2q × (q + 1)

2
= q(q + 1).

So D is a 1-(q(q + 1),2q,2) design with q + 1 blocks.
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In the same way we define a graph from the rows of the
incidence matrix, but in this case we have the complete
directed graph. The automorphism group of the graph and
of the design is 2

1
2 q(q+1) : Sq+1. Similarly to the previous

case, C2(D) = [q(q + 1),q,2q]2 and
Cp(D) = [q(q + 1),q + 1,2q]p if p is an odd prime. Further,
the words of the minimum weight 2q are the scalar
multiples of the rows of the incidence matrix, so
Aut(Cp(D)) = Aut(D) = 2

1
2 q(q+1) : Sq+1 for all p. �

We end this subsection by giving few examples of designs
and codes constructed, using Propositions 13 and 15 ,
from PSL2(q) for q ∈ {16,17,19}, where M is the stabilizer
of a point in the natural action of degree q + 1 and
g ∈ nX ⊆ G is an element fixing exactly one or two points.
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Example 1: PSL2(16)

1. g is an involution having cycle type 1128, r = λ = 1:
D is a1− (255,15,1) design with 17 blocks. For all p,
C = Cp(D) = [255,17,15]p, with

Aut(C) = Aut(D) = S15 o S17 = (S15)
17 : S17.

2. g is an element of order 3 having cycle type 1235,
r = λ = 2:
D is a 1− (272,32,2) design with 17 blocks.
C2(D) = [272,16,32]2 and Cp(D) = [272,17,32]p for odd
p. Also for all p we have

Aut(Cp(D)) = Aut(D) = 2136 : S17.
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Example 2: PSL2(17). Note that 17 ≡ 1 (mod 4).

1. g is an element of order 17 having cycle type 11171,
r = λ = 1:
D is a 1− (144,8,1) design with 18 blocks. For all p,
C = Cp(D) = [144,18,8]p, with

Aut(C) = Aut(D) = S8 o S18 = (S8)
18 : S18.

2. g is an involution having cycle type 1228, r = λ = 2:
D is a 1− (153,17,2) design with 18 blocks.
C2(D) = [153,17,17]2 and Cp(D) = [153,18,17]p for odd
p. Also for all p we have

Aut(Cp(D)) = Aut(D) = S18.
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3. g is an element of order 4 having cycle type 1244,
r = λ = 2:
D is a 1− (306,34,2) design with 18 blocks.
C2(D) = [306,17,34]2 and Cp(D) = [306,18,34]p for odd
p. Also for all p we have

Aut(Cp(D)) = Aut(D) = 2153 : S18.

4. g is an element of order 8 having cycle type 1282,
r = λ = 2:
D is a 1− (306,34,2)design with 18 blocks.
C2(D) = [306,17,34]2 and Cp(D) = [306,18,34]p for odd
p. Also for all p we have

Aut(Cp(D)) = Aut(D) = 2153 : S18.
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Example 3: PSL2(9)

1. g is an element of order 19 having cycle type 11191,
r = λ = 1: D is a 1− (180,9,1) design with 20 blocks.
For all p, C = Cp(D) = [180,20,9]p, with

Aut(C) = Aut(D) = S9 o S20 = (S9)
20 : S20.

2. g is an element of order 3 having cycle type 1236,
r = λ = 2:
D is a 1− (380,38,2) design with 20 blocks.
C2(D) = [360,19,38]2 and Cp(D) = [360,20,38]p for odd
p. Also for all p we have

Aut(Cp(D)) = Aut(D) = 2190 : S20.
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