Finite geometry, designs, codes, and Hamada's conjecture

Vladimir D. Tonchev

Michigan Technological University

ASI, Opatija, May 31 - June 11, 2010

Outline

(1) Designs
(2) Finite Geometries
(3) Geometric Designs
(4) Linear Codes
(5) Majority Logic Decodable Codes
6) Codes that Support t-Designs

7 The p-Ranks of Geometric Designs
(8) Hamada's Conjecture
(9) The Proven Cases
(10) A Revision of Hamada's Conjecture

11 The Uniqueness Question
12 Non-Geometric Designs with the Same p-Rank as Geometric Ones
13 Designs from Polarities in $P G(n, q)$
14 The p-Rank of Polarity Designs
(15) A Generalization to the Affine Case
(16) Exponential Bounds

17 Open Problems

Designs

A $t-(v, k, \lambda)$ design $\mathcal{D}=(\mathcal{X}, \mathcal{B})$ is a set \mathcal{X} of points and a collection \mathcal{B} of subsets of \mathcal{X} called blocks such that:

- $|\mathcal{X}|=v$,
- $|B|=k$ for each $B \in \mathcal{B}$, and
- Every t-subset of \mathcal{X} s contained in exactly λ blocks.

A 2-designs $(t=2)$ a called a Balanced Incomplete Block Design or BIBD.

Designs

A $t-(v, k, \lambda)$ design $\mathcal{D}=(\mathcal{X}, \mathcal{B})$ is a set \mathcal{X} of points and a collection \mathcal{B} of subsets of \mathcal{X} called blocks such that:

- $|\mathcal{X}|=v$,
- $|B|=k$ for each $B \in \mathcal{B}$, and
- Every t-subset of \mathcal{X} s contained in exactly λ blocks.

A 2-designs $(t=2)$ a called a Balanced Incomplete Block Design or BIBD.

Designs

A $t-(v, k, \lambda)$ design $\mathcal{D}=(\mathcal{X}, \mathcal{B})$ is a set \mathcal{X} of points and a collection \mathcal{B} of subsets of \mathcal{X} called blocks such that:

- $|\mathcal{X}|=v$,
- $|B|=k$ for each $B \in \mathcal{B}$, and
- Every t-subset of \mathcal{X} s contained in exactly λ blocks.

A 2-designs $(t=2)$ a called a Balanced Incomplete Block Design or BIBD.

Designs

A $t-(v, k, \lambda)$ design $\mathcal{D}=(\mathcal{X}, \mathcal{B})$ is a set \mathcal{X} of points and a collection \mathcal{B} of subsets of \mathcal{X} called blocks such that:

- $|\mathcal{X}|=v$,
- $|B|=k$ for each $B \in \mathcal{B}$, and
- Every t-subset of \mathcal{X} s contained in exactly λ blocks.

A 2-designs $(t=2)$ a called a Balanced Incomplete Block Design or BIBD.

Designs

A $t-(v, k, \lambda)$ design $\mathcal{D}=(\mathcal{X}, \mathcal{B})$ is a set \mathcal{X} of points and a collection \mathcal{B} of subsets of \mathcal{X} called blocks such that:

- $|\mathcal{X}|=v$,
- $|B|=k$ for each $B \in \mathcal{B}$, and
- Every t-subset of \mathcal{X} s contained in exactly λ blocks.

A 2-designs $(t=2)$ a called a Balanced Incomplete Block Design or BIBD.

Designs

A $t-(v, k, \lambda)$ design $\mathcal{D}=(\mathcal{X}, \mathcal{B})$ is a set \mathcal{X} of points and a collection \mathcal{B} of subsets of \mathcal{X} called blocks such that:

- $|\mathcal{X}|=v$,
- $|B|=k$ for each $B \in \mathcal{B}$, and
- Every t-subset of \mathcal{X} s contained in exactly λ blocks.

A 2-designs $(t=2)$ a called a Balanced Incomplete Block Design or BIBD.

A small example

A 2-(7, 3, 1) design

Properties

The t-designs are highly regular:

- If $0 \leq i \leq t$, any i-subset appears in $\lambda_{i}=\lambda\binom{v-i}{t-i} /\binom{k-i}{t-i}$ blocks.
- $\mathbf{i}=\mathbf{0}$: Total number of blocks is $b=\lambda\binom{v}{t} /\binom{k}{t}$
- $\mathbf{i}=1$: Any point x appears in r blocks, where

Properties

The t-designs are highly regular:

- If $0 \leq i \leq t$, any i-subset appears in $\lambda_{i}=\lambda\binom{v-i}{t-i} /\binom{k-i}{t-i}$ blocks.
- $\mathbf{i}=0$: Total number of blocks is $b=\lambda\binom{v}{t} /\binom{k}{t}$
- $\mathbf{i}=1$: Any point x appears in r blocks, where

Properties

The t-designs are highly regular:

- If $0 \leq i \leq t$, any i-subset appears in $\lambda_{i}=\lambda\binom{v-i}{t-i} /\binom{k-i}{t-i}$ blocks.
- $\mathbf{i}=\mathbf{0}$: Total number of blocks is $b=\lambda\binom{v}{t} /\binom{k}{t}$
- $\mathbf{i}=1$: Any point x appears in r blocks, where

Properties

The t-designs are highly regular:

- If $0 \leq i \leq t$, any i-subset appears in $\lambda_{i}=\lambda\binom{v-i}{t-i} /\binom{k-i}{t-i}$ blocks.
- $\mathbf{i}=\mathbf{0}$: Total number of blocks is $b=\lambda\binom{v}{t} /\binom{k}{t}$
- $\mathbf{i}=1$: Any point x appears in r blocks, where

$$
r=\lambda_{1}=\lambda\binom{v-1}{t-1} /\binom{k-1}{t-1}
$$

Incidence Matrices

The incidence matrix of a $t-(v, k, \lambda)$ design is a $b \times v(0,1)$ matrix whose (i, j) entry is 1 if block i contains point j, and 0 otherwise.

The 2-(7,3,1) Design:

Incidence Matrices

The incidence matrix of a $t-(v, k, \lambda)$ design is a $b \times v(0,1)$ matrix whose (i, j) entry is 1 if block i contains point j, and 0 otherwise.

The 2-(7,3,1) Design:

	A	B	C	D	E	F	G
B_{1}	1	1	1	0	0	0	0
B_{2}	1	0	0	1	1	0	0
B_{3}	1	0	0	0	0	1	1
B_{4}	0	1	0	1	0	1	0
B_{5}	0	1	0	0	1	0	1
B_{6}	0	0	1	1	0	0	1
B_{7}	0	0	1	0	1	1	0

Finite Geometries

Projective Geometry $P G(n, q)$

- points are the 1 -dimensional subspaces of \mathbb{F}_{q}^{n+1}.
- lines are the 2-dimensional subspaces of \mathbb{F}_{q}^{n+1}
- k-dimensional subspaces are the $(k+1)$-dimersional subspaces of \mathbb{F}_{q}^{n+1}.

Affine Geometry AG(n,q)

- points are the vectors of \mathbb{F}_{q}^{n}
- lines are the 1-dimensional subspaces of \mathbb{F}_{q}^{n} and their cosets
- k-dimensional subspaces are the k-dimensional subspaces of \mathbb{F}_{q}^{n} and their cosets (called k-flats).

Finite Geometries

Projective Geometry PG(n,q)

- points are the 1 -dimensional subspaces of \mathbb{F}_{q}^{n+1}.
- lines are the 2-dimensional subspaces of \mathbb{F}_{q}^{n+}
- k-dimensional subspaces are the $(k+1)$-dimensional subspaces of \mathbb{F}_{q}^{n+1}.

Affine Geometry AG(n,q)

- points are the vectors of \mathbb{F}_{q}^{n}
- lines are the 1-dimensional subspaces of \mathbb{F}_{q}^{n} and their cosets
- k-dimensional subspaces are the k-dimensional subspaces of \mathbb{F}_{q}^{n} and their cosets (called k-flats).

Finite Geometries

Projective Geometry PG(n,q)

- points are the 1-dimensional subspaces of \mathbb{F}_{q}^{n+1}.
- lines are the 2-dimensional subspaces of \mathbb{F}_{q}^{n+1}
- k-dimensional subspaces are the $(k+1)$-dimensional subspaces of \mathbb{F}_{q}^{n+1}

Affine Geometry AG(n,q)

- points are the vectors of \mathbb{F}_{q}^{n}
- lines are the 1-dimensional subspaces of \mathbb{F}_{q}^{n} and their cosets
- k-dimensional subspaces are the k-dimensional subspaces of \mathbb{F}_{q}^{n} and their cosets (called k-flats).

Finite Geometries

Projective Geometry PG(n,q)

- points are the 1-dimensional subspaces of \mathbb{F}_{q}^{n+1}.
- lines are the 2-dimensional subspaces of \mathbb{F}_{q}^{n+1}
- k-dimensional subspaces are the $(k+1)$-dimensional subspaces of \mathbb{F}_{q}^{n+1}.

```
Affine Geometry AG(n,q)
    - points are the vectors of \mathbb{F}
    - lines are the 1-dimensional subspaces of }\mp@subsup{\mathbb{F}}{q}{n}\mathrm{ and their cosets
    - k-dimensional subspaces are the k-dimensional subspaces of
    \mp@subsup{F}{q}{n}}\mathrm{ and their cosets (called k-flats).
```


Finite Geometries

Projective Geometry PG(n,q)

- points are the 1 -dimensional subspaces of \mathbb{F}_{q}^{n+1}.
- lines are the 2-dimensional subspaces of \mathbb{F}_{q}^{n+1}
- k-dimensional subspaces are the $(k+1)$-dimensional subspaces of \mathbb{F}_{q}^{n+1}.

Affine Geometry $A G(n, q)$

- points are the vectors of \mathbb{F}_{q}^{n}
- lines are the 1-dimensional subspaces of \mathbb{F}_{q}^{n} and their cosets
- k-dimensional subspaces are the k-dimensional subspaces of \mathbb{F}_{q}^{n} and their cosets (called k-flats).

Finite Geometries

Projective Geometry PG(n,q)

- points are the 1 -dimensional subspaces of \mathbb{F}_{q}^{n+1}.
- lines are the 2-dimensional subspaces of \mathbb{F}_{q}^{n+1}
- k-dimensional subspaces are the $(k+1)$-dimensional subspaces of \mathbb{F}_{q}^{n+1}.

Affine Geometry $A G(n, q)$

- points are the vectors of \mathbb{F}_{q}^{n}
- lines are the 1-dimensional subspaces of \mathbb{F}_{q}^{n} and their cosets
- k-dimensional subspaces are the k-dimensional subspaces of \mathbb{F}_{q}^{n} and their cosets (called k-flats).

Finite Geometries

Projective Geometry PG(n,q)

- points are the 1 -dimensional subspaces of \mathbb{F}_{q}^{n+1}.
- lines are the 2-dimensional subspaces of \mathbb{F}_{q}^{n+1}
- k-dimensional subspaces are the $(k+1)$-dimensional subspaces of \mathbb{F}_{q}^{n+1}.

Affine Geometry $A G(n, q)$

- points are the vectors of \mathbb{F}_{q}^{n}
- lines are the 1-dimensional subspaces of \mathbb{F}_{q}^{n} and their cosets
- k-dimensional subspaces are the k-dimensional subspaces of \mathbb{F}_{q}^{n} and their cosets (called k-flats).

Finite Geometries

Projective Geometry PG(n,q)

- points are the 1 -dimensional subspaces of \mathbb{F}_{q}^{n+1}.
- lines are the 2-dimensional subspaces of \mathbb{F}_{q}^{n+1}
- k-dimensional subspaces are the $(k+1)$-dimensional subspaces of \mathbb{F}_{q}^{n+1}.

Affine Geometry $A G(n, q)$

- points are the vectors of \mathbb{F}_{q}^{n}
- lines are the 1-dimensional subspaces of \mathbb{F}_{q}^{n} and their cosets
- k-dimensional subspaces are the k-dimensional subspaces of \mathbb{F}_{q}^{n} and their cosets (called k-flats).

Geometric Designs

A geometric design is formed from the points and d-subspaces of $P G(n, q)$ or $A G(n, q)$.

The projective geometry design $P G_{d}(n, q)$:

The affine geometry design $A G_{d}(n, q)$:

Geometric Designs

A geometric design is formed from the points and d-subspaces of $P G(n, q)$ or $A G(n, q)$.

The projective geometry design $P G_{d}(n, q)$:

$$
2-\left(\frac{q^{n+1}-1}{q-1}, \frac{q^{d+1}-1}{q-1}, \frac{\left(q^{n+1}-q^{2}\right)\left(q^{n+1}-q^{3}\right) \cdots\left(q^{n+1}-q^{d}\right)}{\left(q^{d+1}-q^{2}\right)\left(q^{d+1}-q^{3}\right) \cdots\left(q^{d+1}-q^{d}\right)}\right)
$$

Geometric Designs

A geometric design is formed from the points and d-subspaces of $P G(n, q)$ or $A G(n, q)$.

The projective geometry design $P G_{d}(n, q)$:

$$
2-\left(\frac{q^{n+1}-1}{q-1}, \frac{q^{d+1}-1}{q-1}, \frac{\left(q^{n+1}-q^{2}\right)\left(q^{n+1}-q^{3}\right) \cdots\left(q^{n+1}-q^{d}\right)}{\left(q^{d+1}-q^{2}\right)\left(q^{d+1}-q^{3}\right) \cdots\left(q^{d+1}-q^{d}\right)}\right)
$$

The affine geometry design $A G_{d}(n, q)$:

$$
2-\left(q^{n}, q^{d}, \frac{\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \cdots\left(q^{n}-q^{d-1}\right)}{\left(q^{d}-q\right)\left(q^{d}-q^{2}\right) \cdots\left(q^{d}-q^{d-1}\right)}\right)
$$

Geometric Designs

A geometric design is formed from the points and d-subspaces of $P G(n, q)$ or $A G(n, q)$.

The projective geometry design $P G_{d}(n, q)$:

$$
2-\left(\frac{q^{n+1}-1}{q-1}, \frac{q^{d+1}-1}{q-1}, \frac{\left(q^{n+1}-q^{2}\right)\left(q^{n+1}-q^{3}\right) \cdots\left(q^{n+1}-q^{d}\right)}{\left(q^{d+1}-q^{2}\right)\left(q^{d+1}-q^{3}\right) \cdots\left(q^{d+1}-q^{d}\right)}\right)
$$

The affine geometry design $A G_{d}(n, q)$:

$$
2-\left(q^{n}, q^{d}, \frac{\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \cdots\left(q^{n}-q^{d-1}\right)}{\left(q^{d}-q\right)\left(q^{d}-q^{2}\right) \cdots\left(q^{d}-q^{d-1}\right)}\right)
$$

If $q=2, A G_{d}(n, 2)$ is also a $3-\left(2^{n}, 2^{d}, \frac{\left(2^{n}-2^{2}\right) \cdots\left(2^{n}-2^{d-1}\right)}{\left(2^{d}-2^{2}\right) \cdots\left(2^{d}-2^{d-1}\right)}\right.$ design.

A small examplei: $P G_{1}(2,2)$

$P G_{1}(2,2)$: The projective plane of order 2

Affine Geometry Designs are Resolvable

$A G_{1}(2,3)$, or a 2 -($9,3,1$)-design

$$
\begin{aligned}
& 00-10-20 \\
& 01-11-21 \\
& 02-12-22
\end{aligned}
$$

00	10	20	
1	1	$\\|$	
01	11	21	
1	1	$\\|$	
02	12	22	

This design is resolvable into parallel classes.

Linear error-correcting codes

Linear code

A linear q-ary $[n, k, d]$ code C is a k-dimensional subspace of the n-dimensional vector space over the field $G F(q)$ of order q with minimum Hamming distance d.
A code with minimum distance d can correct up to $e=[(d-1) / 2]$

The dual code C^{\perp} of an $[n, k]$ code C is the $[n, n-k]$ code defined by

Parity check matrix

A matrix H of a-rank $n-k$ whose rows are vectors from C^{-}is a parity
check matrix of C.

Linear error-correcting codes

Linear code

A linear q-ary $[n, k, d]$ code C is a k-dimensional subspace of the n-dimensional vector space over the field $G F(q)$ of order q with minimum Hamming distance d.
A code with minimum distance d can correct up to $e=[(d-1) / 2]$ errors.

Dual code
 The dual code C^{\perp} of an $[n, k]$ code C is the $[n, n-k]$ code defined by

Parity check matrix

A matrix H of a-rank $n-k$ whose rows are vectors from C^{-}is a parity check matrix of C.

Linear error-correcting codes

Linear code

A linear q-ary $[n, k, d]$ code C is a k-dimensional subspace of the n-dimensional vector space over the field $G F(q)$ of order q with minimum Hamming distance d.
A code with minimum distance d can correct up to $e=[(d-1) / 2]$ errors.

Dual code

The dual code C^{\perp} of an $[n, k]$ code C is the $[n, n-k]$ code defined by

$$
C^{\perp}=\left\{y \in G F(q)^{n} \mid y \cdot x=0 \text { for all } x \in C\right\}
$$

Linear error-correcting codes

Linear code

A linear q-ary $[n, k, d]$ code C is a k-dimensional subspace of the n-dimensional vector space over the field $G F(q)$ of order q with minimum Hamming distance d.
A code with minimum distance d can correct up to $e=[(d-1) / 2]$ errors.

Dual code

The dual code C^{\perp} of an $[n, k]$ code C is the $[n, n-k]$ code defined by

$$
C^{\perp}=\left\{y \in G F(q)^{n} \mid y \cdot x=0 \text { for all } x \in C\right\}
$$

Parity check matrix

A matrix H of q-rank $n-k$ whose rows are vectors from C^{\perp} is a parity check matrix of C.

Majority logic decoding algorithm

If a codeword $x=\left(x_{1}, \ldots, x_{n}\right) \in C$ is sent over a communication channel, and a vector $y=\left(y_{1}, \ldots, y_{n}\right)$ is received, for each coordinate $i, 1 \leq i \leq n$, the values

$$
\begin{equation*}
y_{i}^{(1)}, \ldots, y_{i}^{\left(r_{i}\right)} \tag{1}
\end{equation*}
$$

of r_{i} linear functions are computed, and y_{i} is decoded as the most frequent among the values (1).

(Rudolph, 1967)

If C is a linear $[n, k]$ code such that C^{\perp} contains a set S of vectors of weight w whose supports are the blocks of a $2-(n, w, \lambda)$ design, the code C can correct up to

$$
e=\left[\frac{r+\lambda-1}{2 \lambda}\right]
$$

errors by majority logic decoding, where $r=\lambda_{1}=\lambda(n-1) /(w-1)$.

Majority logic decoding algorithm

If a codeword $x=\left(x_{1}, \ldots, x_{n}\right) \in C$ is sent over a communication channel, and a vector $y=\left(y_{1}, \ldots, y_{n}\right)$ is received, for each coordinate $i, 1 \leq i \leq n$, the values

$$
\begin{equation*}
y_{i}^{(1)}, \ldots, y_{i}^{\left(r_{i}\right)} \tag{1}
\end{equation*}
$$

of r_{i} linear functions are computed, and y_{i} is decoded as the most frequent among the values (1).

(Rudolph, 1967)

If C is a linear $\left[n, k\right.$] code such that C^{\perp} contains a set \mathbf{S} of vectors of weight w whose supports are the blocks of a 2-(n, w, λ) design, the code C can correct up to

errors by majority logic decoding, where $r=\lambda_{1}=\lambda(n-1) /(w-1)$.

Majority logic decoding algorithm

If a codeword $x=\left(x_{1}, \ldots, x_{n}\right) \in C$ is sent over a communication channel, and a vector $y=\left(y_{1}, \ldots, y_{n}\right)$ is received, for each coordinate $i, 1 \leq i \leq n$, the values

$$
\begin{equation*}
y_{i}^{(1)}, \ldots, y_{i}^{\left(r_{i}\right)} \tag{1}
\end{equation*}
$$

of r_{i} linear functions are computed, and y_{i} is decoded as the most frequent among the values (1).

Majority logic decoding algorithm

If a codeword $x=\left(x_{1}, \ldots, x_{n}\right) \in C$ is sent over a communication channel, and a vector $y=\left(y_{1}, \ldots, y_{n}\right)$ is received, for each coordinate $i, 1 \leq i \leq n$, the values

$$
\begin{equation*}
y_{i}^{(1)}, \ldots, y_{i}^{\left(r_{i}\right)} \tag{1}
\end{equation*}
$$

of r_{i} linear functions are computed, and y_{i} is decoded as the most frequent among the values (1).

(Rudolph, 1967)

If C is a linear $[n, k]$ code such that C^{\perp} contains a set S of vectors of weight w whose supports are the blocks of a $2-(n, w, \lambda)$ design, the code C can correct up to

$$
e=\left[\frac{r+\lambda-1}{2 \lambda}\right]
$$

errors by majority logic decoding, where $r=\lambda_{1}=\lambda(n-1) /(w-1)$.

Sketch of proof.

If $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{S}$ then

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=0
$$

for every $x \in C$.

Note

Due to possible errors in the received vector $y=\left(y_{1}, \ldots, y_{n}\right)$,

$$
a_{1} y_{1}+\cdots+a_{n} y_{n}
$$

may or may not be zero.

Sketch of proof.

If $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{S}$ then

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=0
$$

for every $x \in C$.

Note

Due to possible errors in the received vector $y=\left(y_{1}, \ldots, y_{n}\right)$,

$$
a_{1} y_{1}+\cdots+a_{n} y_{n}
$$

may or may not be zero.

Sketch of proof.

If $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{S}$ then

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=0
$$

for every $x \in C$.

Note

Due to possible errors in the received vector $y=\left(y_{1}, \ldots, y_{n}\right)$,

$$
a_{1} y_{1}+\cdots+a_{n} y_{n}
$$

may or may not be zero.

Sketch of proof.

If $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{S}$ then

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=0
$$

for every $x \in C$.

Note

Due to possible errors in the received vector $y=\left(y_{1}, \ldots, y_{n}\right)$,

$$
a_{1} y_{1}+\cdots+a_{n} y_{n}
$$

may or may not be zero.

Assume that

$$
a_{1} y_{1}+\cdots+a_{n} y_{n}=0
$$

and $a_{i} \neq 0$. Then

$$
y_{i}=-\frac{a_{1}}{a_{i}} y_{1}-\cdots-\frac{a_{n}}{a_{i}} y_{n}
$$

Linear functions f_{j} for decoding y_{i} :

For each $i, 1 \leq i \leq n$, the set \mathbf{S} contains r vectors

$$
a^{(j)}=\left(a_{1}^{(j)}, \ldots, a_{n}^{(j)}\right), j=1,
$$

such that $a_{i}^{(j)} \neq 0$.
We define a set of $r+\lambda$ linear functions $f_{j}=f_{j}\left(y_{1}, \ldots, y_{n}\right)$,

$$
\begin{gathered}
f_{j}=-\frac{a_{1}^{(j)}}{a_{i}^{(j)}} y_{1}-\cdots-\frac{a_{n}^{(j)}}{a_{i}^{(j)}} y_{n}, j=1, \ldots, r \\
f_{r+1}=f_{r+2}=\cdots f_{r+\lambda}=y_{i}
\end{gathered}
$$

Assume that

$$
a_{1} y_{1}+\cdots+a_{n} y_{n}=0
$$

and $a_{i} \neq 0$. Then

$$
y_{i}=-\frac{a_{1}}{a_{i}} y_{1}-\cdots-\frac{a_{n}}{a_{i}} y_{n} .
$$

Linear functions f_{j} for decoding y_{i} :

For each $i, 1 \leq i \leq n$, the set S contains r vectors

such that $a_{i}^{(j)} \neq 0$.
We define a set of $r+\lambda$ linear functions $f_{j}=f_{j}\left(y_{1}, \ldots, y_{n}\right)$,

$$
f_{r+1}=f_{r+2}=\cdots f_{r+\lambda}=y_{i} .
$$

Assume that

$$
a_{1} y_{1}+\cdots+a_{n} y_{n}=0
$$

and $a_{i} \neq 0$. Then

$$
y_{i}=-\frac{a_{1}}{a_{i}} y_{1}-\cdots-\frac{a_{n}}{a_{i}} y_{n}
$$

Linear functions f_{j} for decoding y_{i} :

For each $i, 1 \leq i \leq n$, the set \mathbf{S} contains r vectors

$$
a^{(j)}=\left(a_{1}^{(j)}, \ldots, a_{n}^{(j)}\right), j=1, \ldots, r
$$

such that $a_{i}^{(j)} \neq 0$.
We define a set of $r+\lambda$ linear functions $f_{j}=f_{j}\left(y_{1}, \ldots, y_{n}\right)$,

Assume that

$$
a_{1} y_{1}+\cdots+a_{n} y_{n}=0
$$

and $a_{i} \neq 0$. Then

$$
y_{i}=-\frac{a_{1}}{a_{i}} y_{1}-\cdots-\frac{a_{n}}{a_{i}} y_{n} .
$$

Linear functions f_{j} for decoding y_{i} :

For each $i, 1 \leq i \leq n$, the set \mathbf{S} contains r vectors

$$
a^{(j)}=\left(a_{1}^{(j)}, \ldots, a_{n}^{(j)}\right), j=1, \ldots, r
$$

such that $a_{i}^{(j)} \neq 0$.
We define a set of $r+\lambda$ linear functions $f_{j}=f_{j}\left(y_{1}, \ldots, y_{n}\right)$,

$$
f_{j}=-\frac{a_{1}^{(j)}}{a_{i}^{(j)}} y_{1}-\cdots-\frac{a_{n}^{(j)}}{a_{i}^{(j)}} y_{n}, j=1, \ldots, r,
$$

Assume that

$$
a_{1} y_{1}+\cdots+a_{n} y_{n}=0
$$

and $a_{i} \neq 0$. Then

$$
y_{i}=-\frac{a_{1}}{a_{i}} y_{1}-\cdots-\frac{a_{n}}{a_{i}} y_{n}
$$

Linear functions f_{j} for decoding y_{i} :

For each $i, 1 \leq i \leq n$, the set \mathbf{S} contains r vectors

$$
a^{(j)}=\left(a_{1}^{(j)}, \ldots, a_{n}^{(j)}\right), j=1, \ldots, r
$$

such that $a_{i}^{(j)} \neq 0$.
We define a set of $r+\lambda$ linear functions $f_{j}=f_{j}\left(y_{1}, \ldots, y_{n}\right)$,

$$
\begin{gathered}
f_{j}=-\frac{a_{1}^{(j)}}{a_{i}^{(j)}} y_{1}-\cdots-\frac{a_{n}^{(j)}}{a_{i}^{(j)}} y_{n}, j=1, \ldots, r \\
f_{r+1}=f_{r+2}=\cdots f_{r+\lambda}=y_{i}
\end{gathered}
$$

If there are no errors in $y=\left(y_{1}, \ldots, y_{n}\right)$, then

$$
y_{1}=x_{1}, \ldots y_{n}=x_{n}
$$

and

$$
f_{j}=x_{i} \text { for all } j=1, \ldots, r+\lambda .
$$

Any erroneous component y_{m} appears in at most λ of the functions $f_{1}, \ldots, f_{r+\lambda}$.

Thus, if there are e errors in $y=\left(y_{1}, \ldots, y_{n}\right)$, and

$$
\mathrm{e} \lambda<\frac{r+\lambda}{2}
$$

the majority of the values $f_{j}\left(y_{1}, \ldots, y_{n}\right)$ will be equal to x_{i}.

If there are no errors in $y=\left(y_{1}, \ldots, y_{n}\right)$, then

$$
y_{1}=x_{1}, \ldots y_{n}=x_{n}
$$

and

$$
f_{j}=x_{i} \text { for all } j=1, \ldots, r+\lambda
$$

Any erroneous component y_{m} appears in at most λ of the functions $f_{1}, \ldots, f_{r+\lambda}$.

Thus, if there are e errors in $y=\left(y_{1}, \ldots, y_{n}\right)$, and

If there are no errors in $y=\left(y_{1}, \ldots, y_{n}\right)$, then

$$
y_{1}=x_{1}, \ldots y_{n}=x_{n}
$$

and

$$
f_{j}=x_{i} \text { for all } j=1, \ldots, r+\lambda .
$$

Any erroneous component y_{m} appears in at most λ of the functions $f_{1}, \ldots, f_{r+\lambda}$.

Thus, if there are e errors in $y=\left(y_{1}, \ldots, y_{n}\right)$, and

If there are no errors in $y=\left(y_{1}, \ldots, y_{n}\right)$, then

$$
y_{1}=x_{1}, \ldots y_{n}=x_{n}
$$

and

$$
f_{j}=x_{i} \text { for all } j=1, \ldots, r+\lambda .
$$

Any erroneous component y_{m} appears in at most λ of the functions $f_{1}, \ldots, f_{r+\lambda}$.

Thus, if there are e errors in $y=\left(y_{1}, \ldots, y_{n}\right)$,

If there are no errors in $y=\left(y_{1}, \ldots, y_{n}\right)$, then

$$
y_{1}=x_{1}, \ldots y_{n}=x_{n}
$$

and

$$
f_{j}=x_{i} \text { for all } j=1, \ldots, r+\lambda .
$$

Any erroneous component y_{m} appears in at most λ of the functions $f_{1}, \ldots, f_{r+\lambda}$.

Thus, if there are e errors in $y=\left(y_{1}, \ldots, y_{n}\right)$, and

$$
\mathbf{e} \lambda<\frac{r+\lambda}{2}
$$

If there are no errors in $y=\left(y_{1}, \ldots, y_{n}\right)$, then

$$
y_{1}=x_{1}, \ldots y_{n}=x_{n}
$$

and

$$
f_{j}=x_{i} \text { for all } j=1, \ldots, r+\lambda
$$

Any erroneous component y_{m} appears in at most λ of the functions $f_{1}, \ldots, f_{r+\lambda}$.

Thus, if there are e errors in $y=\left(y_{1}, \ldots, y_{n}\right)$, and

$$
\mathbf{e} \lambda<\frac{r+\lambda}{2}
$$

the majority of the values $f_{j}\left(y_{1}, \ldots, y_{n}\right)$ will be equal to x_{i}.

Variations and Generalizations

- Rahman and Blake, 1975:

Rudolph's bound can be improved if If C^{\perp} supports a t-design with $t \geq 2$.

- If $t=1, \lambda$ can be replaced with the maximum frequency of appearance of pairs of points.
- If $t=0, r$ can be replaced with the minimum frequency of appearance of a point in blocks.

Milti-step majority logic decoding

Rudolph's algorithm is an example of one-step majority logic decoding.
There is an iterative multistep version of the algorithm consisting of a sequence of one-step decoding of linear combinations of received bits, followed by computing the individual bits y_{i} as a solution of a system of linear equations.

Variations and Generalizations

- Rahman and Blake, 1975:

Rudolph's bound can be improved if If C^{\perp} supports a t-design with $t \geq 2$.

- If $t=1, \lambda$ can be replaced with the maximum frequency of appearance of pairs of points.
- If $t=0, r$ can be replaced with the minimum frequency of appearance of a point in blocks.

Milti-step majority logic decoding

Rudolph's algorithm is an example of one-step majority logic decoding.
There is an iterative multistep version of the algorithm consisting of a sequence of one-step decoding of linear combinations of received bits, followed by computing the individual bits y_{i} as a solution of a system of linear equations.

Variations and Generalizations

- Rahman and Blake, 1975:

Rudolph's bound can be improved if If C^{\perp} supports a t-design with $t \geq 2$.

- If $t=1, \lambda$ can be replaced with the maximum frequency of appearance of pairs of points.
- If $t=0, r$ can be replaced with the minimum frequency of appearance of a point in blocks.

Milt-step majority logic decoding

Rudolph's algorithm is an example of one-step majority logic decoding.
There is an iterative multistep version of the algorithm consisting of a sequence of one-step decoding of linear combinations of received bits, followed by computing the individual bits y_{i} as a solution of a system of linear equations.

Variations and Generalizations

- Rahman and Blake, 1975:

Rudolph's bound can be improved if If C^{\perp} supports a t-design with $t \geq 2$.

- If $t=1, \lambda$ can be replaced with the maximum frequency of appearance of pairs of points.
- If $t=0, r$ can be replaced with the minimum frequency of appearance of a point in blocks.

> Milti-step majority logic decoding
> Rudolph's algorithm is an example of one-step majority logic decoding.
> There is an iterative multistep version of the algorithm consisting of a sequence of one-step decoding of linear combinations of received bits, followed by computing the individual bits y_{i} as a solution of a system of linear equations.

Variations and Generalizations

- Rahman and Blake, 1975:

Rudolph's bound can be improved if If C^{\perp} supports a t-design with $t \geq 2$.

- If $t=1, \lambda$ can be replaced with the maximum frequency of appearance of pairs of points.
- If $t=0, r$ can be replaced with the minimum frequency of appearance of a point in blocks.

Milti-step majority logic decoding

Rudolph's algorithm is an example of one-step majority logic decoding.

There is an iterative multistep version of the algorithm consisting of a sequence of one-step decoding of linear combinations of received bits, followed by computing the individual bits y_{i} as a solution of a system of linear equations.

Variations and Generalizations

- Rahman and Blake, 1975:

Rudolph's bound can be improved if If C^{\perp} supports a t-design with $t \geq 2$.

- If $t=1, \lambda$ can be replaced with the maximum frequency of appearance of pairs of points.
- If $t=0, r$ can be replaced with the minimum frequency of appearance of a point in blocks.

Milti-step majority logic decoding

Rudolph's algorithm is an example of one-step majority logic decoding.
There is an iterative multistep version of the algorithm consisting of a sequence of one-step decoding of linear combinations of received bits, followed by computing the individual bits y_{i} as a solution of a system of linear equations.

Variations and Generalizations

- Rahman and Blake, 1975:

Rudolph's bound can be improved if If C^{\perp} supports a t-design with $t \geq 2$.

- If $t=1, \lambda$ can be replaced with the maximum frequency of appearance of pairs of points.
- If $t=0, r$ can be replaced with the minimum frequency of appearance of a point in blocks.

Milti-step majority logic decoding

Rudolph's algorithm is an example of one-step majority logic decoding.
There is an iterative multistep version of the algorithm consisting of a sequence of one-step decoding of linear combinations of received bits, followed by computing the individual bits y_{i} as a solution of a system of linear equations.

Which codes support t-designs?

Task

Find a linear code C so that C^{\perp} supports a t-design with $t \geq 2$.

The Assmus-Mattson Theorem, 1969

If C is a linear $[n, k]$ code with minimum distance d such that the number of distinct nonzero weights in C^{\perp} not exceeding $n-t$ is smaller than $d-t$, then both C and C^{\perp} support t-designs.

Note

The As smus-Mattson Theorem gives a sufficient condition for the existence of designs in a code.
It does not specify how one can find such codes.

Which codes support t-designs?

Find a linear code C so that C^{\perp} supports a t-design with $t \geq 2$.
The Assmus-Mattson Theorem, 1969
If C is a linear $[n, k]$ code with minimum distance d such that the number of distinct nonzero weights in C^{\perp} not exceeding $n-t$ is smaller than $d-t$, then both C and C^{\perp} support t-designs.

```
Note
The Assmus-Mattson Theorem gives a sufficient condition for the
existence of designs in a code.
It does not specify how one can find such codes.
```


Which codes support t-designs?

Find a linear code C so that C^{\perp} supports a t-design with $t \geq 2$.

The Assmus-Mattson Theorem, 1969

If C is a linear $[n, k]$ code with minimum distance d such that the number of distinct nonzero weights in C^{\perp} not exceeding $n-t$ is smaller than $d-t$, then both C and C^{\perp} support t-designs.

Note

The Assmus-Mattson Theorem gives a sufficient condition for the existence of designs in a code.
It does not specify how one can find such codes.

Which codes support t-designs?

Find a linear code C so that C^{\perp} supports a t-design with $t \geq 2$.

The Assmus-Mattson Theorem, 1969

If C is a linear $[n, k]$ code with minimum distance d such that the number of distinct nonzero weights in C^{\perp} not exceeding $n-t$ is smaller than $d-t$, then both C and C^{\perp} support t-designs.

Note

The Assmus-Mattson Theorem gives a sufficient condition for the existence of designs in a code. It does not specify how one can find such codes.

Codes with mulitransitive automorphism groups

If C admits an automorphism group of permutations that acts t-transitive (or t-homogeneously) on the set of n code coordinates, then the supports of all codewords of any nonzero weight form a t-design.

Codes with mulitransitive automorphism groups

If C admits an automorphism group of permutations that acts t-transitive (or t-homogeneously) on the set of n code coordinates, then the supports of all codewords of any nonzero weight form a t-design.

Example

The binary Golay $[24,12,8]$ code and the ternary Golay [12, 6, 6] code support 5-designs.

A simple construction using

If C is a linear code over $G F(q)$ of length v with a parity check matrix H being the block by point $b \times v$ incidence matrix of a $t-(v, w, \lambda)$ design D, then C^{\perp} supports the $t-(v, w, \lambda)$ design D.

A possible drawback:

Fisher-inequality
 If D is a $t-(v, w, \lambda)$ design with b blocks such that t

 thenThus, it can happen that rank $_{q} H=v$ and $\operatorname{dim}(C)=0$.

A simple construction using

If C is a linear code over $G F(q)$ of length v with a parity check matrix H being the block by point $b \times v$ incidence matrix of a $t-(v, w, \lambda)$ design D, then C^{\perp} supports the $t-(v, w, \lambda)$ design D. The dimension of C is $k=v-r a n k_{q} H$.

A possible drawback:

Fisher-inequality

then

Thus, it can happen that rank $_{q} H=v$ and $\operatorname{dim}(C)=0$.

A simple construction using

If C is a linear code over $G F(q)$ of length v with a parity check matrix H being the block by point $b \times v$ incidence matrix of a $t-(v, w, \lambda)$ design D, then C^{\perp} supports the $t-(v, w, \lambda)$ design D.
The dimension of C is $k=v-\operatorname{rank}_{q} H$.

A possible drawback:

Fisher inequality

If D is a $t-(v, w, \lambda)$ design with b blocks such that $t \geq 2$ and $v>w>0$, then

$$
b \geq v
$$

Thus, it can happen that rank $H=v$ and $\operatorname{dim}(C)=0$.

A simple construction using

If C is a linear code over $G F(q)$ of length v with a parity check matrix H being the block by point $b \times v$ incidence matrix of a $t-(v, w, \lambda)$ design D, then C^{\perp} supports the $t-(v, w, \lambda)$ design D.
The dimension of C is $k=v-\operatorname{rank}_{q} H$.

A possible drawback:

Fisher inequality

If D is a $t-(v, w, \lambda)$ design with b blocks such that $t \geq 2$ and $v>w>0$, then

$$
b \geq v
$$

Thus, it can happen that $\operatorname{rank}_{q} H=v$ and $\operatorname{dim}(C)=0$.

Note

If H is the block by point $b \times v$ incidence matrix of a $t-(v, w, \lambda)$ design and $r=\lambda(v-1) /(w-1)$ then

Thus, if p is a prime which does not divide $r-\lambda$ then
and $\operatorname{dim}(C) \leq 1$.

Note

If H is the block by point $b \times v$ incidence matrix of a $t-(v, w, \lambda)$ design and $r=\lambda(v-1) /(w-1)$ then

$$
\operatorname{det}\left(H^{T} H\right)=r w(r-\lambda)^{v-1}
$$

Thus, if p is a prime which does not divide $r-\lambda$ then

Note

If H is the block by point $b \times v$ incidence matrix of a $t-(v, w, \lambda)$ design and $r=\lambda(v-1) /(w-1)$ then

$$
\operatorname{det}\left(H^{\top} H\right)=r w(r-\lambda)^{v-1} .
$$

Thus, if p is a prime which does not divide $r-\lambda$ then

Note

If H is the block by point $b \times v$ incidence matrix of a $t-(v, w, \lambda)$ design and $r=\lambda(v-1) /(w-1)$ then

$$
\operatorname{det}\left(H^{\top} H\right)=r w(r-\lambda)^{v-1} .
$$

Thus, if p is a prime which does not divide $r-\lambda$ then

$$
\operatorname{rank}_{p} H=v \text { or } v-1
$$

Note

If H is the block by point $b \times v$ incidence matrix of a $t-(v, w, \lambda)$ design and $r=\lambda(v-1) /(w-1)$ then

$$
\operatorname{det}\left(H^{\top} H\right)=r w(r-\lambda)^{v-1} .
$$

Thus, if p is a prime which does not divide $r-\lambda$ then

$$
\operatorname{rank}_{p} H=v \text { or } v-1
$$

and $\operatorname{dim}(C) \leq 1$.

Designs with minimum p-rank

Abstract

Task Given $v>w>0, \lambda>0$, and a prime p such that $p \mid r-\lambda$,

 find a $2-(v, w, \lambda)$ design of minimum p-rank.
Example

Let $v=8, w=4, \lambda=3$.
Then $r=7, r-\lambda=7-3=4$, and $p=2 \mid(r-\lambda)$.
There exist four non-isomorphic 2- $(8,4,3)$ designs,
and their 2-ranks are 4, 5, 6, and 7 respectively.

Note

The 2-($8,4,3$) design of minimum 2-rank, 4 , is isomorphic to the geometric design $A G_{2}(3,2)$.

Designs with minimum p-rank

Given $v>w>0, \lambda>0$, and a prime p such that $p \mid r-\lambda$, find a $2-(v, w, \lambda)$ design of minimum p-rank.

```
Example
Let v=8,w=4,\lambda=3.
Then r=7,r-\lambda=7-3=4, and p=2|(r-\lambda).
There exist four non-isomorphic 2-(8,4,3) designs,
and their 2-ranks are 4, 5, 6, and 7 respectively.
```


Note

```
The 2-( \(8,4,3\) ) design of minimum 2-rank, 4 , is isomorphic to the geometric design \(A G_{2}(3,2)\).
```


Designs with minimum p-rank

Task

Given $v>w>0, \lambda>0$, and a prime p such that $p \mid r-\lambda$, find a $2-(v, w, \lambda)$ design of minimum p-rank.

```
Example
Let \(v=8, w=4, \lambda=3\).
```

Then $r=7, r-\lambda=7-3=4$, and $p=2 \mid(r-\lambda)$.
There exist four non-isomorphic 2-(8, 4, 3) designs, and their 2 -ranks are 4, 5, 6, and 7 respectively.

Note
The 2-(8,4,3) design of minimum 2-rank, 4, is isomorphic to the geometric design $A G_{2}(3,2)$.

Designs with minimum p-rank

Task

Given $v>w>0, \lambda>0$, and a prime p such that $p \mid r-\lambda$, find a $2-(v, w, \lambda)$ design of minimum p-rank.

Example

Let $v=8, w=4, \lambda=3$.
Then $r=7, r-\lambda=7-3=4$, and $p=2 \mid(r-\lambda)$.
There exist four non-isomorphic 2- $(8,4,3)$ designs, and their 2 -ranks are 4, 5, 6, and 7 respectively.

Note
The 2-($8,4,3$) design of minimum 2-rank, 4, is isomorphic to the geometric design $A G_{2}(3,2)$.

Designs with minimum p-rank

Task

Given $v>w>0, \lambda>0$, and a prime p such that $p \mid r-\lambda$, find a $2-(v, w, \lambda)$ design of minimum p-rank.

Example

Let $v=8, w=4, \lambda=3$.
Then $r=7, r-\lambda=7-3=4$, and $p=2 \mid(r-\lambda)$.
There exist four non-isomorphic 2-(8, 4, 3) designs, and their 2-ranks are 4, 5, 6, and 7 respectively.

Note 2 -(8, 4, 3) design of minimum 2-rank, 4, is isomorphic to the geometric design $A G_{2}(3,2)$.

Designs with minimum p-rank

Task

Given $v>w>0, \lambda>0$, and a prime p such that $p \mid r-\lambda$, find a $2-(v, w, \lambda)$ design of minimum p-rank.

Example

Let $v=8, w=4, \lambda=3$.

Then $r=7, r-\lambda=7-3=4$, and $p=2 \mid(r-\lambda)$.
There exist four non-isomorphic 2-(8,4,3) designs, and their 2 -ranks are 4,5,6, and 7 respectively.

Designs with minimum p-rank

Given $v>w>0, \lambda>0$, and a prime p such that $p \mid r-\lambda$, find a $2-(v, w, \lambda)$ design of minimum p-rank.

Example

Let $v=8, w=4, \lambda=3$.

Then $r=7, r-\lambda=7-3=4$, and $p=2 \mid(r-\lambda)$.
There exist four non-isomorphic 2-(8,4,3) designs, and their 2 -ranks are 4, 5, 6, and 7 respectively.

Note

The 2-($8,4,3$) design of minimum 2-rank, 4, is isomorphic to the geometric design $A G_{2}(3,2)$.

Two fundamental questions

Given parameters $v>w>0, \lambda>0$, such that a $2-(v, w, \lambda)$ design exists,

- What is the minimum p-rank of a $2-(v, w, \lambda)$ design?
- How many nonisomorphic 2-($v, w, \lambda)$ designs of minimum p-rank are there?

Two fundamental questions

Given parameters $v>w>0, \lambda>0$, such that a $2-(v, w, \lambda)$ design exists,

- What is the minimum p-rank of a $2-(v, w, \lambda)$ design?
- How many nonisomorphic 2-($v, w, \lambda)$ designs of minimum p-rank are there?

Two fundamental questions

Given parameters $v>w>0, \lambda>0$, such that a $2-(v, w, \lambda)$ design exists,

- What is the minimum p-rank of a $2-(v, w, \lambda)$ design?
- How many nonisomorphic 2-($v, w, \lambda)$ designs of minimum p-rank are there?

p-Ranks of Geometric Designs

The p-ranks of the geometric designs were computed in the 1960's and 1970's.

Theorem. (Graham and MacWPliams '66, Wedon '67)

For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p} P G_{1}\left(2, p^{s}\right)=\binom{p+1}{2}^{s}+1
$$

Theorem. (Sachar '79)

If Π is a projective plane of prime order $p\left(a 2-\left(p^{2}+p+1, p+1,1\right)\right.$ design) then

$$
\operatorname{rank}_{p}(\Pi)=\left(p^{2}+p+2\right) / 2
$$

p-Ranks of Geometric Designs

The p-ranks of the geometric designs were computed in the 1960's and 1970's.

Theorem. (Graham and MacWPliams '66, Wedon '67)
For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p} P G_{1}\left(2, p^{s}\right)=\binom{p+1}{2}^{s}+1
$$

Theorem. (Sachar '79)

If Π is a projective plane of prime order $p\left(a 2-\left(p^{2}+p+1, p+1,1\right)\right.$ design) then

$$
\operatorname{rank}_{p}(\Pi)=\left(p^{2}+p+2\right) / 2
$$

p-Ranks of Geometric Designs

The p-ranks of the geometric designs were computed in the 1960's and 1970's.

Theorem. (Graham and MacWilliams '66, Weldon '67)

For any prime $p \geq 2$, and any integer $s \geq 1$,

Theorem. (Sachar '79)

If Π is a projective plane of prime order $p\left(a 2-\left(p^{2}+p+1, p+1,1\right)\right.$ design) then
$\operatorname{rank}_{p}(\Pi)=\left(p^{2}+p+2\right) / 2$.

p-Ranks of Geometric Designs

The p-ranks of the geometric designs were computed in the 1960's and 1970's.

Theorem. (Graham and MacWilliams '66, Weldon '67)

For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p} P G_{1}\left(2, p^{s}\right)=\binom{p+1}{2}^{s}+1
$$

Theorem. (Sachar '79)

If Π is a projective plane of prime order $p\left(a 2-\left(p^{2}+p+1, p+1,1\right)\right.$ design) then
$\operatorname{rank}_{p}(\Pi)=\left(p^{2}+p+2\right) / 2$.

p-Ranks of Geometric Designs

The p-ranks of the geometric designs were computed in the 1960's and 1970's.

Theorem. (Graham and MacWilliams '66, Weldon '67)

For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p} P G_{1}\left(2, p^{s}\right)=\binom{p+1}{2}^{s}+1
$$

Theorem. (Sachar '79)

If Π is a projective plane of prime order $p\left(a 2-\left(p^{2}+p+1, p+1,1\right)\right.$ design) then
$\operatorname{rank}_{p}(\Pi)=\left(p^{2}+p+2\right) / 2$.

p-Ranks of Geometric Designs

The p-ranks of the geometric designs were computed in the 1960's and 1970's.

Theorem. (Graham and MacWilliams '66, Weldon '67)

For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p} P G_{1}\left(2, p^{s}\right)=\binom{p+1}{2}^{s}+1
$$

Theorem. (Sachar '79)

If Π is a projective plane of prime order $p\left(a 2-\left(p^{2}+p+1, p+1,1\right)\right.$ design) then

$$
\operatorname{rank}_{p}(\Pi)=\left(p^{2}+p+2\right) / 2
$$

Theorem. (Smith '67, Goethals and Delsarte '68)

For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p} P G_{n-1}\left(n, p^{s}\right)=\binom{p+n-1}{n}^{s}+1
$$

Theorem. (Graham and MacWilliams '68)

Le D be the design of points and hyperplanes in a finite geometry of dimension n. For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p}(D)=\binom{p+n-1}{n}^{s}+\epsilon
$$

where $\epsilon=1$ if $D=P G_{n-1}\left(n, p^{s}\right)$, and $\epsilon=0$ if $D=A G_{n-1}\left(n, p^{s}\right)$.

Theorem. (Smith '67, Goethals and Delsarte '68)

For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p} P G_{n-1}\left(n, p^{s}\right)=\binom{p+n-1}{n}^{s}+1 .
$$

Theorem. (Graham and MacWIllams '68)

Le D be the design of points and hyperplanes in a finite geometry of dimension n. For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p}(D)=\binom{p+n-1}{n}^{s}+\epsilon
$$

where $\epsilon=1$ if $D=P G_{n-1}\left(n, p^{s}\right)$, and $\epsilon=0$ if $D=A G_{n-1}\left(n, p^{s}\right)$.

Theorem. (Smith '67, Goethals and Delsarte '68)

For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p} P G_{n-1}\left(n, p^{s}\right)=\binom{p+n-1}{n}^{s}+1
$$

Theorem. (Graham and MacWilliams '68)

Le D be the design of points and hyperplanes in a finite geometry of dimension n. For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p}(D)=\binom{p+n-1}{n}^{s}+\epsilon
$$

where $\epsilon=1$ if $D=P G_{n-1}\left(n, p^{s}\right)$, and $\epsilon=0$ if $D=A G_{n-1}\left(n, p^{s}\right)$.

Theorem. (Smith '67, Goethals and Delsarte '68)

For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p} P G_{n-1}\left(n, p^{s}\right)=\binom{p+n-1}{n}^{s}+1
$$

Theorem. (Graham and MacWilliams '68)

Le D be the design of points and hyperplanes in a finite geometry of dimension n. For any prime $p \geq 2$, and any integer $s \geq 1$,

Theorem. (Smith '67, Goethals and Delsarte '68)

For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p} P G_{n-1}\left(n, p^{s}\right)=\binom{p+n-1}{n}^{s}+1
$$

Theorem. (Graham and MacWilliams '68)

Le D be the design of points and hyperplanes in a finite geometry of dimension n. For any prime $p \geq 2$, and any integer $s \geq 1$,

Theorem. (Smith '67, Goethals and Delsarte '68)

For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p} P G_{n-1}\left(n, p^{s}\right)=\binom{p+n-1}{n}^{s}+1
$$

Theorem. (Graham and MacWilliams '68)

Le D be the design of points and hyperplanes in a finite geometry of dimension n. For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p}(D)=\binom{p+n-1}{n}^{s}+\epsilon
$$

Theorem. (Smith '67, Goethals and Delsarte '68)

For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p} P G_{n-1}\left(n, p^{s}\right)=\binom{p+n-1}{n}^{s}+1
$$

Theorem. (Graham and MacWilliams '68)

Le D be the design of points and hyperplanes in a finite geometry of dimension n. For any prime $p \geq 2$, and any integer $s \geq 1$,

$$
\operatorname{rank}_{p}(D)=\binom{p+n-1}{n}^{s}+\epsilon
$$

where $\epsilon=1$ if $D=P G_{n-1}\left(n, p^{s}\right)$, and $\epsilon=0$ if $D=A G_{n-1}\left(n, p^{s}\right)$.

The general case

Theorem. (Hamada '73)

(a) The p-rank of $P G_{d}\left(n, p^{s}\right)$ is given by

$$
\sum_{t_{0}, \ldots, t_{s}} \prod_{j=0}^{s-1} \sum_{i=0}^{\left[\left(t_{j+1} p-t_{j}\right) / p\right]}(-1)^{i}\binom{n+1}{i}\binom{n+t_{j+1} p-t_{j}-i p}{n}
$$

where $\left(t_{0}, \ldots, t_{s}\right)$ are integers such that
$t_{s}=t_{0}, d+1 \leq t_{j} \leq n+1,0 \leq t_{j+1} p-t_{j} \leq(n+1)(p-1)$,
for $j=0,1, \ldots, s-1$.
(b)
$\operatorname{rank}_{p} A G_{d}\left(n, p^{s}\right)=\operatorname{rank}_{p} P G_{d}\left(n, p^{s}\right)-\operatorname{rank}_{p} P G_{d}\left(n-1, p^{s}\right)$.

The general case

Theorem. (Hamada '73)
(a) The p-rank of $P G_{d}\left(n, p^{s}\right)$ is given by

where $\left(t_{0}, \ldots, t_{s}\right)$ are integers such that
$t_{s}=t_{0}, d+1 \leq t_{j} \leq n+1,0 \leq t_{j+1} p-t_{j} \leq(n+1)(p-1)$,
for $j=0,1, \ldots, s-1$.
(b)
$\operatorname{rank}_{p} A G_{d}\left(n, p^{s}\right)=\operatorname{rank}_{p} P G_{d}\left(n, p^{s}\right)-\operatorname{rank}_{p} P G_{d}\left(n-1, p^{s}\right)$.

The general case

Theorem. (Hamada '73)

(a) The p-rank of $P G_{d}\left(n, p^{s}\right)$ is given by

where $\left(t_{0}, \ldots, t_{s}\right)$ are integers such that
$t_{s}=t_{0}, d+1 \leq t_{j} \leq n+1,0 \leq t_{j+1} p-t_{j} \leq(n+1)(p-1)$,
for $j=0,1, \ldots, s-1$.
(b)
$\operatorname{rank}_{p} A G_{d}\left(n, p^{s}\right)=\operatorname{rank}_{p} P G_{d}\left(n, p^{s}\right)-\operatorname{rank}_{p} P G_{d}\left(n-1, p^{s}\right)$.

The general case

Theorem. (Hamada '73)

(a) The p-rank of $P G_{d}\left(n, p^{s}\right)$ is given by

$$
\sum_{t_{0}, \ldots, t_{s}} \prod_{j=0}^{s-1} \sum_{i=0}^{\left[t_{j+1} p-t_{j} / p\right]}(-1)^{i}\binom{n+1}{i}\binom{n+t_{j+1} p-t_{j}-i p}{n},
$$

where $\left(t_{0}, \ldots, t_{s}\right)$ are integers such that

$t_{s}=t_{0}, d+1 \leq t_{j} \leq n+1,0 \leq t_{j+1} p-t_{j} \leq(n+1)(p-1)$,
for $j=0,1, \ldots, s-1$.
(b)
$\operatorname{rank}_{p} A G_{d}\left(n, p^{s}\right)=\operatorname{rank}_{p} P G_{d}\left(n, p^{s}\right)-\operatorname{rank}_{p} P G_{d}\left(n-1, p^{s}\right)$.

The general case

Theorem. (Hamada '73)

(a) The p-rank of $P G_{d}\left(n, p^{s}\right)$ is given by

$$
\sum_{t_{0}, \ldots, t_{s}} \prod_{j=0}^{s-1} \sum_{i=0}^{\left[\left(t_{j+1} p-t_{j}\right) / p\right]}(-1)^{i}\binom{n+1}{i}\binom{n+t_{j+1} p-t_{j}-i p}{n}
$$

where $\left(t_{0}, \ldots, t_{s}\right)$ are integers such that
$t_{s}=t_{0}, d+1 \leq t_{j} \leq n+1,0 \leq t_{j+1} p-t_{j} \leq(n+1)(p-1)$,
for $j=0,1, \ldots, s-1$.
(b)
$\operatorname{rank}_{p} A G_{d}\left(n, p^{s}\right)=\operatorname{rank}_{p} P G_{d}\left(n, p^{s}\right)-\operatorname{rank}_{p} P G_{d}\left(n-1, p^{s}\right)$.

The general case

Theorem. (Hamada '73)

(a) The p-rank of $P G_{d}\left(n, p^{s}\right)$ is given by

$$
\sum_{t_{0}, \ldots, t_{s}} \prod_{j=0}^{s-1} \sum_{i=0}^{\left[\left(t_{j+1} p-t_{j}\right) / p\right]}(-1)^{i}\binom{n+1}{i}\binom{n+t_{j+1} p-t_{j}-i p}{n}
$$

where $\left(t_{0}, \ldots, t_{s}\right)$ are integers such that $t_{s}=t_{0}, d+1 \leq t_{j} \leq n+1,0 \leq t_{j+1} p-t_{j} \leq(n+1)(p-1)$,

The general case

Theorem. (Hamada '73)

(a) The p-rank of $P G_{d}\left(n, p^{s}\right)$ is given by

$$
\sum_{t_{0}, \ldots, t_{s}} \prod_{j=0}^{s-1} \sum_{i=0}^{\left[\left(t_{j+1} p-t_{j}\right) / p\right]}(-1)^{i}\binom{n+1}{i}\binom{n+t_{j+1} p-t_{j}-i p}{n}
$$

where $\left(t_{0}, \ldots, t_{s}\right)$ are integers such that $t_{s}=t_{0}, d+1 \leq t_{j} \leq n+1,0 \leq t_{j+1} p-t_{j} \leq(n+1)(p-1)$, for $j=0,1, \ldots, s-1$.

The general case

Theorem. (Hamada '73)

(a) The p-rank of $P G_{d}\left(n, p^{s}\right)$ is given by

$$
\sum_{t_{0}, \ldots, t_{s}} \prod_{j=0}^{s-1} \sum_{i=0}^{\left[\left(t_{j+1} p-t_{j}\right) / p\right]}(-1)^{i}\binom{n+1}{i}\binom{n+t_{j+1} p-t_{j}-i p}{n}
$$

where $\left(t_{0}, \ldots, t_{s}\right)$ are integers such that $t_{s}=t_{0}, d+1 \leq t_{j} \leq n+1,0 \leq t_{j+1} p-t_{j} \leq(n+1)(p-1)$, for $j=0,1, \ldots, s-1$.
(b)
$\operatorname{rank}_{p} A G_{d}\left(n, p^{s}\right)=\operatorname{rank}_{p} P G_{d}\left(n, p^{s}\right)-\operatorname{rank}_{p} P G_{d}\left(n-1, p^{s}\right)$.

Finite Geometry Codes

Corollary

$$
\operatorname{rank}_{2} A G_{d}(n, 2)=\sum_{i=0}^{n-d}\binom{n}{i} .
$$

Note

The binary code spanned by the incidence matrix of $A G_{d}(n, 2)$ is equivalent to the Reed-Muller code of length 2^{n} and order d.

Finite geometry codes

A q-ary linear code spanned by the incidence matrix of $P G_{d}(n, q)$ or $A G_{d}(n, q)$ is a finite geometry code.

Note

The main tool used in computing the p-ranks of geometric designs is the theory of cyclic codes: all projective geometry codes are cyclic.

Finite Geometry Codes

Corollary

$$
\operatorname{rank}_{2} A G_{d}(n, 2)=\sum_{i=0}^{n-d}\binom{n}{i}
$$

Note

The binary code spanned by the incidence matrix of $A G_{d}(n, 2)$ is equivalent to the Reed-Muller code of length 2^{n} and order d.

Finite geometry codes

A q-ary linear code spanned by the incidence matrix of $P G_{d}(n, q)$ or $A G_{d}(n, q)$ is a finite geometry code.

Note

The main tool used in computing the p-ranks of geometric designs is the theory of cyclic codes: all projective geometry codes are cyclic.

Finite Geometry Codes

Corollary

$$
\operatorname{rank}_{2} A G_{d}(n, 2)=\sum_{i=0}^{n-d}\binom{n}{i} .
$$

Note

The binary code spanned by the incidence matrix of $A G_{d}(n, 2)$ is equivalent to the Reed-Muller code of length 2^{n} and order d.

> Finite geometry codes
> A q-ary linear code spanned by the incidence matrix of $P G_{d}(n, q)$ or $A G_{d}(n, q)$ is a finite geometry code.

Note

The main tool used in computing the p-ranks of geometric designs is the theory of cyclic codes: all projective geometry codes are cyclic.

Finite Geometry Codes

Corollary

$$
\operatorname{rank}_{2} A G_{d}(n, 2)=\sum_{i=0}^{n-d}\binom{n}{i}
$$

Note

The binary code spanned by the incidence matrix of $A G_{d}(n, 2)$ is equivalent to the Reed-Muller code of length 2^{n} and order d.

Finite geometry codes

A q-ary linear code spanned by the incidence matrix of $P G_{d}(n, q)$ or $A G_{d}(n, q)$ is a finite geometry code.
\square
The main tool used in computing the p-ranks of geometric designs is the theory of cyclic codes: all projective geometry codes are cyclic.

Finite Geometry Codes

Corollary

$$
\operatorname{rank}_{2} A G_{d}(n, 2)=\sum_{i=0}^{n-d}\binom{n}{i}
$$

Note

The binary code spanned by the incidence matrix of $A G_{d}(n, 2)$ is equivalent to the Reed-Muller code of length 2^{n} and order d.

Finite geometry codes

A q-ary linear code spanned by the incidence matrix of $P G_{d}(n, q)$ or $A G_{d}(n, q)$ is a finite geometry code.

Note

The main tool used in computing the p-ranks of geometric designs is the theory of cyclic codes: all projective geometry codes are cyclic.

Finite Geometry Codes

Corollary

$$
\operatorname{rank}_{2} A G_{d}(n, 2)=\sum_{i=0}^{n-d}\binom{n}{i}
$$

Note

The binary code spanned by the incidence matrix of $A G_{d}(n, 2)$ is equivalent to the Reed-Muller code of length 2^{n} and order d.

Finite geometry codes

A q-ary linear code spanned by the incidence matrix of $P G_{d}(n, q)$ or $A G_{d}(n, q)$ is a finite geometry code.

Note

The main tool used in computing the p-ranks of geometric designs is the theory of cyclic codes: all projective geometry codes are cyclic.

Hamada's Conjecture

Conjecture (Hamada, 1973) : A geometric design over $\mathbb{F}_{p^{m}}$ has minimum p-rank among all designs with the given parameters.

Example

Let $v=8, w=4, \lambda=3$.

There exist exactly four non-isomorphic 2-(8,4,3) designs, and their 2 -ranks are 4, 5, 6, and 7 respectively.

Note

The on ly $2-(8,4,3)$ design of minimum 2 -rank is isomorphic to the geometric design $A G_{2}(3,2)$.

Hamada's Conjecture

Conjecture (Hamada, 1973) : A geometric design over $\mathbb{F}_{p^{m}}$ has minimum p-rank among all designs with the given parameters.

```
Example
Let v=8,w=4,\lambda=3.
There exist exactly four non-isomorphic 2-(8,4,3) designs,
and their 2-ranks are 4, 5, 6, and }7\mathrm{ respectively.
```


Note

The on ly $2-(8,4,3)$ design of minimum $2-r a n k$ is isomorphic to the geometric design $A G_{2}(3,2)$.

Hamada's Conjecture

Conjecture (Hamada, 1973) : A geometric design over $\mathbb{F}_{p^{m}}$ has minimum p-rank among all designs with the given parameters.

> Example
> Let $v=8, w=4, \lambda=3$.

There exist exactly four non-isomorphic $2-(8,4,3)$ designs, and their 2 -ranks are 4, 5, 6, and 7 respectively.

```
Note
The only 2-(8,4,3) design of minimum 2-rank is isomorphic to the
geometric design }A\mp@subsup{G}{2}{}(3,2)\mathrm{ .
```


Hamada's Conjecture

Conjecture (Hamada, 1973) : A geometric design over $\mathbb{F}_{p^{m}}$ has minimum p-rank among all designs with the given parameters.

Example

Let $v=8, w=4, \lambda=3$.
There exist exactly four non-isomorphic 2-(8, 4, 3) designs, and their 2 -ranks are 4, 5, 6, and 7 respectively.

The only $2-(8,4,3)$ design of minimum 2 -rank is isomorphic to the geometric design $A G_{2}(3,2)$

Hamada's Conjecture

Conjecture (Hamada, 1973) : A geometric design over $\mathbb{F}_{p^{m}}$ has minimum p-rank among all designs with the given parameters.

Example

Let $v=8, w=4, \lambda=3$.
There exist exactly four non-isomorphic 2-(8,4,3) designs, and their 2 -ranks are 4,5,6, and 7 respectively.

Hamada's Conjecture

Conjecture (Hamada, 1973) : A geometric design over $\mathbb{F}_{p^{m}}$ has minimum p-rank among all designs with the given parameters.

Example

Let $v=8, w=4, \lambda=3$.
There exist exactly four non-isomorphic 2-(8,4,3) designs, and their 2 -ranks are 4, 5, 6, and 7 respectively.

Note

The only 2-(8,4,3) design of minimum 2-rank is isomorphic to the geometric design $A G_{2}(3,2)$.

Implications

Majority logic decodable codes: Hamada's conjecture indicates that geometric designs are the best choice for the given design parameters.

The number of nonisomorphic designs having the same parameters as geometric designs grows exponentially: Jungnickel '84, Kantor '94, Lam, Lam \& T '00, '02, Jungnickel \& T, '09, Clark, Jungnickel \& T, 09.

Uniqueness: The conjecture rovides a simple characterization of the geometric designs. Finding isomorphisms is exponentially difficult, while calculating p-rank is done in polynomial time.

Implications

- Majority logic decodable codes: Hamada's conjecture indicates that geometric designs are the best choice for the given design parameters.

> The number of nonisomorphic designs having the same parameters as geometric designs grows exponentially: Jungnickel '84, Kantor '94, Lam, Lam \& T '00, '02, Jungnickel \& T, '09, Clark, Jungnickel \& T, 09.

Uniqueness: The conjecture rovides a simple characterization of the geometric designs. Finding isomorphisms is exponentially difficult, while calculating p-rank is done in polynomial time.

Implications

- Majority logic decodable codes: Hamada's conjecture indicates that geometric designs are the best choice for the given design parameters.

Abstract

The number of nonisomorphic designs having the same parameters as geometric designs grows exponentially: Jungnickel '84, Kantor '94, Lam, Lam \& T '00, '02, Jungnickel \& T, '09, Clark, Jungnickel \& T, 09.

Uniqueness: The conjecture rovides a simple characterization of the geometric designs. Finding isomorphisms is exponentially difficult, while calculating p-rank is done in polynomial time.

Implications

- Majority logic decodable codes: Hamada's conjecture indicates that geometric designs are the best choice for the given design parameters.

Abstract

Note The number of nonisomorphic designs having the same parameters as geometric designs grows exponentially: Jungnickel '84, Kantor '94, Lam, Lam \& T '00, '02, Jungnickel \& T, '09, Clark, Jungnickel \& T, 09.

- Uniqueness: The conjecture rovides a simple characterization of the geometric designs. Finding isomorphisms is exponentially difficult, while calculating p-rank is done in polynomial time.

The Proven Cases

Hamada's Conjecture has been proved in the following cases:

- Hamada and Ohmori (1975): True for $P G_{n-1}(n, 2)$ and $A G_{n-1}(n, 2)$.
- Doyen, Hubaut, Vandensavel (1978): True for $P G_{1}(n, 2)$ and $A G_{1}(n, 3)$.
- Teirlinck (1980): True for $A G_{2}(n, 2)$.
- Tonchev (1999): A modified version of Hamada's conjecture is true for the complementary designs of $P G_{n-1}(n, q)$ and $A G_{n-1}(n, q)$ for every prime power q and every $n \geq 3$, for generalized incidence matrices with entries in \mathbb{F}_{q}.

In all of these cases, the geometric designs are the unique designs of minimum p-rank.

The Proven Cases

Hamada's Conjecture has been proved in the following cases:

- Hamada and Ohmori (1975): True for $P G_{n-1}(n, 2)$ and $A G_{n-1}(n, 2)$.
- Doyen, Hubaut, Vandensavel (1978): True for $P G_{1}(n, 2)$ and $A G_{1}(n, 3)$.
- Teirlinck (1980): True for $A G_{2}(n, 2)$.
- Tonchev (1999): A modified version of Hamada's conjecture is true for the complementary designs of $P G_{n-1}(n, q)$ and $A G_{n-1}(n, q)$ for every prime power q and every $n \geq 3$, for generalized incidence matrices with entries in \mathbb{F}_{q}.

In all of these cases, the geometric designs are the unique designs of minimum p-rank.

The Proven Cases

Hamada's Conjecture has been proved in the following cases:

- Hamada and Ohmori (1975): True for $P G_{n-1}(n, 2)$ and $A G_{n-1}(n, 2)$.
- Doyen, Hubaut, Vandensavel (1978):

True for $P G_{1}(n, 2)$ and $A G_{1}(n, 3)$.

- Teirlinck (1980): True for $A G_{2}(n, 2)$.
- Tonchev (1999): A modified version of Hamada's conjecture is true for the complementary designs of $P G_{n-1}(n, q)$ and $A G_{n-1}(n, q)$ for every prime power q and every $n \geq 3$, for generalized incidence matrices with entries in \mathbb{F}_{q}.

In all of these cases, the geometric designs are the unique designs of minimum p-rank.

The Proven Cases

Hamada's Conjecture has been proved in the following cases:

- Hamada and Ohmori (1975): True for $P G_{n-1}(n, 2)$ and $A G_{n-1}(n, 2)$.
- Doyen, Hubaut, Vandensavel (1978):

True for $P G_{1}(n, 2)$ and $A G_{1}(n, 3)$.

- Teirlinck (1980): True for $A G_{2}(n, 2)$.
- Tonchev (1999): A modified version of Hamada's conjecture is true for the complementary designs of $P G_{n-1}(n, q)$ and $A G_{n-1}(n, q)$ for every prime power q and every $n \geq 3$, for generalized incidence matrices with entries in \mathbb{F}_{q}.

In all of these cases, the geometric designs are the unique designs of minimum p-rank.

The Proven Cases

Hamada's Conjecture has been proved in the following cases:

- Hamada and Ohmori (1975): True for $P G_{n-1}(n, 2)$ and $A G_{n-1}(n, 2)$.
- Doyen, Hubaut, Vandensavel (1978):

True for $P G_{1}(n, 2)$ and $A G_{1}(n, 3)$.

- Teirlinck (1980): True for $A G_{2}(n, 2)$.
- Tonchev (1999): A modified version of Hamada's conjecture is true for the complementary designs of $P G_{n-1}(n, q)$ and $A G_{n-1}(n, q)$ for every prime power q and every $n \geq 3$,

In all of these cases, the geometric designs are the unique designs of minimum p-rank.

The Proven Cases

Hamada's Conjecture has been proved in the following cases:

- Hamada and Ohmori (1975): True for $P G_{n-1}(n, 2)$ and $A G_{n-1}(n, 2)$.
- Doyen, Hubaut, Vandensavel (1978):

True for $P G_{1}(n, 2)$ and $A G_{1}(n, 3)$.

- Teirlinck (1980): True for $A G_{2}(n, 2)$.
- Tonchev (1999): A modified version of Hamada's conjecture is true for the complementary designs of $P G_{n-1}(n, q)$ and $A G_{n-1}(n, q)$ for every prime power q and every $n \geq 3$, for generalized incidence matrices with entries in \mathbb{F}_{q}.

In all of these cases, the geometric designs are
the unique designs of minimum p-rank.

The Proven Cases

Hamada's Conjecture has been proved in the following cases:

- Hamada and Ohmori (1975): True for $P G_{n-1}(n, 2)$ and $A G_{n-1}(n, 2)$.
- Doyen, Hubaut, Vandensavel (1978): True for $P G_{1}(n, 2)$ and $A G_{1}(n, 3)$.
- Teirlinck (1980): True for $A G_{2}(n, 2)$.
- Tonchev (1999): A modified version of Hamada's conjecture is true for the complementary designs of $P G_{n-1}(n, q)$ and $A G_{n-1}(n, q)$ for every prime power q and every $n \geq 3$, for generalized incidence matrices with entries in \mathbb{F}_{q}.

In all of these cases, the geometric designs are the unique designs of minimum p-rank.

Proven cases

Theorem. (Hamada and Ohmori '75)

(i) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}, 2^{n-1}\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

with equality if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, 2)$.
(ii) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}-1,2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+2
$$

with equality if and only if D is isomorphic to $P G_{n-1}(n, 2)$.
(iii) If A is the incidence matrix of a $2-\left(2^{n}, 2^{n-1}, 2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1,
$$

with equality if and only if D is isomorphic to $A G_{n-1}(n, 2)$.

Proven cases

Theorem. (Hamada and Ohmori '75)

(i) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}, 2^{n-1}\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1,
$$

with equality if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, 2)$.
(ii) If A is the incidence matrix of a $2-\left(2^{n-1}-1,2^{n}-1,2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+2,
$$

with equality if and only if D is isomorphic to $P G_{n-1}(n, 2)$.
(iii) If A is the incidence matrix of a $2-\left(2^{n}, 2^{n-1}, 2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1,
$$

with equality if and only if D is isomorphic to $A G_{n-1}(n, 2)$.

Proven cases

Theorem. (Hamada and Ohmori '75)

(i) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}, 2^{n-1}\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1,
$$

with equality if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, 2)$.
(ii) If A is the incidence matrix of a $2-\left(2^{n-1}-1,2^{n}-1,2^{n-1}-1\right)$ design D then
$\operatorname{rank}_{2}(A) \geq n+2$,
with equality if and only if D is isomornhic to $P G_{n-1}(n, 2)$.
(iii) If A is the incidence matrix of a $2-\left(2^{n}, 2^{n-1}, 2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

Proven cases

Theorem. (Hamada and Ohmori ${ }^{75}$)

(i) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}, 2^{n-1}\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1,
$$

with equality if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, 2)$.
(ii) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}-1,2^{n-1}-1\right)$ design Dithen
$\operatorname{rank}_{2}(A) \geq n+2$,
with equality if and only if D is isomorphic to $P G_{n-1}(n, 2)$.
(iii) If A is the incidence matrix of a $2-\left(2^{n}, 2^{n-1}, 2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

Proven cases

Theorem. (Hamada and Ohmori '75)

(i) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}, 2^{n-1}\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

with equality if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, 2)$.
(ii) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}-1,2^{n-1}-1\right)$ design
D then

$$
\operatorname{rank}_{2}(A) \geq n+2
$$

with equality if and only if D is isomorphic to $P G_{n-1}(n, 2)$.
(iii) If A is the incidence matrix of a $2-\left(2^{n}, 2^{n-1}, 2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

Proven cases

Theorem. (Hamada and Ohmori '75)

(i) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}, 2^{n-1}\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

with equality if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, 2)$.
(ii) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}-1,2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+2
$$

with equality if and only if D is isomorphic to $P G_{n-1}(n, 2)$.
(iii) If A is the incidence matrix of a $2-\left(2^{n}, 2^{n-1}, 2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

Proven cases

Theorem. (Hamada and Ohmori '75)

(i) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}, 2^{n-1}\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

with equality if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, 2)$.
(ii) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}-1,2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+2
$$

with equality if and only if D is isomorphic to $P G_{n-1}(n, 2)$.
(iii) If A is the incidence matrix of a $2-\left(2^{n}, 2^{n-1}, 2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

Proven cases

Theorem. (Hamada and Ohmori '75)

(i) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}, 2^{n-1}\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

with equality if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, 2)$.
(ii) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}-1,2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+2
$$

with equality if and only if D is isomorphic to $P G_{n-1}(n, 2)$.
(iii) If A is the incidence matrix of a $2-\left(2^{n}, 2^{n-1}, 2^{n-1}-1\right)$ design D then
$\operatorname{rank}_{2}(A) \geq n+1$

Proven cases

Theorem. (Hamada and Ohmori '75)

(i) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}, 2^{n-1}\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

with equality if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, 2)$.
(ii) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}-1,2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+2
$$

with equality if and only if D is isomorphic to $P G_{n-1}(n, 2)$.
(iii) If A is the incidence matrix of a $2-\left(2^{n}, 2^{n-1}, 2^{n-1}-1\right)$ design D then $\operatorname{rank}_{2}(A) \geq n+1$

Proven cases

Theorem. (Hamada and Ohmori '75)

(i) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}, 2^{n-1}\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

with equality if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, 2)$.
(ii) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}-1,2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+2
$$

with equality if and only if D is isomorphic to $P G_{n-1}(n, 2)$.
(iii) If A is the incidence matrix of a $2-\left(2^{n}, 2^{n-1}, 2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

Proven cases

Theorem. (Hamada and Ohmori '75)

(i) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}, 2^{n-1}\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

with equality if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, 2)$.
(ii) If A is the incidence matrix of a $2-\left(2^{n+1}-1,2^{n}-1,2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+2
$$

with equality if and only if D is isomorphic to $P G_{n-1}(n, 2)$.
(iii) If A is the incidence matrix of a $2-\left(2^{n}, 2^{n-1}, 2^{n-1}-1\right)$ design D then

$$
\operatorname{rank}_{2}(A) \geq n+1
$$

with equality if and only if D is isomorphic to $A G_{n-1}(n, 2)$.

The results of Doyen, Hubaut and Vandensavel

Theorem. (Doyen, Hubaut and Vandensavel '78)

(i) The 2-rank of the incidence matrix \boldsymbol{A} of any $2-\left(2^{n+1}-1,3,1\right)$ design

D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n+1}-n-2,
$$

with equality if and only if D is isomorphic to $P G_{1}(n, 2)$.
(ii) The 3 -rank of the incidence matrix A of any $2-\left(3^{n}, 3,1\right)$ design D satisfies

$$
\operatorname{rank}_{3}(A) \geq 3^{n}-1-n,
$$

with equality if and only if D is isomorphic to $A G_{1}(n, 3)$.

The results of Doyen, Hubaut and Vandensavel

Theorem. (Doyen, Hubaut and Vandensavel '78)

(i) The 2 -rank of the incidence matrix A of any $2-\left(2^{n+1}-1,3,1\right)$ design

D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n+1}-n-2
$$

with equality if and only if D is isomorphic to $P G_{1}(n, 2)$.
(ii) The 3-rank of the incidence matrix A of any $2-\left(3^{n}, 3,1\right)$ design D satisfies

$$
\operatorname{rank}_{3}(A) \geq 3^{n}-1-n
$$

with equality if and only if D is isomorphic to $A G_{1}(n, 3)$.

The results of Doyen, Hubaut and Vandensavel

Theorem. (Doyen, Hubaut and Vandensavel '78)

(i) The 2-rank of the incidence matrix A of any $2-\left(2^{n+1}-1,3,1\right)$ design D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n+1}-n-2
$$

with equality if and only if D is isomorphic to $P G_{1}(n, 2)$.
(ii) The 3-rank of the incidence matrix A of any $2-\left(3^{n}, 3,1\right)$ design D satisfies

with equality if and only if D is isomorphic to $A G_{1}(n, 3)$.

The results of Doyen, Hubaut and Vandensavel

Theorem. (Doyen, Hubaut and Vandensavel '78)

(i) The 2-rank of the incidence matrix A of any $2-\left(2^{n+1}-1,3,1\right)$ design D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n+1}-n-2
$$

with equality if and only if D is isomorphic to $P G_{1}(n, 2)$.
(ii) The 3-rank of the incidence matrix A of any $2-\left(3^{n}, 3,1\right)$ design D satisfies

with equality if and only if D is isomorphic to $A G_{1}(n, 3)$.

The results of Doyen, Hubaut and Vandensavel

Theorem. (Doyen, Hubaut and Vandensavel '78)

(i) The 2-rank of the incidence matrix A of any $2-\left(2^{n+1}-1,3,1\right)$ design D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n+1}-n-2
$$

with equality if and only if D is isomorphic to $P G_{1}(n, 2)$.
(ii) The 3-rank of the incidence matrix A of any $2-\left(3^{n}, 3,1\right)$ design D satisfies

with equality if and only if D is isomorphic to $A G_{1}(n, 3)$.

The results of Doyen, Hubaut and Vandensavel

Theorem. (Doyen, Hubaut and Vandensavel '78)

(i) The 2-rank of the incidence matrix A of any $2-\left(2^{n+1}-1,3,1\right)$ design D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n+1}-n-2
$$

with equality if and only if D is isomorphic to $P G_{1}(n, 2)$.
(ii) The 3-rank of the incidence matrix A of any $2-\left(3^{n}, 3,1\right)$ design D satisfies
with equality if and only if D is isomorphic to $A G_{1}(n, 3)$.

The results of Doyen, Hubaut and Vandensavel

Theorem. (Doyen, Hubaut and Vandensavel '78)

(i) The 2 -rank of the incidence matrix A of any $2-\left(2^{n+1}-1,3,1\right)$ design D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n+1}-n-2
$$

with equality if and only if D is isomorphic to $P G_{1}(n, 2)$.
(ii) The 3-rank of the incidence matrix A of any $2-\left(3^{n}, 3,1\right)$ design D satisfies

$$
\operatorname{rank}_{3}(A) \geq 3^{n}-1-n
$$

with equality if and only if D is isomorphic to $A G_{1}(n, 3)$.

The results of Doyen, Hubaut and Vandensavel

Theorem. (Doyen, Hubaut and Vandensavel '78)

(i) The 2 -rank of the incidence matrix A of any $2-\left(2^{n+1}-1,3,1\right)$ design D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n+1}-n-2
$$

with equality if and only if D is isomorphic to $P G_{1}(n, 2)$.
(ii) The 3-rank of the incidence matrix A of any $2-\left(3^{n}, 3,1\right)$ design D satisfies

$$
\operatorname{rank}_{3}(A) \geq 3^{n}-1-n
$$

with equality if and only if D is isomorphic to $A G_{1}(n, 3)$.

A result of Teirlinck

Theorem. (Teirlinck '80)

The 2-rank of the incidence matrix A of a 3- $\left(2^{n}, 4,1\right)$ design D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n}-1-n
$$

with equality if and only if D is isomorphic to $A G_{2}(n, 2)$.

Note

The result of Teirlinck and the binary case of Doyen, Hubaut and Vandelnsavel's result are "dual" to the result of Hamada and Ohmori.

In terms of related codes, these results are equivalent to the uniqueness of the first order Reed-Muller code.

A result of Teirlinck

Theorem. (Teirlinck '80)

The 2-rank of the incidence matrix A of a $3-\left(2^{n}, 4,1\right)$ design D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n}-1-n,
$$

with equality if and only if D is isomorphic to $A G_{2}(n, 2)$.

Note

The result of Teirlinck and the binary case of Doyen, Hubaut and Vandelnsavel's result are "dual" to the result of Hamada and Ohmori.

In terms of related codes, these results are equivalent to the uniqueness of the first order Reed-Muller code.

A result of Teirlinck

Theorem. (Teirlinck '80)

The 2-rank of the incidence matrix A of a 3-($\left.2^{n}, 4,1\right)$ design D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n}-1-n,
$$

with equality if and only if D is isomorphic to $A G_{2}(n, 2)$.

Note
 The result of Teirlinck and the binary case of Doyen, Hubaut and Vandelnsavel's result are "dual" to the result of Hamada and Ohmori.

In terms of related codes, these results are equivalent to the uniqueness of the first order Reed-Muller code.

A result of Teirlinck

Theorem. (Teirlinck '80)

The 2-rank of the incidence matrix A of a 3 -($2^{n}, 4,1$) design D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n}-1-n,
$$

with equality if and only if D is isomorphic to $A G_{2}(n, 2)$.

Note
 The result of Teirlinck and the binary case of Doyen, Hubaut and Vandelnsavel's result are "dual" to the result of Hamada and Ohmori.

In terms of related codes, these results are equivalent to the uniqueness of the first order Reed-Muller code.

A result of Teirlinck

Theorem. (Teirlinck '80)

The 2-rank of the incidence matrix A of a 3 - $\left(2^{n}, 4,1\right)$ design D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n}-1-n,
$$

with equality if and only if D is isomorphic to $A G_{2}(n, 2)$.

Note
 The result of Teirlinck and the binary case of Doyen, Hubaut and Vandelnsavel's result are "dual" to the result of Hamada and Ohmori.

In terms of related codes, these results are equivalent to the uniqueness of the first order Reed-Muller code.

A result of Teirlinck

Theorem. (Teirlinck '80)

The 2-rank of the incidence matrix A of a 3-($\left.2^{n}, 4,1\right)$ design D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n}-1-n
$$

with equality if and only if D is isomorphic to $A G_{2}(n, 2)$.

Note

The result of Teirlinck and the binary case of Doyen, Hubaut and Vandelnsavel's result are "dual" to the result of Hamada and Ohmori.

In terms of related codes, these results are equivalent to the uniqueness of the first order Reed-Muller code.

A result of Teirlinck

Theorem. (Teirlinck '80)

The 2-rank of the incidence matrix A of a 3-($\left.2^{n}, 4,1\right)$ design D satisfies

$$
\operatorname{rank}_{2}(A) \geq 2^{n}-1-n
$$

with equality if and only if D is isomorphic to $A G_{2}(n, 2)$.

Note

The result of Teirlinck and the binary case of Doyen, Hubaut and Vandelnsavel's result are "dual" to the result of Hamada and Ohmori.

In terms of related codes, these results are equivalent to the uniqueness of the first order Reed-Muller code.

A revised version of Hamada's Conjecture

Generalized Incidence Matrix (T. '99)

A generalized incidence matrix of a design has entries in $G F(q)$, with nonzero entries designating incidence.

Definition

The dimension of a design D over $G F(q),\left(\operatorname{dim}_{q}(D)\right)$, is defined as the minimum q-rank of all generalized incidence matrices of D over $\operatorname{GF}(q)$.

Example

The 3-rank of the (0, 1)-incidence matrix of the unique 5-(12, 6, 1) design D_{12} is 11 , while $\operatorname{dim}_{3}\left(D_{12}\right)=6$.

A revised version of Hamada's Conjecture

Generalized Incidence Matrix (T. '99)

A generalized incidence matrix of a design has entries in $G F(q)$, with nonzero entries designating incidence.

Definition

The dimension of a design D over $G F(q),\left(\operatorname{dim}_{q}(D)\right)$, is defined as the minimum q-rank of all generalized incidence matrices of D over $\operatorname{GF}(q)$.

Example

The 3-rank of the $(0,1)$-incidence matrix of the unique $5-(12,6,1)$ design D_{12} is 11 , while $\operatorname{dim}_{3}\left(D_{12}\right)=6$.

A revised version of Hamada's Conjecture

Generalized Incidence Matrix (T. '99)

A generalized incidence matrix of a design has entries in $G F(q)$, with nonzero entries designating incidence.

Definition

The dimension of a design D over $G F(q),\left(\operatorname{dim}_{q}(D)\right)$, is defined as the minimum q-rank of all generalized incidence matrices of D over $G F(q)$.

Example

The 3-rank of the $(0,1)$-incidence matrix of the unique $5-(12,6,1)$ design D_{12} is 11 , while $\operatorname{dim}_{3}\left(D_{12}\right)=6$.

A revised version of Hamada's Conjecture

Generalized Incidence Matrix (T. '99)

A generalized incidence matrix of a design has entries in $G F(q)$, with nonzero entries designating incidence.

> Definition
> The dimension of a design D over $G F(q),\left(\operatorname{dim}_{q}(D)\right)$, is defined as the minimum q-rank of all generalized incidence matrices of D over $\operatorname{GF}(q)$.

```
Example
The 3-rank of the (0, 1)-incidence matrix of the unique 5-(12, 6, 1)
design }\mp@subsup{D}{12}{}\mathrm{ is 11, while }\mp@subsup{\operatorname{dim}}{3}{}(\mp@subsup{D}{12}{})=6
```


A revised version of Hamada's Conjecture

Generalized Incidence Matrix (T. '99)

A generalized incidence matrix of a design has entries in $G F(q)$, with nonzero entries designating incidence.

Definition

The dimension of a design D over $G F(q),\left(\operatorname{dim}_{q}(D)\right)$, is defined as the minimum q-rank of all generalized incidence matrices of D over GF (q).

```
Example
The 3-rank of the (0,1)-incidence matrix of the unique 5-(12, 6, 1)
design }\mp@subsup{D}{12}{}\mathrm{ is 11, while }\mp@subsup{\operatorname{dim}}{3}{}(\mp@subsup{D}{12}{})=6
```


A revised version of Hamada's Conjecture

Generalized Incidence Matrix (T. '99)

A generalized incidence matrix of a design has entries in $G F(q)$, with nonzero entries designating incidence.

Definition

The dimension of a design D over $G F(q)$, ($\left.\operatorname{dim}_{q}(D)\right)$, is defined as the minimum q-rank of all generalized incidence matrices of D over GF(q)

Example
The 3-rank of the $(0,1)$-incidence matrix of the unique $5-(12,6,1)$ design D_{12} is 11 , while $\operatorname{dim}_{3}\left(D_{12}\right)=6$.

A revised version of Hamada's Conjecture

Generalized Incidence Matrix (T. '99)

A generalized incidence matrix of a design has entries in $G F(q)$, with nonzero entries designating incidence.

Definition

The dimension of a design D over $G F(q),\left(\operatorname{dim}_{q}(D)\right)$, minimum q-rank of all generalized incidence matrices of $D \operatorname{over} G F(q)$

Example
The 3-rank of the $(0,1)$-incidence matrix of the unique $5-(12,6,1)$ design D_{12} is 11 , while $\operatorname{dim}_{3}\left(D_{12}\right)=6$.

A revised version of Hamada's Conjecture

Generalized Incidence Matrix (T. '99)

A generalized incidence matrix of a design has entries in $G F(q)$, with nonzero entries designating incidence.

Definition

The dimension of a design D over $G F(q),\left(\operatorname{dim}_{q}(D)\right)$, is defined as minimum q-rank of all generalized incidence matrices of D over GF (q)

Example
The 3-rank of the $(0,1)$-incidence matrix of the unique $5-(12,6,1)$ design D_{12} is 11 , while $\operatorname{dim}_{3}\left(D_{12}\right)=6$.

A revised version of Hamada's Conjecture

Generalized Incidence Matrix (T. '99)

A generalized incidence matrix of a design has entries in $G F(q)$, with nonzero entries designating incidence.

Definition

The dimension of a design D over $G F(q),\left(\operatorname{dim}_{q}(D)\right)$, is defined as the minimum q-rank of all generalized incidence matrices of D over $G F(q)$.

```
Example
The 3-rank of the (0, 1)-incidence matrix of the unique 5-(12, 6, 1)
design }\mp@subsup{D}{12}{}\mathrm{ is 11, while }\mp@subsup{\operatorname{dim}}{3}{}(\mp@subsup{D}{12}{})=6
```


A revised version of Hamada's Conjecture

Generalized Incidence Matrix (T. '99)

A generalized incidence matrix of a design has entries in $G F(q)$, with nonzero entries designating incidence.

Definition

The dimension of a design D over $G F(q),\left(\operatorname{dim}_{q}(D)\right)$, is defined as the minimum q-rank of all generalized incidence matrices of D over $G F(q)$.

Example

A revised version of Hamada's Conjecture

Generalized Incidence Matrix (T. '99)

A generalized incidence matrix of a design has entries in $G F(q)$, with nonzero entries designating incidence.

Definition

The dimension of a design D over $G F(q),\left(\operatorname{dim}_{q}(D)\right)$, is defined as the minimum q-rank of all generalized incidence matrices of D over $G F(q)$.

Example

The 3-rank of the $(0,1)$-incidence matrix of the unique $5-(12,6,1)$ design D_{12} is 11 , while $\operatorname{dim}_{3}\left(D_{12}\right)=6$.

A revised version of Hamada's Conjecture

Conjecture

Hamada's corjecture is true if ordinary incidence matrices are replaced by generalized incidence matrices over the related finite field.

A revised version of Hamada's Conjecture

Conjecture

Hamada's conjecture is true if ordinary incidence matrices are replaced by generalized incidence matrices over the related finite field.

A q-analogue of Hamada and Ohmori's theorem

Theorem. (T'99)

Let a be an arbitrary prime power, and let $n \geq 2$.
(i) Let D be a $2-\left(\left(q^{n+1}-1\right) /(q-1), q^{n}, q^{n}-q^{n-1}\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, q)$.
(ii) Let D be a $2-\left(q^{n}, q^{n}-q^{n-1}, q^{n}-q^{n-1}-1\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1 .
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $A G_{n-1}(n, q)$.

A q-analogue of Hamada and Ohmori's theorem

Theorem. (T'99)

Let q be an arbitrary prime power, and let $n \geq 2$.
(i) Let D be a $2-\left(\left(q^{n+1}-1\right) /(q-1), q^{n}, q^{n}-q^{n-1}\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1 .
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, q)$.
(ii) Let D be a $2-\left(q^{n}, q^{n}-q^{n-1}, q^{n}-q^{n-1}-1\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $A G_{n-1}(n, q)$.

A q-analogue of Hamada and Ohmori's theorem

Theorem. (T '99)

Let q be an arbitrary prime power, and let $n \geq 2$.
(i) Let D be a $2-\left(\left(q^{n+1}-1\right) /(q-1), q^{n}, q^{n}-q^{n-1}\right)$ design. Then $\operatorname{dim}_{q}(D) \geq n+1$.

The equality $\operatorname{dim}_{q}(D)=n+1$ hold's if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, q)$.
(ii) Let D be a 2- $\left(q^{n}, q^{n}-q^{n-1}, q^{n}-q^{n-1}-1\right)$ design. Then
$\operatorname{dim}_{q}(D) \geq n+1$
The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $A G_{n-1}(n, q)$.

A q-analogue of Hamada and Ohmori's theorem

Theorem. (T '99)

Let q be an arbitrary prime power, and let $n \geq 2$.
(i) Let D be a $2-\left(\left(q^{n+1}-1\right) /(q-1), q^{n}, q^{n}-q^{n-1}\right)$ design. Then

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, q)$.
(ii) Let D be a $2-\left(q^{n}, q^{n}-q^{n-1}, q^{n}-q^{n-1}-1\right)$ design. Then
$\operatorname{dim}_{q}(D) \geq n+1$
The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $A G_{n-1}(n, q)$.

A q-analogue of Hamada and Ohmori's theorem

Theorem. (T '99)

Let q be an arbitrary prime power, and let $n \geq 2$.
(i) Let D be a $2-\left(\left(q^{n+1}-1\right) /(q-1), q^{n}, q^{n}-q^{n-1}\right)$ design. Then

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, q)$.
(ii) Let D be a $2-\left(q^{n}, q^{n}-q^{n-1}, q^{n}-q^{n-1}-1\right)$ design. Then
$\operatorname{dim}_{q}(D) \geq n+1$
The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $A G_{n-1}(n, q)$.

A q-analogue of Hamada and Ohmori's theorem

Theorem. (T '99)

Let q be an arbitrary prime power, and let $n \geq 2$.
(i) Let D be a $2-\left(\left(q^{n+1}-1\right) /(q-1), q^{n}, q^{n}-q^{n-1}\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, q)$.
(ii) Let D be a 2- $\left(q^{n}, q^{n}-q^{n-1}, q^{n}-q^{n-1}-1\right)$ design. Then

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $A G_{n-1}(n, q)$.

A q-analogue of Hamada and Ohmori's theorem

Theorem. (T '99)

Let q be an arbitrary prime power, and let $n \geq 2$.
(i) Let D be a $2-\left(\left(q^{n+1}-1\right) /(q-1), q^{n}, q^{n}-q^{n-1}\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, q)$. (ii) Let D be a $2-\left(q^{n}, q^{n}-q^{n-1}, q^{n}-q^{n-1}-1\right)$ design. Then

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $A G_{n-1}(n, q)$.

A q-analogue of Hamada and Ohmori's theorem

Theorem. (T '99)

Let q be an arbitrary prime power, and let $n \geq 2$.
(i) Let D be a $2-\left(\left(q^{n+1}-1\right) /(q-1), q^{n}, q^{n}-q^{n-1}\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, q)$.

A q-analogue of Hamada and Ohmori's theorem

Theorem. (T '99)

Let q be an arbitrary prime power, and let $n \geq 2$.
(i) Let D be a $2-\left(\left(q^{n+1}-1\right) /(q-1), q^{n}, q^{n}-q^{n-1}\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, q)$.
(ii) Let D be a $2-\left(q^{n}, q^{n}-q^{n-1}, q^{n}-q^{n-1}-1\right)$ design.

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $A G_{n-1}(n, q)$.

A q-analogue of Hamada and Ohmori's theorem

Theorem. (T '99)

Let q be an arbitrary prime power, and let $n \geq 2$.
(i) Let D be a $2-\left(\left(q^{n+1}-1\right) /(q-1), q^{n}, q^{n}-q^{n-1}\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, q)$.
(ii) Let D be a $2-\left(q^{n}, q^{n}-q^{n-1}, q^{n}-q^{n-1}-1\right)$ design. Then

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $A G_{n-1}(n, q)$.

A q-analogue of Hamada and Ohmori's theorem

Theorem. (T '99)

Let q be an arbitrary prime power, and let $n \geq 2$.
(i) Let D be a $2-\left(\left(q^{n+1}-1\right) /(q-1), q^{n}, q^{n}-q^{n-1}\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, q)$.
(ii) Let D be a $2-\left(q^{n}, q^{n}-q^{n-1}, q^{n}-q^{n-1}-1\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $A G_{n-1}(n, q)$.

A q-analogue of Hamada and Ohmori's theorem

Theorem. (T '99)

Let q be an arbitrary prime power, and let $n \geq 2$.
(i) Let D be a $2-\left(\left(q^{n+1}-1\right) /(q-1), q^{n}, q^{n}-q^{n-1}\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, q)$.
(ii) Let D be a $2-\left(q^{n}, q^{n}-q^{n-1}, q^{n}-q^{n-1}-1\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the

A q-analogue of Hamada and Ohmori's theorem

Theorem. (T'99)

Let q be an arbitrary prime power, and let $n \geq 2$.
(i) Let D be a $2-\left(\left(q^{n+1}-1\right) /(q-1), q^{n}, q^{n}-q^{n-1}\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $P G_{n-1}(n, q)$.
(ii) Let D be a $2-\left(q^{n}, q^{n}-q^{n-1}, q^{n}-q^{n-1}-1\right)$ design. Then

$$
\operatorname{dim}_{q}(D) \geq n+1
$$

The equality $\operatorname{dim}_{q}(D)=n+1$ holds if and only if D is isomorphic to the complementary design of $A G_{n-1}(n, q)$.

Example

Let D be a 2-(121, 100, 99) design. Then

$$
\operatorname{dim}_{11}(D) \geq 3
$$

with equality $\operatorname{dim}_{11}(D)=3$ if and only if D is isomorphic to the complementary design of the Desarguesian affine plane of orcer 11.

Example

Let D be a 2- $(121,100,99)$ design.

$$
\operatorname{dim}_{11}(D) \geq 3
$$

> with equality $\operatorname{dim}_{11}(D)=3$ if and only if D is isomorphic to the complementary design of the Desarguesian affine plane of order 11.

Example

Let D be a 2-($121,100,99)$ design. Then

$$
\operatorname{dim}_{11}(D) \geq 3
$$

> with equality $\operatorname{dim}_{11}(D)=3$ if and only if D is isomorphic to the complementary design of the Desarguesian affine plane of order 11.

Example

Let D be a $2-(121,100,99)$ design. Then

$$
\operatorname{dim}_{11}(D) \geq 3
$$

> with equality $\operatorname{dim}_{11}(D)=3$ if and only if D is isomorphic to the complementary design of the Desarguesian affine plane of order 11.

Example

Let D be a $2-(121,100,99)$ design. Then

$$
\operatorname{dim}_{11}(D) \geq 3
$$

with equality $\operatorname{dim}_{11}(D)=3$ if and only if D is isomorphic to the complementary design of the Desarguesian affine plane of order 11.

Example

Let D be a $2-(121,100,99)$ design. Then

$$
\operatorname{dim}_{11}(D) \geq 3
$$

with equality $\operatorname{dim}_{11}(D)=3$ if and only if D is isomorphic to the complementary design of the Desarguesian affine plane of order 11.

Example

Let D be a $2-(121,100,99)$ design. Then

$$
\operatorname{dim}_{11}(D) \geq 3
$$

with equality $\operatorname{dim}_{11}(D)=3$ if and only if D is isomorphic to the complementary design of the Desarguesian affine plane of order 11.

Are geometric designs characterized by their p-rank?

Question

Are geometric designs characterized as the unique designs with the given parameters and p-rank?

Answer

Ves, in all proved cases of Hamada's Conjecture.

Are geometric designs characterized by their p-rank?

Question

Are geometric designs characterized as the unique designs with the given parameters and p-rank?

Answer

Yes, in all proved cases of Hamada's Conjecture.

Are geometric designs characterized by their p-rank?

Question

Are geometric designs characterized as the unique designs with the given parameters and p-rank?

Answer
Yes, in all proved cases of Hamada's Conjecture.

Are geometric designs characterized by their p-rank?

Question

Are geometric designs characterized as the unique designs with the given parameters and p-rank?

Answer

Yes, in all proved cases of Hamada's Conjecture.

Non-geometric designs with the same p-rank as geometric ones

There are known non-geometric designs having the same parameters and the same p-rank as certain geometric designs:

- Untill recently, all known such designs were

$$
2-(31,7,7), 3-(32,8,7),(p=2) ; 2-(64,16,5),\left(q=2^{2}\right)
$$

- In 2008 and 2009, infinitely many designs were found with for arbitrary prime $p \geq 2$.

These designs indicate that although geometric designs may have minimum p-rank, they are not always the unique designs of minimum p-rank.

Non-geometric designs with the same p-rank as geometric ones

There are known non-geometric designs having the same parameters and the same p-rank as certain geometric designs:

- Untill recently, all known such designs were

$$
2-(31,7,7), 3-(32,8,7),(p=2) ; 2-(64,16,5),\left(q=2^{2}\right)
$$

- In 2008 and 2009, infinitely many designs were found with for arbitrary prime $p \geq 2$.

These designs indicate that although geometric designs may have
minimum p-rank, they are not always the unique designs of minimum p-rank

Non-geometric designs with the same p-rank as geometric ones

There are known non-geometric designs having the same parameters and the same p-rank as certain geometric designs:

- Untill recently, all known such designs were

$$
2-(31,7,7), 3-(32,8,7),(p=2) ; 2-(64,16,5),\left(q=2^{2}\right)
$$

- In 2008 and 2009, infinitely many designs were found with for arbitrary prime $p \geq 2$.

These designs indicate that although geometric designs may have
minimum p-rank, they are not always the unique designs of minimum p-rank

Non-geometric designs with the same p-rank as geometric ones

There are known non-geometric designs having the same parameters and the same p-rank as certain geometric designs:

- Untill recently, all known such designs were

$$
2-(31,7,7), 3-(32,8,7),(p=2) ; 2-(64,16,5),\left(q=2^{2}\right) .
$$

- In 2008 and 2009, infinitely many designs were found with for arbitrary prime $p \geq 2$.

> These designs indicate that although geometric designs may have minimum p-rank, they are not always the unique designs of minimum p-rank.

Non-geometric designs with the same p-rank as geometric ones

There are known non-geometric designs having the same parameters and the same p-rank as certain geometric designs:

- Untill recently, all known such designs were

$$
2-(31,7,7), 3-(32,8,7),(p=2) ; 2-(64,16,5),\left(q=2^{2}\right)
$$

- In 2008 and 2009, infinitely many designs were found with for arbitrary prime $p \geq 2$.

> These designs indicate that although geometric designs may have minimum p-rank, they are not always the unique designs of minimum p-rank.

Non-geometric designs with the same p-rank as geometric ones

There are known non-geometric designs having the same parameters and the same p-rank as certain geometric designs:

- Untill recently, all known such designs were

$$
2-(31,7,7), 3-(32,8,7),(p=2) ; 2-(64,16,5),\left(q=2^{2}\right) .
$$

- In 2008 and 2009, infinitely many designs were found with for arbitrary prime $p \geq 2$.

> These designs indicate that although geometric designs may have minimum p-rank, they are not always the unique designs of minimum p-rank.

Non-geometric designs with the same p-rank as geometric ones

There are known non-geometric designs having the same parameters and the same p-rank as certain geometric designs:

- Untill recently, all known such designs were

$$
2-(31,7,7), 3-(32,8,7),(p=2) ; 2-(64,16,5),\left(q=2^{2}\right)
$$

- In 2008 and 2009, infinitely many designs were found with for arbitrary prime $p \geq 2$.

These designs indicate that although geometric designs may have minimum p-rank, they are not always the unique designs of minimum p-rank.

Non-geometric designs of minimum p-rank

Deigns from selfodual codes

Theorem (T '86).
(i) In addition to $P G_{2}(4,2)$, there are four non-geometric 2-(31, 7,7$)$ designs with block intersection numbers $\{1,3\}$, all having 2-rank 16 . (ii) In addition to $A G_{3}(5,2)$, there are four non-geometric 3-(32, 8, 7) designs with even block intersection numbers, all of 2-rank 16.

Proof

Use Rudolph's theorem, the Assmus-Mattson theorem, and the classification of binary self-dual $[32,16,8]$ codes.

Quasi-symmetric design

A design with two distinct block intesection numbers.

Note

Two 2-($31,7,7$) designs supported by the projective geometry code and the QR code were mentioned by Goethals and Delsarte in 196839/67

Non-geometric designs of minimum p-rank

Deigns from self-dual codes

Theorem (T '86).

(i) In addition to $P G_{2}(4,2)$, there are four non-geometric 2-(31, 7, 7) designs with block intersection numbers $\{1,3\}$, all having 2-rank 16. (ii) In addition to $A G_{3}(5,2)$, there are four non-geometric $3-(32,8,7)$ designs with even block intersection numbers, all of 2-rank 16.

Proof

Use Rudolph's theorem, the Assmus-Mattson theorem, and the classification of binary self-dual $[32,16,8]$ codes.

Quasi-symmetric design

A desian with two distinct block intesection numbers.

Note

Two 2-(31, 7, 7) designs supported by the projective geometry code and the QR code were mentioned by Goethals and Delsarte in 196839/67

Non-geometric designs of minimum p-rank

Deigns from self-dual codes

Theorem (T '86).

(i) In addition to $P G_{2}(4,2)$, there are four non-geometric 2-(31, 7, 7) designs with block intersection numbers $\{1,3\}$, all having 2-rank 16.

designs with even block intersection numbers, all of 2-rank 16

> Proof
> Use Rudolph's theorem, the Assmus-Mattson theorem, and the classification of binary self-dual $[32,16,8]$ codes.

Quasi-symmetric design

A desian with two distinct block intesection numbers.

[^0]
Non-geometric designs of minimum p-rank

Deigns from self-dual codes

Theorem (T '86).
(i) In addition to $P G_{2}(4,2)$, there are four non-geometric 2-(31, 7, 7) designs with block intersection numbers $\{1,3\}$, all having 2-rank 16. (ii) In addition to $A G_{3}(5,2)$, there are four non-geometric 3-(32, 8, 7) designs with even block intersection numbers, all of 2-rank 16.

> Proof
> Use Rudolph's theorem, the Assmus-Mattson theorem, and the classification of binary self-dual $[32,16,8]$ codes.

Quasi-symmetric design
 A desian with two distinct block intesection numbers.

\square
Two 2-(31, 7, 7) designs supported by the projective geometry code and the QR code were mentioned by Goethals and Delsarte in $1968_{39 / 67}$

Non-geometric designs of minimum p-rank

Deigns from self-dual codes

Theorem (T '86).
(i) In addition to $P G_{2}(4,2)$, there are four non-geometric 2-(31, 7, 7) designs with block intersection numbers $\{1,3\}$, all having 2-rank 16. (ii) In addition to $A G_{3}(5,2)$, there are four non-geometric 3-(32, 8, 7) designs with even block intersection numbers, all of 2-rank 16.

Proof

Use Rudolph's theorem, the Assmus-Mattson theorem, and the classification of binary self-dual $[32,16,8]$ codes.

Quasi-symmetric design
A design with two distinct block intesection numbers.

[^1]
Non-geometric designs of minimum p-rank

Deigns from self-dual codes

Theorem (T '86).
(i) In addition to $P G_{2}(4,2)$, there are four non-geometric 2-(31, 7, 7) designs with block intersection numbers $\{1,3\}$, all having 2-rank 16. (ii) In addition to $A G_{3}(5,2)$, there are four non-geometric 3-(32, 8, 7) designs with even block intersection numbers, all of 2-rank 16.

Proof

Use Rudolph's theorem, the Assmus-Mattson theorem, and the classification of binary self-dual $[32,16,8]$ codes.

Non-geometric designs of minimum p-rank

Deigns from self-dual codes

Theorem (T '86).

(i) In addition to $P G_{2}(4,2)$, there are four non-geometric 2-(31, 7, 7) designs with block intersection numbers $\{1,3\}$, all having 2-rank 16.
(ii) In addition to $A G_{3}(5,2)$, there are four non-geometric $3-(32,8,7)$ designs with even block intersection numbers, all of 2-rank 16.

Proof

Use Rudolph's theorem, the Assmus-Mattson theorem, and the classification of binary self-dual $[32,16,8]$ codes.

Quasi-symmetric design

A design with two distinct block intesection numbers.

Non-geometric designs of minimum p-rank

Deigns from self-dual codes

Theorem (T '86).

(i) In addition to $P G_{2}(4,2)$, there are four non-geometric 2-(31, 7, 7) designs with block intersection numbers $\{1,3\}$, all having 2-rank 16. (ii) In addition to $A G_{3}(5,2)$, there are four non-geometric $3-(32,8,7)$ designs with even block intersection numbers, all of 2-rank 16.

Proof

Use Rudolph's theorem, the Assmus-Mattson theorem, and the classification of binary self-dual $[32,16,8]$ codes.

Quasi-symmetric design

A design with two distinct block intesection numbers.

Note

Two 2-(31,7,7) designs supported by the projective geometry code and the QR code were mentioned by Goethals and Delsarte in $1968_{39 / 6}$

Designs from Nets

Symmetric (μ, m)-Nets

A symmetric (μ, m)-net is a $1-\left(m^{2} \mu, m \mu, m \mu\right)$ design D such that both D and its dual design D^{*} are uniquely resolvable ito parallel classes of size m, so that any non-parallel blocks share exactly μ points .

Class-regular nets

A symmetric (μ, m)-net is class-regular if it admits an automorphism group of order m that acts transitively on each block and point parallel class.

The classical (q, q)-net

Points and planes of $A G(3, q)$ that do not contain lines from a given parallel class.

Designs from Nets

Symmetric (μ, m)-Nets

A symmetric (μ, m)-net is a $1-\left(m^{2} \mu, m \mu, m \mu\right)$ design D
such that both D and its dual design D^{*} are uniquely resolvable ito parallel classes of size m, so that any non-parallel blocks share exactly μ points .

Class-regular nets

A symmetric (μ, m)-net is class-regular if it admits an automorphism group of order m that acts transitively on each block and point parallel class.

The classical (q, q)-net

Points and planes of $A G(3, q)$ that do not contain lines from a given parallel class.

Designs from Nets

Symmetric (μ, m)-Nets

A symmetric (μ, m)-net is a $1-\left(m^{2} \mu, m \mu, m \mu\right)$ design D such that both D and its dual design D^{*} are uniquely resolvable ito parallel classes of size m, so that any non-parallel blocks share exactly μ points .

Class-regular nets
A symmetric (μ, m)-net is class-regular if it admits an automorphism group of order m that acts transitively on each block and point parallel class.

The classical (q, q)-net
Points and planes of $A G(3, q)$ that do not contain lines from a given parallel class.

Designs from Nets

Symmetric (μ, m)-Nets

A symmetric (μ, m)-net is a $1-\left(m^{2} \mu, m \mu, m \mu\right)$ design D such that both D and its dual design D^{*} are uniquely resolvable ito parallel classes of size m, so that any non-parallel blocks share exactly μ points .

Class-regular nets

A symmetric (μ, m)-net is class-regular if it admits an automorphism group of order m that acts transitively on each block and point parallel class.

Designs from Nets

Symmetric (μ, m)-Nets

A symmetric (μ, m)-net is a $1-\left(m^{2} \mu, m \mu, m \mu\right)$ design D such that both D and its dual design D^{*} are uniquely resolvable ito parallel classes of size m, so that any non-parallel blocks share exactly μ points .

Class-regular nets

A symmetric (μ, m)-net is class-regular if it admits an automorphism group of order m that acts transitively on each block and point parallel class.

The classical (q, q)-net

Points and planes of $A G(3, q)$ that do not contain lines from a given parallel class.

The class-regular $(4,4)$ nets and their codes

The $(4,4)$ nets

A (4, 4)-net consists of 64 points and 64 blocks, each block of size 16 and each point in 16 blocks, so that the blocks (as well as and points) are partitioned into 16 parallel classes of size 4, and any two non-parallel blocks share 4 points.

Theorem. (Harada, Lam \& T., 2005)

(i) Up to isomorphism, there are exactly 239 class-regular (4, 4)-nets.
(ii) The minimum 2-rank of a $(4,4)$-net is 16.
(iii) The binary codes of three $(4,4)$-nets support 2-($64,16,5$) designs of 2-rank 16:

- The code of the classical $(4,4)$-net supports $A G_{2}\left(3,2^{2}\right)$.
- Two other nets support non-geometric 2-($64,16,5$) designs having the same 2 -rank as $A G_{2}(3,4)$.

The class-regular $(4,4)$ nets and their codes

The $(4,4)$ nets

A $(4,4)$-net consists of 64 points and 64 blocks, each block of size 16 and each point in 16 blocks, so that the blocks (as well as and points) are partitioned into 16 parallel classes of size 4 , and any two non-parallel blocks share 4 points.

Theorem. (Harada, Lam \& T., 2005)

(i) Up to isomorphism, there are exactly 239 class-regular (4, 4)-nets.
(ii) The minimum 2-rank of a $(4,4)$-net is 16.
(iii) The binary codes of three $(4,4)$-nets support 2-($64,16,5$) designs of 2-rank 16:

- The code of the classical $(4,4)$-net supports $A G_{2}\left(3,2^{2}\right)$.
- Two other nets support non-geometric 2-(64,16,5) designs having the same 2 -rank as $A G_{2}(3,4)$.

The class-regular $(4,4)$ nets and their codes

The $(4,4)$ nets

A (4, 4)-net consists of 64 points and 64 blocks, each block of size 16 and each point in 16 blocks, so that the blocks (as well as and points) are partitioned into 16 parallel classes of size 4, and any two non-parallel blocks share 4 points.

Theorem. (Harada, Lam \& T., 2005)

(i) Up to isomorphism, there are exactly 239 class-regular $(4,4)$-nets. (ii) The minimum 2-rank of a $(4,4)$-net is 16 .
(iii) The binary codes of three $(4,4)$-nets support 2-($64,16,5$) designs of 2-rank 16:

- The code of the classical $(4,4)$-net supports $A G_{2}\left(3,2^{2}\right)$.
- Two other nets support non-geometric 2-($64,16,5$) designs having the same 2 -rank as $A G_{2}(3,4)$.

The class-regular $(4,4)$ nets and their codes

The $(4,4)$ nets

A (4, 4)-net consists of 64 points and 64 blocks, each block of size 16 and each point in 16 blocks, so that the blocks (as well as and points) are partitioned into 16 parallel classes of size 4, and any two non-parallel blocks share 4 points.

Theorem. (Harada, Lam \& T., 2005)

The class-regular $(4,4)$ nets and their codes

The $(4,4)$ nets

A (4, 4)-net consists of 64 points and 64 blocks, each block of size 16 and each point in 16 blocks, so that the blocks (as well as and points) are partitioned into 16 parallel classes of size 4, and any two non-parallel blocks share 4 points.

Theorem. (Harada, Lam \& T., 2005)

(i) Up to isomorphism, there are exactly 239 class-regular (4, 4)-nets.

The class-regular $(4,4)$ nets and their codes

The $(4,4)$ nets

A (4, 4)-net consists of 64 points and 64 blocks, each block of size 16 and each point in 16 blocks, so that the blocks (as well as and points) are partitioned into 16 parallel classes of size 4, and any two non-parallel blocks share 4 points.

Theorem. (Harada, Lam \& T., 2005)

(i) Up to isomorphism, there are exactly 239 class-regular (4, 4)-nets.
(ii) The minimum 2-rank of a $(4,4)$-net is 16.

The class-regular $(4,4)$ nets and their codes

The $(4,4)$ nets

A (4, 4)-net consists of 64 points and 64 blocks, each block of size 16 and each point in 16 blocks, so that the blocks (as well as and points) are partitioned into 16 parallel classes of size 4, and any two non-parallel blocks share 4 points.

Theorem. (Harada, Lam \& T., 2005)

(i) Up to isomorphism, there are exactly 239 class-regular (4, 4)-nets.
(ii) The minimum 2-rank of a $(4,4)$-net is 16 .
(iii) The binary codes of three $(4,4)$-nets support $2-(64,16,5)$ designs of 2-rank 16:
> - The code of the classical $(4,4)$-net supports $A G_{2}\left(3,2^{2}\right)$.
> - Two other nets support non-geometric 2-(64,16,5) designs having the same 2-rank as $A G_{2}(3,4)$.

The class-regular $(4,4)$ nets and their codes

The $(4,4)$ nets

A (4, 4)-net consists of 64 points and 64 blocks, each block of size 16 and each point in 16 blocks, so that the blocks (as well as and points) are partitioned into 16 parallel classes of size 4, and any two non-parallel blocks share 4 points.

Theorem. (Harada, Lam \& T., 2005)

(i) Up to isomorphism, there are exactly 239 class-regular (4, 4)-nets.
(ii) The minimum 2-rank of a $(4,4)$-net is 16 .
(iii) The binary codes of three $(4,4)$-nets support $2-(64,16,5)$ designs of 2-rank 16:

- The code of the classical $(4,4)$-net supports $A G_{2}\left(3,2^{2}\right)$.

Two other nets support non-geometric 2-(64, 16,5) designs having the same 2-rank as $A G_{2}(3,4)$.

The class-regular $(4,4)$ nets and their codes

The $(4,4)$ nets

A (4, 4)-net consists of 64 points and 64 blocks, each block of size 16 and each point in 16 blocks, so that the blocks (as well as and points) are partitioned into 16 parallel classes of size 4, and any two non-parallel blocks share 4 points.

Theorem. (Harada, Lam \& T., 2005)

(i) Up to isomorphism, there are exactly 239 class-regular (4, 4)-nets.
(ii) The minimum 2-rank of a $(4,4)$-net is 16 .
(iii) The binary codes of three $(4,4)$-nets support $2-(64,16,5)$ designs of 2-rank 16:

- The code of the classical $(4,4)$-net supports $A G_{2}\left(3,2^{2}\right)$.
- Two other nets support non-geometric 2-($64,16,5$) designs having the same 2 -rank as $A G_{2}(3,4)$.

Non-geometric designs from line spreads

Theorem. (Mavron, McDonough, \& T., 2008)

One of the non-geometric 2-(64,16,5) desians of 2-rank 16 found by Harada, Lam and T., can be btained from a (very special) line spread of $P G(5,2)$.

Theorem. (Mateva and Topalova, 2008)

- There are 131,044 inequivalent line spreads of $P G(5,2)$.
- Two of these line spreads yield 2-(64, 16,5) designs of 2-rank 16: $A G_{2}\left(3,2^{2}\right)$, and the non-geometric design found by Harada, Lam, T., and Mavron, McDonough and T.

Non-geometric designs from line spreads

> Theorem. (Mavron, McDonough, \& T., 2008)
> One of the non-geometric 2-(64, 16,5) designs of 2-rank 16 found by Harada, Lam and T., can be btained from a (very special) line spread of $P G(5,2)$.

Theorem. (Mateva and Topalova, 2008)

- There are 131,044 inequivalent line spreads of $P G(5,2)$.
- Two of these line spreads yield 2-(64, 16,5) designs of 2-rank 16: $A G_{2}\left(3,2^{2}\right)$, and the non-geometric design found by Harada, Lam, T., and Mavron, McDonough and T.

Non-geometric designs from line spreads

Theorem. (Mavron, McDonough, \& T., 2008)
One of the non-geometric 2-($64,16,5)$ designs of 2-rank 16 found by Harada, Lam and T., can be btained from a (very special) line spread of $P G(5,2)$.

Theorem. (Mateva and Topalova, 2008)

- There are 131,044 inequivalent line spreads of $P G(5,2)$.
- Two of these line spreads yield 2-(64, 16,5) designs of 2-rank 16: $A G_{2}\left(3,2^{2}\right)$, and the non-geometric design found by Harada, Lam, T., and Mavron, McDonough and T.

Non-geometric designs from line spreads

Theorem. (Mavron, McDonough, \& T., 2008)
One of the non-geometric 2-($64,16,5)$ designs of 2-rank 16 found by Harada, Lam and T., can be btained from a (very special) line spread of $P G(5,2)$.

Theorem. (Mateva and Topalova, 2008)

- There are 131,044 inequivalent line spreads of $P G(5,2)$.
- Two of these line spreads yield 2-(64, 16,5) designs of 2-rank 16: $A G_{2}\left(3,2^{2}\right)$, and the non-geometric design found by Harada, Lam, T., and Mavron, McDonough and T.

Non-geometric designs from line spreads

Theorem. (Mavron, McDonough, \& T., 2008)
One of the non-geometric 2-(64, 16,5) designs of 2-rank 16 found by Harada, Lam and T., can be btained from a (very special) line spread of $P G(5,2)$.

Theorem. (Mateva and Topalova, 2008)

- There are 131,044 inequivalent line spreads of $P G(5,2)$.
- Two of these line spreads yield 2-(64, 16,5) designs of 2-rank 16: $A G_{2}\left(3,2^{2}\right)$, and the non-geometric design found by Harada, Lam, and Mavron, McDonough and T.

Non-geometric designs from line spreads

Theorem. (Mavron, McDonough, \& T., 2008)

One of the non-geometric 2-($64,16,5$) designs of 2-rank 16 found by Harada, Lam and T., can be btained from a (very special) line spread of $P G(5,2)$.

Theorem. (Mateva and Topalova, 2008)

- There are 131,044 inequivalent line spreads of $P G(5,2)$.

Non-geometric designs from line spreads

Theorem. (Mavron, McDonough, \& T., 2008)

One of the non-geometric 2-(64, 16,5) designs of 2-rank 16 found by Harada, Lam and T., can be btained from a (very special) line spread of $P G(5,2)$.

Theorem. (Mateva and Topalova, 2008)

- There are 131,044 inequivalent line spreads of $P G(5,2)$.
- Two of these line spreads yield 2-($64,16,5)$ designs of 2-rank 16 :

Non-geometric designs from line spreads

Theorem. (Mavron, McDonough, \& T., 2008)

One of the non-geometric 2-(64, 16,5) designs of 2-rank 16 found by Harada, Lam and T., can be btained from a (very special) line spread of $P G(5,2)$.

Theorem. (Mateva and Topalova, 2008)

- There are 131,044 inequivalent line spreads of $P G(5,2)$.
- Two of these line spreads yield 2-(64, 16,5) designs of 2-rank 16: $A G_{2}\left(3,2^{2}\right)$, and the non-geometric design found by Harada, Lam, T.,

Non-geometric designs from line spreads

Theorem. (Mavron, McDonough, \& T., 2008)

One of the non-geometric 2-(64, 16,5) designs of 2-rank 16 found by Harada, Lam and T., can be btained from a (very special) line spread of $P G(5,2)$.

Theorem. (Mateva and Topalova, 2008)

- There are 131,044 inequivalent line spreads of $P G(5,2)$.
- Two of these line spreads yield 2-($64,16,5$) designs of 2-rank 16: $A G_{2}\left(3,2^{2}\right)$, and the non-geometric design found by Harada, Lam, T., and Mavron, McDonough and T.

Designs from Polarities in $P G(n, q)$

The motivating example

The geometric design $P G_{2}(4,2)$ and one of the non-geometric $2-(31,7,7)$ designs of 2-rank 16 share the following structure:

$2-(15,7,3)$ Planes $\in P G(3,2)$	$2-(15,3,1) \times 4$ Lines $\in P G(3,2)$
\emptyset	$3-(16,4,1)$ Planes $\in A G(4,2)$

Designs from Polarities in $P G(n, q)$

The motivating example

The geometric design $P G_{2}(4,2)$ and one of the non-geometric $2-(31,7,7)$ designs of 2-rank 16 share the following structure:

$2-(15,7,3)$	$2-(15,3,1) \times 4$
Planes $\in P G(3,2)$	Lines $\in P G(3,2)$ \emptyset
$3-(16,4,1)$ Planes $\in A G(4,2)$	

Designs from Polarities in $P G(n, q)$

The motivating example

The geometric design $P G_{2}(4,2)$ and one of the non-geometric 2-(31, 7,7) designs of 2-rank 16 share the following structure:

Designs from Polarities in $P G(n, q)$

The motivating example

The geometric design $P G_{2}(4,2)$ and one of the non-geometric 2 - $(31,7,7)$ designs of 2-rank 16 share the following structure:

Designs from Polarities in $P G(n, q)$

The motivating example

The geometric design $P G_{2}(4,2)$ and one of the non-geometric 2 - $(31,7,7)$ designs of 2-rank 16 share the following structure:

$2-(15,7,3)$ Planes $\in P G(3,2)$	$2-(15,3,1) \times 4$ Lines $\in P G(3,2)$
\emptyset	$3-(16,4,1)$ Planes $\in A G(4,2)$

Polarities in PG(n,q)

A polarity α of $P G(n, q)$ is an involutory isomorphism between $P G(n, q)$ and its dual space:

$$
\begin{aligned}
\alpha: \text { point } & \longleftrightarrow \\
& \ldots \\
\text { i-subspace } & \longleftrightarrow(\mathrm{n}-1-\mathrm{i}) \text {-subspace }
\end{aligned}
$$

Example

The null polarity:

$$
\begin{array}{cl}
\text { point } & \longleftrightarrow \\
\text { hyperplane } \\
\left(a_{0}, \ldots, a_{n}\right) & \longleftrightarrow a_{0} x_{0}+\cdots+a_{n} x_{n}=0
\end{array}
$$

Polarities in $P G(n, q)$

A polarity α of $P G(n, q)$ is an involutory isomorphism between $P G(n, q)$ and its dual space:

```
\alpha: point }\longleftrightarrow hyperplane
i-subspace }\longleftrightarrow(n-1-i)-subspac
```


Example

The null polarity:

$$
\begin{array}{cl}
\text { point } & \longleftrightarrow \\
\text { hyperplane } \\
\left(a_{0}, \ldots, a_{n}\right) & \longleftrightarrow a_{0} x_{0}+\cdots+a_{n} x_{n}=0
\end{array}
$$

Polarities in $P G(n, q)$

A polarity α of $P G(n, q)$ is an involutory isomorphism between $P G(n, q)$ and its dual space:

$$
\begin{aligned}
\alpha: \text { point } & \longleftrightarrow \\
& \cdots \\
\text { i-subspace } & \longleftrightarrow(\mathrm{n}-1-\mathrm{i})-\text { subspace }
\end{aligned}
$$

Example

The null polarity:

$$
\begin{array}{cl}
\text { point } & \longleftrightarrow \\
\text { hyperplane } \\
\left(a_{0}, \ldots, a_{n}\right) & \longleftrightarrow a_{0} x_{0}+\cdots+a_{n} x_{n}=0
\end{array}
$$

Polarities in $P G(n, q)$

A polarity α of $P G(n, q)$ is an involutory isomorphism between $P G(n, q)$ and its dual space:

$$
\begin{aligned}
\alpha: \text { point } & \longleftrightarrow \\
& \cdots \\
\text { i-subspace } & \longleftrightarrow(\mathrm{n}-1-\mathrm{i}) \text {-subspace }
\end{aligned}
$$

Example

The null polarity:

$$
\begin{array}{cl}
\text { point } & \longleftrightarrow \\
\text { hyperplane } \\
\left(a_{0}, \ldots, a_{n}\right) & \longleftrightarrow a_{0} x_{0}+\cdots+a_{n} x_{n}=0
\end{array}
$$

Polarities in PG(n,q)

A polarity α of $P G(n, q)$ is an involutory isomorphism between $P G(n, q)$ and its dual space:

$$
\begin{aligned}
\alpha: \text { point } & \longleftrightarrow \\
& \cdots \\
\text { i-subspace } & \longleftrightarrow(\mathrm{n}-1-\mathrm{i})-\text { subspace }
\end{aligned}
$$

Example

The null polarity:
point
\longleftrightarrow hyperplane
$\left.a_{0}, \ldots, a_{n}\right)$
$a_{0} x_{0}+\cdots+a_{n} x_{n}=0$.

Polarities in $P G(n, q)$

A polarity α of $P G(n, q)$ is an involutory isomorphism between $P G(n, q)$ and its dual space:

$$
\begin{aligned}
\alpha: \text { point } & \longleftrightarrow \\
& \cdots \\
\text { i-subspace } & \longleftrightarrow(\mathrm{n}-1-\mathrm{i})-\text { subspace }
\end{aligned}
$$

Example

The null polarity:

$$
\begin{array}{cl}
\text { point } & \longleftrightarrow \\
\left(a_{0}, \ldots, a_{n}\right) & \longleftrightarrow a_{0} x_{0}+\cdots+a_{n} x_{n}=0
\end{array}
$$

A generalization from $P G(4,2)$ to $P G(4, q)$

Let α be a polarity of $P G(3, q)$:
$\alpha:$ point \longleftrightarrow plane; line \longleftrightarrow line

A generalization from $P G(4,2)$ to $P G(4, q)$

Let α be a polarity of $P G(3, q)$:

A generalization from $P G(4,2)$ to $P G(4, q)$

Let α be a polarity of $P G(3, q)$:
$\alpha:$ point \longleftrightarrow plane; line \longleftrightarrow line

A generalization from $P G(4,2)$ to $P G(4, q)$

Let α be a polarity of $P G(3, q)$:
$\alpha:$ point \longleftrightarrow plane; line \longleftrightarrow line
$P G_{2}(4, q)\left\{\begin{array}{c|c|}\hline \begin{array}{c}P G_{2}(3, q) \\ \text { Planes }\end{array} & \begin{array}{c}P G_{1}(3, q) \\ \text { Lines }\end{array} \\ \hline \emptyset & \begin{array}{c}A G_{2}(4, q) \\ \text { Planes }\end{array} \\ \hline\end{array}\right.$

A new class of quasi-symmetric designs from polaities in $P G(4, q)$

Theorem. (Jungnickel \& T., 2008)

Permuting the lines of a hyperplane $H=P G(3, q) \subset P G(4, q)$ via a polarity α of H transforms $P G_{2}(4, q)$ into another non-geometric quasi-symmetric design with intersection numbers $\{1, q+1\}$.

Note

Lines of $P G(4, q)$ which meet $H=P G(3, q)$ in one point are transformed by α into "lines" of size 2.

A new class of quasi-symmetric designs from polaities in $P G(4, q)$

Theorem. (Jungnickel \& T., 2008)

Permuting the lines of a hyperplane $H=P G(3, q) \subset P G(4, q)$ via a polarity α of H transforms $P G_{2}(4, q)$ into another non-geometric quasi-symmetric design with intersection numbers $\{1, q+1\}$.

Note

Lines of $P G(4, q)$ which meet $H=P G(3, q)$ in one point are transformed by α into "lines" of size 2.

A new class of quasi-symmetric designs from polaities in $P G(4, q)$

Theorem. (Jungnickel \& T., 2008)

Permuting the lines of a hyperplane $H=P G(3, q) \subset P G(4, q)$ via a polarity α of H transforms $P G_{2}(4, q)$ into another non-geometric quasi-symmetric design with intersection numbers $\{1, q+1\}$.

Note
 Lines of $P G(4, q)$ which meet $H=P G(3, q)$ in one point are transformed by α into "lines" of size 2.

A new class of quasi-symmetric designs from polaities in $P G(4, q)$

Theorem. (Jungnickel \& T., 2008)

Permuting the lines of a hyperplane $H=P G(3, q) \subset P G(4, q)$ via a polarity α of H transforms $P G_{2}(4, q)$ into another non-geometric quasi-symmetric design with intersection numbers $\{1, q+1\}$.

Note

Lines of $P G(4, q)$ which meet $H=P G(3, q)$ in one point are transformed by α into "lines" of size 2.

A generalization to $P G(2 k, q)$

Note

Any nolarity of $P G(2 k-1, q)$ maps any $(k-1)$-subspace to a (k-1)-subspace.

Theorem. (Jungnickel \& T., 2008)

Permuting the $(k-1)$-subspaces of a hyperplane $H=P G(2 k-1, q) \subset P G(2 k, q)$ via a polarity α transforms $D=P G_{k}(2 k, q)$ to a non-geometric design $\alpha(D)$ having the same parameters and the same block intersection numbers as $P G_{k}(2 k, q)$.

A generalization to $P G(2 k, q)$

$P G_{k}(2 k, q)\left\{\begin{array}{c|c|}\hline P G_{k}(2 k-1, q) & P G_{k-1}(2 k-1, q) \\ \hline \emptyset & A G_{k}(2 k, q) \\ \hline\end{array}\right.$

Note

Any polarity α of $P G(2 k-1, q)$ maps any $(k-1)$-subspace to a (k-1)-subspace.

Theorem. (Jungnickel \& T., 2008)

Permuting the $(k-1)$-subspaces of a hyperplane
$H=P G(2 k-1, q) \subset P G(2 k, q)$ via a polarity α transforms
$D=P G_{k}(2 k, q)$ to a non-geometric design $\alpha(D)$ having the same parameters and the same block intersection numbers as $P G_{k}(2 k, q)$.

A generalization to $P G(2 k, q)$

$$
P G_{k}(2 k, q)\left\{\begin{array}{|c|c|}
\hline P G_{k}(2 k-1, q) & P G_{k-1}(2 k-1, q) \\
\hline \emptyset & A G_{k}(2 k, q) \\
\hline
\end{array}\right.
$$

Note

Any polarity α of $P G(2 k-1, q)$ maps any $(k-1)$-subspace to a ($k-1$)-subspace.

Theorem. (Jungnickel \& T., 2008)
Permuting the $(k-1)$-subspaces of a hyperplane
$H=P G(2 k-1, q) \subset P G(2 k, q)$ via a polarity α transforms
$D=P G_{k}(2 k, q)$ to a non-geometric design $\alpha(D)$ having the same parameters and the same block intersection numbers as $P G_{k}(2 k, q)$.

A generalization to $P G(2 k, q)$

$$
P G_{k}(2 k, q)\left\{\begin{array}{|c|c|}
\hline P G_{k}(2 k-1, q) & P G_{k-1}(2 k-1, q) \\
\hline \emptyset & A G_{k}(2 k, q) \\
\hline
\end{array}\right.
$$

Note

Any polarity α of $P G(2 k-1, q)$ maps any ($k-1$)-subspace to a ($k-1$)-subspace.

Theorem. (Jungnickel \& T., 2008)
Permuting the $(k-1)$-subspaces of a hyperplane $H=P G(2 k-1, q) \subset P G(2 k, q)$ via a polarity α transforms $D=P G_{k}(2 k, q)$ to a non-geometric design $\alpha(D)$ having the same parameters and the same block intersection numbers as $P G_{k}(2 k, q)$

A generalization to $P G(2 k, q)$

$$
P G_{k}(2 k, q)\left\{\begin{array}{c|c|}
\hline P G_{k}(2 k-1, q) & P G_{k-1}(2 k-1, q) \\
\hline \emptyset & A G_{k}(2 k, q) \\
\hline
\end{array}\right.
$$

Note

Any polarity α of $P G(2 k-1, q)$ maps any ($k-1$)-subspace to a ($k-1$)-subspace.

Theorem. (Jungnickel \& T., 2008)

Permuting the $(k-1)$-subspaces of a hyperplane $H=P G(2 k-1, q) \subset P G(2 k, q)$ via a polarity α transforms $D=P G_{k}(2 k, q)$ to a non-geometric design $\alpha(D)$ having the same parameters and the same block intersection numbers as $P G_{k}(2 k, q)$.

The p-rank of a design obtained via polarity

Theorem. (Jungnicke: \& T., 2008)

Let α be a polarity of $P G(2 k-1, q)$, where $q=p^{s}$ and p is a prime, and let $\alpha(D)$ be the design obtained from $P G_{k}(2 k, q)$. Then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q) \leq \operatorname{rank}_{p} \alpha(D) \leq \frac{1}{2}\left(\frac{q^{2 k+1}-1}{q-1}+1\right) .
$$

If $q=p$ is a prime then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q)=\operatorname{rank}_{p} \alpha(D)
$$

An example of a non-prime q

If $a=4=2^{2}$ and $k=2$, we have
$\operatorname{rank}_{2} P G_{2}(4,4)=146<154=\operatorname{rank}_{2} \alpha(D)<\frac{4^{5}-1}{4-1}=171$.

The p-rank of a design obtained via polarity

Theorem. (Jungnickel \& T., 2008)
Let α be a polarity of $P G(2 k-1, q)$, where $q=p^{s}$ and p is a prime, and let $\alpha(D)$ be the design obtained from $P G_{k}(2 k, q)$. Then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q) \leq \operatorname{rank}_{p} \alpha(D) \leq \frac{1}{2}\left(\frac{q^{2 k+1}-1}{q-1}+1\right)
$$

If $q=p$ is a prime then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q)=\operatorname{rank}_{p} \alpha(D) .
$$

An example of a non-prime q

$$
\text { If } a=4=2^{2} \text { and } k=2 \text {, we have }
$$

$$
\operatorname{rank}_{2} P G_{2}(4,4)=146<154=\operatorname{rank}_{2} \alpha(D)<\frac{4^{5}-1}{4-1}=171
$$

The p-rank of a design obtained via polarity

Theorem. (Jungnickel \& T., 2008)
Let α be a polarity of $P G(2 k-1, q)$, where $q=p^{s}$ and p is a prime, and let $\alpha(D)$ be the design obtained from $P G_{k}(2 k, q)$. Then

$\operatorname{rank}_{p} P G_{k}(2 k, q) \leq \operatorname{rank}_{p} \alpha(D)$

If $q=p$ is a prime then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q)=\operatorname{rank}_{p} \alpha(D) .
$$

An example of a non-prime q

$$
\text { If } a=4=2^{2} \text { and } k=2 \text {, we have }
$$

$$
\operatorname{rank}_{2} P G_{2}(4,4)=146<154=\operatorname{rank}_{2} \alpha(D)<\frac{4^{5}-1}{4-1}=171 .
$$

The p-rank of a design obtained via polarity

Theorem. (Jungnickel \& T., 2008)
Let α be a polarity of $P G(2 k-1, q)$, where $q=p^{s}$ and p is a prime, and let $\alpha(D)$ be the design obtained from $P G_{k}(2 k, q)$. Then

$\operatorname{rank}_{p} P G_{k}(2 k, q) \leq \operatorname{rank}_{p} \alpha(D)$

If $q=p$ is a prime then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q)=\operatorname{rank}_{p} \alpha(D) .
$$

An example of a non-prime q
If $q=4=2^{2}$ and $k=2$, we have
$\operatorname{rank}_{2} P G_{2}(4,4)=146<154=\operatorname{rank}_{2} \alpha(D)<\frac{4^{5}-1}{4-1}=171$.

The p-rank of a design obtained via polarity

Theorem. (Jungnickel \& T., 2008)
Let α be a polarity of $P G(2 k-1, q)$, where $q=p^{s}$ and p is a prime, and let $\alpha(D)$ be the design obtained from $P G_{k}(2 k, q)$. Then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q) \leq \operatorname{rank}_{p} \alpha(D) \leq \frac{1}{2}\left(\frac{q^{2 k+1}-1}{q-1}+1\right) .
$$

If $q=p$ is a prime then

$\operatorname{rank}_{p} P G_{k}(2 k, q)=\operatorname{rank}_{p} \alpha(D)$

An example of a non-prime q

If $a=4=2^{2}$ and $k=2$, we have
$\operatorname{rank}_{2} P G_{2}(4,4)=146<154=\operatorname{rank}_{2} \alpha(D)<\frac{4^{5}-1}{4-1}=171$.

The p-rank of a design obtained via polarity

Theorem. (Jungnickel \& T., 2008)
Let α be a polarity of $P G(2 k-1, q)$, where $q=p^{s}$ and p is a prime, and let $\alpha(D)$ be the design obtained from $P G_{k}(2 k, q)$. Then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q) \leq \operatorname{rank}_{p} \alpha(D) \leq \frac{1}{2}\left(\frac{q^{2 k+1}-1}{q-1}+1\right) .
$$

If $q=p$ is a prime then

The p-rank of a design obtained via polarity

Theorem. (Jungnickel \& T., 2008)
Let α be a polarity of $P G(2 k-1, q)$, where $q=p^{s}$ and p is a prime, and let $\alpha(D)$ be the design obtained from $P G_{k}(2 k, q)$. Then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q) \leq \operatorname{rank}_{p} \alpha(D) \leq \frac{1}{2}\left(\frac{q^{2 k+1}-1}{q-1}+1\right) .
$$

If $q=p$ is a prime then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q)=\operatorname{rank}_{p} \alpha(D) .
$$

An example of a non-prime q

If $q=4=2^{2}$ and $k=2$, we have
$\operatorname{rank}_{2} P G_{2}(4,4)=146<154=\operatorname{rank}_{2} \alpha(D)<\frac{4^{5}-1}{4-1}=171$.

The p-rank of a design obtained via polarity

Theorem. (Jungnickel \& T., 2008)
Let α be a polarity of $P G(2 k-1, q)$, where $q=p^{s}$ and p is a prime, and let $\alpha(D)$ be the design obtained from $P G_{k}(2 k, q)$. Then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q) \leq \operatorname{rank}_{p} \alpha(D) \leq \frac{1}{2}\left(\frac{q^{2 k+1}-1}{q-1}+1\right) .
$$

If $q=p$ is a prime then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q)=\operatorname{rank}_{p} \alpha(D)
$$

An example of a non-prime q

\square

The p-rank of a design obtained via polarity

Theorem. (Jungnickel \& T., 2008)
Let α be a polarity of $P G(2 k-1, q)$, where $q=p^{s}$ and p is a prime, and let $\alpha(D)$ be the design obtained from $P G_{k}(2 k, q)$. Then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q) \leq \operatorname{rank}_{p} \alpha(D) \leq \frac{1}{2}\left(\frac{q^{2 k+1}-1}{q-1}+1\right) .
$$

If $q=p$ is a prime then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q)=\operatorname{rank}_{p} \alpha(D)
$$

An example of a non-prime q

If $q=4=2^{2}$ and $k=2$, we have

The p-rank of a design obtained via polarity

Theorem. (Jungnickel \& T., 2008)
Let α be a polarity of $P G(2 k-1, q)$, where $q=p^{s}$ and p is a prime, and let $\alpha(D)$ be the design obtained from $P G_{k}(2 k, q)$. Then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q) \leq \operatorname{rank}_{p} \alpha(D) \leq \frac{1}{2}\left(\frac{q^{2 k+1}-1}{q-1}+1\right) .
$$

If $q=p$ is a prime then

$$
\operatorname{rank}_{p} P G_{k}(2 k, q)=\operatorname{rank}_{p} \alpha(D)
$$

An example of a non-prime q

If $q=4=2^{2}$ and $k=2$, we have

$$
\operatorname{rank}_{2} P G_{2}(4,4)=146<154=\operatorname{rank}_{2} \alpha(D)<\frac{4^{5}-1}{4-1}=171
$$

The proof

Hamada's formula for $r_{p}=\operatorname{rank}_{p} P G_{k}(2 k, p), p$ prime,
as simplified by Hirschfeld and Shaw '94, is

$$
\begin{equation*}
r_{p}=\frac{p^{2 k+1}-1}{p-1}-\sum_{i=0}^{k-1}(-1)^{i}\binom{(k-i)(p-1)-1}{i}\binom{k+(k-i) p}{2 k-i} . \tag{2}
\end{equation*}
$$

What we need is

$$
\begin{equation*}
r_{p}=\frac{1}{2}\left(\frac{p^{2 k+1}-1}{p-1}+1\right) . \tag{3}
\end{equation*}
$$

The proof

Hamada's formula for $r_{p}=\operatorname{rank}_{p} P G_{k}(2 k, p), p$ prime, as simplified by Hirschfeld and Shaw '94, is

What we need is

The proof

Hamada's formula for $r_{p}=\operatorname{rank}_{p} P G_{k}(2 k, p), p$ prime, as simplified by Hirschfeld and Shaw '94, is

What we need is

The proof

Hamada's formula for $r_{p}=\operatorname{rank}_{p} P G_{k}(2 k, p), p$ prime, as simplified by Hirschfeld and Shaw '94, is

$$
\begin{equation*}
r_{p}=\frac{p^{2 k+1}-1}{p-1}-\sum_{i=0}^{k-1}(-1)^{i}\binom{(k-i)(p-1)-1}{i}\binom{k+(k-i) p}{2 k-i} \tag{2}
\end{equation*}
$$

What we need is

The proof

Hamada's formula for $r_{p}=\operatorname{rank}_{p} P G_{k}(2 k, p), p$ prime, as simplified by Hirschfeld and Shaw '94, is

$$
\begin{equation*}
r_{p}=\frac{p^{2 k+1}-1}{p-1}-\sum_{i=0}^{k-1}(-1)^{i}\binom{(k-i)(p-1)-1}{i}\binom{k+(k-i) p}{2 k-i} \tag{2}
\end{equation*}
$$

What we need is

$$
\begin{equation*}
r_{p}=\frac{1}{2}\left(\frac{p^{2 k+1}-1}{p-1}+1\right) \tag{3}
\end{equation*}
$$

The proof

Hamada's formula for $r_{p}=\operatorname{rank}_{p} P G_{k}(2 k, p), p$ prime, as simplified by Hirschfeld and Shaw '94, is

$$
\begin{equation*}
r_{p}=\frac{p^{2 k+1}-1}{p-1}-\sum_{i=0}^{k-1}(-1)^{i}\binom{(k-i)(p-1)-1}{i}\binom{k+(k-i) p}{2 k-i} \tag{2}
\end{equation*}
$$

What we need is

$$
\begin{equation*}
r_{p}=\frac{1}{2}\left(\frac{p^{2 k+1}-1}{p-1}+1\right) \tag{3}
\end{equation*}
$$

Proof

Claim.

The expressions (2) and (3) are equal:

A proof by induction

The identity (4) can be proved by induction, using a recursive formula for the dimension of the geometric code defined by $P G_{k}(2 k, p)$.

Proof

Claim.

The expressions (2) and (3) are equal:

$$
\begin{align*}
& \frac{1}{2}\left(\begin{array}{c}
p^{2 k+1}-1 \\
p-1 \\
p-1
\end{array}\right)= \tag{4}\\
& \frac{p^{2 k+1}-1}{p-1}-\sum_{i=0}^{k-1}(-1)^{i}\binom{(k-i)(p-1)-1}{i}\binom{k+(k-i) p}{2 k-i} .
\end{align*}
$$

A proof by induction
 The identity (4) can be proved by induction, using a recursive formula for the dimension of the geometric code defined by $P G_{k}(2 k, p)$.

Proof

Claim.

The expressions (2) and (3) are equal:

$$
\begin{align*}
& \frac{1}{2}\left(\begin{array}{c}
p^{2 k+1}-1 \\
p-1 \\
p-1
\end{array}\right)= \\
& \frac{p^{2 k+1}-1}{p-1}-\sum_{i=0}^{k-1}(-1)^{i}\binom{(k-i)(p-1)-1}{i}\binom{k+(k-i) p}{2 k-i} . \tag{4}
\end{align*}
$$

A proof by induction

The identity (4) can be proved by induction, using a recursive formula for the dimension of the geometric code defined by $P G_{k}(2 k, p)$.

Proof

Claim.

The expressions (2) and (3) are equal:

$$
\begin{align*}
& \frac{1}{2}\left(\begin{array}{l}
p^{2 k+1}-1 \\
p-1 \\
p-1
\end{array}\right)= \tag{4}\\
& \frac{p^{k k+1}-1}{p-1}-\sum_{i=0}^{k-1}(-1)^{i}\binom{(k-i)(p-1)-1}{i}\binom{k+(k-i) p}{2 k-i} .
\end{align*}
$$

A proof by induction

The identity (4) can be proved by induction, using a recursive formula for the dimension of the geometric code defined by $P G_{k}(2 k, p)$.

A combinatorial proof of the identity (4)

Theorem

The following identity holds for any positive integer p :

For a proof, see
J. L. W. V. Jensen: Sur une identité d'Abel et sur d'autres formules analogues, Acta Math. 26 (1902), 307-318.
M. E. Larsen: Summa Summarum, CMS Treatises in Mathematics, Canadian Mathematical Society, Ottawa, ON• A K Peters, Itd Wellesley, MA (2007).

A combinatorial proof of the identity (4)

Theorem

The following identity holds for any positive integer p :

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{p^{2 k+1}-1}{p-1}+1\right)= \\
& \frac{p^{2 k+1}-1}{p-1}-\sum_{i=0}^{k-1}(-1)^{i}\binom{(k-i)(p-1)-1}{i}\binom{k+(k-i) p}{2 k-i} .
\end{aligned}
$$

For a proof, see
J. L. W. V. Jensen: Sur une identité d'Abel et sur d'autres formules analogues, Acta Math. 26 (1902), 307-318.
or
M. E. Larsen: Summa Summarum, CMS Treatises in Mathematics, Canadian Mathematical Society, Ottawa, ON; A K Peters, Ltd., Wellesley, MA (2007).

A combinatorial proof of the identity (4)

Theorem

The following identity holds for any positive integer p :

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{p^{2 k+1}-1}{p-1}+1\right)= \\
& \frac{p^{2 k+1}-1}{p-1}-\sum_{i=0}^{k-1}(-1)^{i}\binom{(k-i)(p-1)-1}{i}\binom{k+(k-i) p}{2 k-i} .
\end{aligned}
$$

For a proof, see
J. L. W. V. Jensen: Sur une identité d'Abel et sur d'autres formules analogues, Acta Math. 26 (1902), 307-318.
M. E. Larsen: Summa Summarum, CMS Treatises in Mathematics, Canadian Mathematical Society, Ottawa, ON; A K Peters, Ltd., Wellesley, MA (2007)

A combinatorial proof of the identity (4)

Theorem

The following identity holds for any positive integer p :

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{p^{2 k+1}-1}{p-1}+1\right)= \\
& \frac{p^{2 k+1}-1}{p-1}-\sum_{i=0}^{k-1}(-1)^{i}\binom{(k-i)(p-1)-1}{i}\binom{k+(k-i) p}{2 k-i} .
\end{aligned}
$$

For a proof, see
J. L. W. V. Jensen: Sur une identité d'Abel et sur d'autres formules analogues, Acta Math. 26 (1902), 307-318.
or
M. E. Larsen: Summa Summarum, CMS Treatises in Mathematics, Canadian Mathematical Society, Ottawa, ON; A K Peters, Ltd. Wellesley, MA (2007)

A combinatorial proof of the identity (4)

Theorem

The following identity holds for any positive integer p :

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{p^{2 k+1}-1}{p-1}+1\right)= \\
& \frac{p^{2 k+1}-1}{p-1}-\sum_{i=0}^{k-1}(-1)^{i}\binom{(k-i)(p-1)-1}{i}\binom{k+(k-i) p}{2 k-i} .
\end{aligned}
$$

For a proof, see
J. L. W. V. Jensen: Sur une identité d'Abel et sur d'autres formules analogues, Acta Math. 26 (1902), 307-318.
or
M. E. Larsen: Summa Summarum, CMS Treatises in Mathematics, Canadian Mathematical Society, Ottawa, ON; A K Peters, Ltd., Wellesley, MA (2007).

A Generalization to the Affine Case

Let H be a hyperplane of $A G(n, q)$.
A d-dimensional subspace L of $A G(n, q), d \leq n-1$, is either

- disjoint from H, or
- contained in H, or
- intersects H in a $(d-1)$-space.

Cross Block
 We call L a cross block if $\operatorname{dim}(L \cap H)=d-1$.

A Generalization to the Affine Case

Let H be a hyperplane of $A G(n, q)$.
A d-dimensional subspace L of $A G(n, q), d \leq n-1$, is either

- disjoint from H, or
- contained in H, or
- intersects H in a $(d-1)$-space.

Cross Block
 We call L a cross block if $\operatorname{dim}(L \cap H)=d-1$.

A Generalization to the Affine Case

Let H be a hyperplane of $A G(n, q)$.
A d-dimensional subspace L of $A G(n, q), d \leq n-1$, is either

- disjoint from H, or
- contained in H , or
- intersects H in a ($d-1$)-space.

Cross Block
 We call L a cross block if $\operatorname{dim}(L \cap H)=d-1$.

A Generalization to the Affine Case

Let H be a hyperplane of $A G(n, q)$.
A d-dimensional subspace L of $A G(n, q), d \leq n-1$, is either

- disjoint from H, or
- contained in H , or
- intersects H in a ($d-1$)-space.

Cross Block
 We call L a cross block if $\operatorname{dim}(L \cap H)=d-1$.

A Generalization to the Affine Case

Let H be a hyperplane of $A G(n, q)$.
A d-dimensional subspace L of $A G(n, q), d \leq n-1$, is either

- disjoint from H, or
- contained in H , or
- intersects H in a ($d-1$)-space.

Cross Block
 We call L a cross block if $\operatorname{dim}(L \cap H)=d-1$.

A Generalization to the Affine Case

Let H be a hyperplane of $A G(n, q)$.
A d-dimensional subspace L of $A G(n, q), d \leq n-1$, is either

- disjoint from H, or
- contained in H , or
- intersects H in a ($d-1$)-space.

Cross Block

A Generalization to the Affine Case

Let H be a hyperplane of $A G(n, q)$.
A d-dimensional subspace L of $A G(n, q), d \leq n-1$, is either

- disjoint from H, or
- contained in H , or
- intersects H in a ($d-1$)-space.

Cross Block

We call L a cross block if $\operatorname{dim}(L \cap H)=d-1$.

An Affine Space "Distortion" Construction:
Let $D=A G_{d}(n, q)$.

- Fix a hyperplane H through 0 in $A G(n, q)$.
- Fix a permutation α of the ($d-1$)-spaces through 0 in H.
- Replace each cross block $B=B_{\text {out }} \cup B_{\text {in }}$ containing 0 with $\alpha(B)=B_{\text {out }} \cup \alpha\left(B_{\text {in }}\right)$.
- Replace each coset of B with a carefully chosen coset of $\alpha(B)$.
- If $q=2$, we must similarly "distort" all other blocks B^{\prime} such that $B_{\text {in }}^{\prime}=B_{\text {in }}$.

An Affine Space "Distortion" Construction:
Let $D=A G_{d}(n, q)$.

- Fix a hyperplane H through 0 in $A G(n, q)$.
- Fix a permutation α of the $(d-1)$-spaces through 0 in H .
- Replace each cross block $B=B_{\text {out }} \cup B_{\text {in }}$ containing 0 with $\alpha(B)=B_{\text {out }} \cup \alpha\left(B_{\text {in }}\right)$.
- Replace each coset of B with a carefully chosen coset of $\alpha(B)$.
- If $q=2$, we must similarly "distort" all other blocks B^{\prime} such that $B_{i n}^{\prime}=B_{i n}$.

An Affine Space "Distortion" Construction:
Let $D=A G_{d}(n, q)$.

- Fix a hyperplane H through 0 in $A G(n, q)$.
- Fix a permutation α of the ($d-1$)-spaces through 0 in H.
- Replace each cross block $B=B_{\text {out }} \cup B_{\text {in }}$ containing 0 with $\alpha(B)=B_{\text {out }} \cup \alpha\left(B_{\text {in }}\right)$.
- Replace each coset of B with a carefully chosen coset of $\alpha(B)$.
- If $q=2$, we must similarly "distort" all other blocks B ' such that $B_{i n}^{\prime}=B_{i n}$.

An Affine Space "Distortion" Construction:

Let $D=A G_{d}(n, q)$.

- Fix a hyperplane H through 0 in $A G(n, q)$.
- Fix a permutation α of the $(d-1)$-spaces through 0 in H.
- Replace each cross block $B=B_{\text {out }} \cup B_{\text {in }}$ containing 0 with $\alpha(B)=B_{\text {out }} \cup \alpha\left(\boldsymbol{B}_{\text {in }}\right)$.
- Replace each coset of B with a carefully chosen coset of $\alpha(B)$.
- If $q=2$, we must similarly "distort" all other blocks B^{\prime} such that $B_{i n}^{\prime}=B_{i n}$.

An Affine Space "Distortion" Construction:

Let $D=A G_{d}(n, q)$.

- Fix a hyperplane H through 0 in $A G(n, q)$.
- Fix a permutation α of the ($d-1$)-spaces through 0 in H.
- Replace each cross block $B=B_{\text {out }} \cup B_{\text {in }}$ containing 0 with $\alpha(\boldsymbol{B})=\boldsymbol{B}_{\text {out }} \cup \alpha\left(\boldsymbol{B}_{\text {in }}\right)$.
- Replace each coset of B with a carefully chosen coset of $\alpha(B)$.
- If $q=2$, we must similarly "distort" all other blocks B^{\prime} ' such that $B_{\text {in }}^{\prime}=B_{\text {in }}$.

An Affine Space "Distortion" Construction:

Let $D=A G_{d}(n, q)$.

- Fix a hyperplane H through 0 in $A G(n, q)$.
- Fix a permutation α of the $(d-1)$-spaces through 0 in H.
- Replace each cross block $B=B_{\text {out }} \cup B_{\text {in }}$ containing 0 with $\alpha(\boldsymbol{B})=\boldsymbol{B}_{\text {out }} \cup \alpha\left(\boldsymbol{B}_{\text {in }}\right)$.
- Replace each coset of B with a carefully chosen coset of $\alpha(B)$.
- If $q=2$, we must similarly "distort" all other blocks B^{\prime} such that $B_{i n}^{\prime}=B_{i n}$.

Affine construction

Affine Construction: Details

What is a "carefully chosen" coset of $\alpha(B)$?

- $\alpha(B)$ is not a vector subspace any longer.
- There are q^{n-d} cosets of B by elements of H.
- There are also a^{n-d} cosets of $\alpha\left(B_{i n}\right)$ by elements of H.
- Choose q^{n-d} elements of H so that each coset of B and each coset of $\alpha\left(B_{i n}\right)$ is represented (possible by Hall's Theorem).

The binary case

In the binary case, we must do the same thing for all other blocks B^{\prime} such that $B_{i n}^{\prime}=B_{i n}$, to avoid transforming different blocks into identical ones.

Affine Construction: Details

What is a "carefully chosen" coset of $\alpha(\boldsymbol{B})$?

- $\alpha(B)$ is not a vector subspace any longer.
- There are q^{n-d} cosets of B by elements of H.
- There are also q^{n-d} cosets of $\alpha\left(B_{i n}\right)$ by elements of H.
- Choose a^{n-d} elements of H so that each coset of B and each coset of $\alpha\left(B_{\text {in }}\right)$ is represented (possible by Hall's Theorem).

The binary case

In the binary case, we must do the same thing for all other blocks B^{\prime} such that $B_{\text {in }}^{\prime}=B_{i n}$, to avoid transforming different blocks into identical ones.

Affine Construction: Details

What is a "carefully chosen" coset of $\alpha(B)$?

- $\alpha(B)$ is not a vector subspace any longer.
- There are q^{n-d} cosets of B by elements of H.
- There are also q^{n-d} cosets of $\alpha\left(B_{i n}\right)$ by elements of H.
- Choose q^{n-d} elements of H so that each coset of B and each coset of $\alpha\left(B_{\text {in }}\right)$ is represented (possible by Hall's Theorem).

The binary case

In the binary case, we must do the same thing for all other blocks B^{\prime} such that $B_{i n}^{\prime}=B_{i n}$, to avoid transforming different blocks into identical ones.

Affine Construction: Details

What is a "carefully chosen" coset of $\alpha(\boldsymbol{B})$?

- $\alpha(B)$ is not a vector subspace any longer.
- There are q^{n-d} cosets of B by elements of H.
- There are also q^{n-d} cosets of $\alpha\left(B_{i n}\right)$ by elements of H.
- Choose q^{n-d} elements of H so that each coset of B and each coset of $\alpha\left(B_{\text {in }}\right)$ is represented (possible by Hall's Theorem).

The binary case

In the binary case, we must do the same thing for all other blocks B^{\prime} such that $B_{i n}^{\prime}=B_{i n}$, to avoid transforming different blocks into identical ones.

Affine Construction: Details

What is a "carefully chosen" coset of $\alpha(\boldsymbol{B})$?

- $\alpha(B)$ is not a vector subspace any longer.
- There are q^{n-d} cosets of B by elements of H.
- There are also q^{n-d} cosets of $\alpha\left(B_{i n}\right)$ by elements of H.
- Choose q^{n-d} elements of H so that each coset of B and each coset of $\alpha\left(B_{\text {in }}\right)$ is represented (possible by Hall's Theorem).

[^2]
Affine Construction: Details

What is a "carefully chosen" coset of $\alpha(\boldsymbol{B})$?

- $\alpha(B)$ is not a vector subspace any longer.
- There are q^{n-d} cosets of B by elements of H.
- There are also q^{n-d} cosets of $\alpha\left(B_{i n}\right)$ by elements of H.
- Choose q^{n-d} elements of H so that each coset of B and each coset of $\alpha\left(B_{\text {in }}\right)$ is represented (possible by Hall's Theorem).

The binary case

Affine Construction: Details

What is a "carefully chosen" coset of $\alpha(B)$?

- $\alpha(B)$ is not a vector subspace any longer.
- There are q^{n-d} cosets of B by elements of H.
- There are also q^{n-d} cosets of $\alpha\left(B_{i n}\right)$ by elements of H.
- Choose q^{n-d} elements of H so that each coset of B and each coset of $\alpha\left(B_{\text {in }}\right)$ is represented (possible by Hall's Theorem).

The binary case

In the binary case, we must do the same thing for all other blocks B^{\prime} such that $B_{i n}^{\prime}=B_{i n}$, to avoid transforming different blocks into identical ones.

Affine results

Note

Any polarity of $P G(2 d, q)$ permutes affine d-spaces containing 0 in $A G(2 d+1, q)$.

Theorem. (Clark, Jungnickel, Tonchev 2009):

Let

- α be a polarity of $P G(2 d, 2)$, extended to affine d-subspaces in $A G(2 d+1,2)$, and
- $D=A G_{d+1}(2 d+1,2), d \geq 2$.

Then $\alpha(D)$ is a design with the same parameters and the same 2-rank as D, but is not isomorphic to D.

Affine results

Note

Any polarity of $P G(2 d, q)$ permutes affine d-spaces containing 0 in $A G(2 d+1, q)$.

Theorem. (Clark, Jungnickel, Tonchev 2009):

Let

- α be a polarity of $P G(2 d, 2)$, extended to affine d-subspaces in $A G(2 d+1,2)$, and
- $D=A G_{d+1}(2 d+1,2), d \geq 2$. Then $\alpha(D)$ is a design with the same parameters and the same 2-rank as D, but is not isomorphic to D.

Affine results

Note

Any polarity of $P G(2 d, q)$ permutes affine d-spaces containing 0 in $A G(2 d+1, q)$.

Theorem. (Clark, Jungnickel, Tonchev 2009):

Let

- α be a polarity of $P G(2 d, 2)$, extended to affine d-subspaces in $A G(2 d+1,2)$, and

Then $\alpha(D)$ is a design with the same parameters and the same 2-rank as D, but is not isomorphic to D.

Affine results

Note

Any polarity of $P G(2 d, q)$ permutes affine d-spaces containing 0 in $A G(2 d+1, q)$.

Theorem. (Clark, Jungnickel, Tonchev 2009):

Let

- α be a polarity of $P G(2 d, 2)$, extended to affine d-subspaces in $A G(2 d+1,2)$, and
- $D=A G_{d+1}(2 d+1,2), d \geq 2$.

Then $\alpha(D)$ is a design with the same parameters and the same 2-rank as D, but is not isomorphic to D.

Affine results

Note

Any polarity of $P G(2 d, q)$ permutes affine d-spaces containing 0 in $A G(2 d+1, q)$.

Theorem. (Clark, Jungnickel, Tonchev 2009):

Let

- α be a polarity of $P G(2 d, 2)$, extended to affine d-subspaces in $A G(2 d+1,2)$, and
- $D=A G_{d+1}(2 d+1,2), d \geq 2$.

Then $\alpha(D)$ is a design with the same parameters and the same 2-rank as D, but is not isomorphic to D.

Sketch of Proof

- The block code of $A G_{d+1}(2 d+1,2)$ is a self-dual Reed-Muller code $R(d, 2 d+1)$ of dimension $2^{2 d}$.
- The block intersection numbers of D and $\alpha(D)$ are 0 and 2^{i} for $1 \leq i<2 d$, and are all even.
- The block code of $\alpha(D)$ is self-o thogonal, and $r \mathrm{k}_{2}(\alpha(D)) \leq 2^{2 d}=r \mathrm{k}_{2}(D)$. Thus

$$
2^{2 d}=r k_{2}\left(P G_{d}(2 d, 2)\right) \leq r k_{2}(\alpha(D)) \leq r k_{2}(D)=2^{2 d}
$$

Note

The subdesign induced on H is isomorphic to $\alpha\left(P G_{d}(2 d, 2)\right)$.
By the projective construction, its 2-rank is equal to $\operatorname{rk}_{2}\left(P G_{d}(2 d, 2)\right)$,
but is not isomorphic to $P G_{d}(2 d, 2)$.

Sketch of Proof

- The block code of $A G_{d+1}(2 d+1,2)$ is a self-dual Reed-Muller code $R(d, 2 d+1)$ of dimension $2^{2 d}$.
- The block intersection numbers of D and $\alpha(D)$ are 0 and 2^{i} for $1 \leq i<2 d$, and are all even.
- The block code of $\alpha(D)$ is self-o thogonal, and $\mathrm{rk}_{2}(\alpha(D)) \leq 2^{2 d}=\mathrm{rk}_{2}(D)$. Thus

$$
2^{2 d}=r k_{2}\left(P G_{d}(2 d, 2)\right) \leq \operatorname{rk}_{2}(\alpha(D)) \leq \operatorname{rk}_{2}(D)=2^{2 d}
$$

Note

The subdesign induced on H is isomorphic to $\alpha\left(P G_{d}(2 d, 2)\right)$.
By the projective construction, its 2-rank is equal to $\mathrm{rk}_{2}\left(P G_{d}(2 d, 2)\right)$, but is not isomorphic to $P G_{d}(2 d, 2)$.

Sketch of Proof

- The block code of $A G_{d+1}(2 d+1,2)$ is a self-dual Reed-Muller code $R(d, 2 d+1)$ of dimension $2^{2 d}$.
- The block intersection numbers of D and $\alpha(D)$ are 0 and 2^{i} for $1 \leq i<2 d$, and are all even.
$\mathrm{rk}_{2}(\alpha(D)) \leq 2^{2 d}=\mathrm{rk}_{2}(D)$. Thus

Note

The subdesign induced on H is isomorphic to $\alpha\left(P G_{d}(2 d, 2)\right)$ By the projective construction, its 2-rank is equal to $\mathrm{rk}_{2}\left(P G_{d}(2 d, 2)\right)$, but is not isomorphic to $P G_{d}(2 d, 2)$.

Sketch of Proof

- The block code of $A G_{d+1}(2 d+1,2)$ is a self-dual Reed-Muller code $R(d, 2 d+1)$ of dimension $2^{2 d}$.
- The block intersection numbers of D and $\alpha(D)$ are 0 and 2^{i} for $1 \leq i<2 d$, and are all even.
- The block code of $\alpha(D)$ is self-orthogonal, and $\mathrm{rk}_{2}(\alpha(D)) \leq 2^{2 d}=\mathrm{rk}_{2}(D)$. Thus

$$
2^{2 d}=r k_{2}\left(P G_{d}(2 d, 2)\right) \leq \operatorname{rk}_{2}(\alpha(D)) \leq \operatorname{rk}_{2}(D)=2^{2 d}
$$

\square

Sketch of Proof

- The block code of $A G_{d+1}(2 d+1,2)$ is a self-dual Reed-Muller code $R(d, 2 d+1)$ of dimension $2^{2 d}$.
- The block intersection numbers of D and $\alpha(D)$ are 0 and 2^{i} for $1 \leq i<2 d$, and are all even.
- The block code of $\alpha(D)$ is self-orthogonal, and $\mathrm{rk}_{2}(\alpha(D)) \leq 2^{2 d}=\mathrm{rk}_{2}(D)$. Thus

$$
2^{2 d}=r k_{2}\left(P G_{d}(2 d, 2)\right) \leq \operatorname{rk}_{2}(\alpha(D)) \leq \operatorname{rk}_{2}(D)=2^{2 d}
$$

Note

The subdesign induced on H is isomorphic to $\alpha\left(P G_{d}(2 d, 2)\right)$. By the projective construction, its 2-rank is equal to $\mathrm{rk}_{2}\left(P G_{d}(2 d, 2)\right)$, but is not isomorphic to $P G_{d}(2 d, 2)$.

Nonisomorphic designs with geometric paramatars

- The number of nonisomorphic designs with the same parameters as $A G_{n-1}(n, q)$ or $P G_{n-1}(n, q), n \geq 3$, grows linearly with n : Bhat and Shrikhande (1970), Griffiths and Mavron (1972).
- Jungnickel (1984): The number of nonisomorphic designs with the same parameters as $A G_{n-1}(n, q)$ or $P G_{n-1}(n, q), n \geq 3$, grows exponentially.
- Jungnickel's bounds were later improved: Kantor '94, C. Lam, S. Lam, \& T., 2000,2003

Nonisomorphic designs with geometric paramatars

- The number of nonisomorphic designs with the same parameters as $A G_{n-1}(n, q)$ or $P G_{n-1}(n, q), n \geq 3$, grows linearly with n : Bhat and Shrikhande (1970), Griffiths and Mavron (1972).
- Jungnickel (1984): The number of nonisomorphic designs with the same parameters as $A G_{n-1}(n, q)$ or $P G_{n-1}(n, q), n \geq 3$, grows exponentially.
- Jungnickel's bounds were later improved: Kantor '94, C. Lam, S. Lam, \& T., 2000,2003.

Nonisomorphic designs with geometric paramatars

- The number of nonisomorphic designs with the same parameters as $A G_{n-1}(n, q)$ or $P G_{n-1}(n, q), n \geq 3$, grows linearly with n : Bhat and Shrikhande (1970), Griffiths and Mavron (1972).
- Jungnickel (1984): The number of nonisomorphic designs with the same parameters as $A G_{n-1}(n, q)$ or $P G_{n-1}(n, q), n \geq 3$, grows exponentially.
- Jungnickel's bounds were later improved: Kantor '94, C. Lam, S. Lam, \& T., 2000,2003.

New bounds for any $3 \leq d \leq n-1$

Jungnickel \& T., 2009

The number of nonisomorphic designs with parameters of $P G_{d}(n, q)$, $3 \leq d \leq n-1$, grows exponentially.

Theorem. (Clark, Jungnickel, Tonchev, 2009)

- The number of nonisomprphic 2-designs with parameters of $A G_{d}(n, 2), d \geq 3$, grows exponentially.
- The number of nonisomprphic 3-designs with parameters of $A G_{d}(n, 2), d \geq 3$, grows exponentially.
- The number of resolvable 3-designs with the parameters of $A G_{d}(n, 2)$ grows exponentially.

New bounds for any $3 \leq d \leq n-1$

Jungnickel \& T., 2009

The number of nonisomorphic designs with parameters of $P G_{d}(n, q)$, $3 \leq d \leq n-1$, grows exponentially.

Theorem. (Clark, Jungnickel, Tonchev, 2009)

- The number of nonisomprphic 2-designs with parameters of $A G_{d}(n, 2), d \geq 3$, grows exponentially.
- The number of nonisomprphic 3-designs with parameters of $A G_{d}(n, 2), d \geq 3$, grows exponentially.
- The number of resolvable 3-designs with the parameters of $A G_{d}(n, 2)$ grows exponentially.

New bounds for any $3 \leq d \leq n-1$

Jungnickel \& T., 2009

The number of nonisomorphic designs with parameters of $P G_{d}(n, q)$, $3 \leq d \leq n-1$, grows exponentially.

Theorem. (Clark, Jungnickel, Tonchev, 2009)

- The number of nonisomprphic 2-designs with parameters of $A G_{d}(n, 2), d \geq 3$, grows exponentially.
- The number of nonisomprnhic 3-designs with parameters of $A G_{d}(n, 2), d \geq 3$, grows exponentially.
- The number of resolvable 3-designs with the parameters of $A G_{d}(n, 2)$ grows exponentially.

New bounds for any $3 \leq d \leq n-1$

Jungnickel \& T., 2009

The number of nonisomorphic designs with parameters of $P G_{d}(n, q)$, $3 \leq d \leq n-1$, grows exponentially.

Theorem. (Clark, Jungnickel, Tonchev, 2009)

- The number of nonisomprphic 2-designs with parameters of $A G_{d}(n, 2), d \geq 3$, grows exponentially.

New bounds for any $3 \leq d \leq n-1$

Jungnickel \& T., 2009

The number of nonisomorphic designs with parameters of $P G_{d}(n, q)$, $3 \leq d \leq n-1$, grows exponentially.

Theorem. (Clark, Jungnickel, Tonchev, 2009)

- The number of nonisomprphic 2-designs with parameters of $A G_{d}(n, 2), d \geq 3$, grows exponentially.
- The number of nonisomprphic 3-designs with parameters of $A G_{d}(n, 2), d \geq 3$, grows exponentially.

New bounds for any $3 \leq d \leq n-1$

Jungnickel \& T., 2009

The number of nonisomorphic designs with parameters of $P G_{d}(n, q)$, $3 \leq d \leq n-1$, grows exponentially.

Theorem. (Clark, Jungnickel, Tonchev, 2009)

- The number of nonisomprphic 2-designs with parameters of $A G_{d}(n, 2), d \geq 3$, grows exponentially.
- The number of nonisomprphic 3-designs with parameters of $A G_{d}(n, 2), d \geq 3$, grows exponentially.
- The number of resolvable 3-designs with the parameters of $A G_{d}(n, 2)$ grows exponentially.

New bounds for any $3 \leq d \leq n-1$

Jungnickel \& T., 2009

The number of nonisomorphic designs with parameters of $P G_{d}(n, q)$, $3 \leq d \leq n-1$, grows exponentially.

Theorem. (Clark, Jungnickel, Tonchev, 2009)

- The number of nonisomprphic 2-designs with parameters of $A G_{d}(n, 2), d \geq 3$, grows exponentially.
- The number of nonisomprphic 3-designs with parameters of $A G_{d}(n, 2), d \geq 3$, grows exponentially.
- The number of resolvable 3-designs with the parameters of $A G_{d}(n, 2)$ grows exponentially.

Examples

There exist at least

- 10^{228} non-isomorphic 2-(32, 8, 35) designs,
- 10^{75} resolvable 2- $(32,8,35)$ designs,
- 10^{27} resolvable $3-(32,8,7)$ designs,
all having the parameters of $A G_{3}(5,2)$.

Examples

There exist at least

- 10^{228} non-isomorphic 2-(32, 8,35$)$ designs,
- 10^{75} resolvable 2- $(32,8,35)$ designs,
- 10^{27} resolvable $3-(32,8,7)$ designs, all having the parameters of $A G_{3}(5,2)$.

Examples

There exist at least

- 10^{228} non-isomorphic 2-(32, 8,35$)$ designs,
- 10^{75} resolvable $2-(32,8,35)$ designs,
- 10^{27} resolvable $3-(32,8,7)$ designs, all having the parameters of $A G_{3}(5,2)$.

Examples

There exist at least

- 10^{228} non-isomorphic 2-(32, 8,35$)$ designs,
- 10^{75} resolvable 2-($32,8,35$) designs,
- 10^{27} resolvable $3-(32,8,7)$ designs,

Examples

There exist at least

- 10^{228} non-isomorphic 2-(32, 8,35$)$ designs,
- 10^{75} resolvable 2- $(32,8,35)$ designs,
- 10^{27} resolvable $3-(32,8,7)$ designs,
all having the parameters of $A G_{3}(5,2)$.

Open Problems

Hamada's conjecture (strong form)

If D is a design having the same parameters as a geometric design G, $G=P G_{d}(n, q)$ or $G=A G_{d}(n, q)$, then

$$
\operatorname{rank}_{q} D \geq \operatorname{rank}_{q} G,
$$

with equality rank ${ }_{q} D=\operatorname{rank}_{q} G$ if and only if D is isiomorphic to G.

Note

The strong form (the "only if" part) of Hamada's conjecture is not true in general.

Open Problem

Determine the spectrum of parameters n, q, d for which the strong form of Hamada's conjecture holds true.

Open Problems

Hamada's conjecture (strong form)

If D is a design having the same parameters as a geometric design G, $G=P G_{d}(n, q)$ or $G=A G_{d}(n, q)$, then

Note

The strong form (the "only if" part) of Hamada's conjecture is not true in general.

Open Problem

Determine the spectrum of parameters n, q, d for which the strong form of Hamada's conjecture holds true.

Open Problems

Hamada's conjecture (strong form)

If D is a design having the same parameters as a geometric design G, $G=P G_{d}(n, q)$ or $G=A G_{d}(n, q)$, then

$$
\operatorname{rank}_{q} D \geq \operatorname{rank}_{q} G,
$$

with equality $r a n k_{q} D=r a n k_{q} G$ if and only if D is isiomorphic to G.

Note

The strong form (the "only if" part) of Hamada's conjecture is not true in general.

Open Problem
Determine the snectrum of parameters n, q, d for which the strong form of Hamada's conjecture holds true.

Open Problems

Hamada's conjecture (strong form)

If D is a design having the same parameters as a geometric design G, $G=P G_{d}(n, q)$ or $G=A G_{d}(n, q)$, then

$$
\operatorname{rank}_{q} D \geq \operatorname{rank}_{q} G,
$$

with equality $r a n k_{q} D=r a n k_{q} G$ if and only if D is isiomorphic to G.

Note

The strong form (the "only if" part) of Hamada's conjecture is not true in general.

Open Problem

Determine the spectrum of parameters n, q, d for which the strong form of Hamada's conjecture holds true.

Open Problems

Hamada's conjecture (strong form)

If D is a design having the same parameters as a geometric design G, $G=P G_{d}(n, q)$ or $G=A G_{d}(n, q)$, then

$$
\operatorname{rank}_{q} D \geq \operatorname{rank}_{q} G
$$

with equality $\operatorname{rank}_{q} D=\operatorname{rank}_{q} G$ if and only if D is isiomorphic to G.

Note

The strong form (the "only if" part) of Hamada's conjecture is not true in general.

Open Problem
Determine the spectrum of parameters n, q, d for which the strong form of Hamada's conjecture holds true.

Open Problems

Hamada's conjecture (strong form)

If D is a design having the same parameters as a geometric design G, $G=P G_{d}(n, q)$ or $G=A G_{d}(n, q)$, then

$$
\operatorname{rank}_{q} D \geq \operatorname{rank}_{q} G
$$

with equality $\operatorname{rank}_{q} D=\operatorname{rank}_{q} G$ if and only if D is isiomorphic to G.

Note

The strong form (the "only if" part) of Hamada's conjecture is not true in general.

Open Problem

Determine the spectrum of parameters n, q, d for which the strong form of Hamada's conjecture holds true.

Modified versions of Hamada's conjecture

Assmus-Key

Hamada's conjecture is true for $P G_{n-1}(n, q)$.

Sachar

Hamada's conjecture is true for $P G_{1}(2, q)$, that is, for projective planes.

Note

- The Assmus-Key conjecture has been proved for $q=2$.
- Sachar's conjecture has been verified for $q \leq 9$.

Modified versions of Hamada's conjecture

Assmus-Key

Hamada's conjecture is true for $P G_{n-1}(n, q)$.

Sachar

Hamada's conjecture is true for $P G_{1}(2, q)$, that is, for projective planes.

Note

- The Assmus-Key conjecture has been proved for $q=2$
- Sachar's conjecture has been verified for $q \leq 9$.

Modified versions of Hamada's conjecture

Assmus-Key

Hamada's conjecture is true for $P G_{n-1}(n, q)$.

Sachar

Hamada's conjecture is true for $P G_{1}(2, q)$, that is, for projective planes.

Note

- The Assmus-Key conjecture has been proved for $q=2$.
- Sachar's conjecture has been verified for $q \leq 9$.

Modified versions of Hamada's conjecture

Assmus-Key

Hamada's conjecture is true for $P G_{n-1}(n, q)$.

Sachar

Hamada's conjecture is true for $P G_{1}(2, q)$, that is, for projective planes.

Note

- The Assmus-Key conjecture has been proved for $q=2$.
- Sachar's conjecture has been verified for $q \leq 9$.

A weaker conjecture

Hamada's conjecture (weaker form)

The p-rank of $P G_{d}\left(n, p^{s}\right)$ or $A G_{d}\left(n, p^{s}\right)$ is an exact lower bound on the p-rank of all designs having the same parameters as $P G_{d}\left(n, p^{s}\right)$ or $A G_{d}\left(n, p^{s}\right)$.

Open Problems

- Prove the weaker form of Hamada's conjecture.
- Prove lower bounds on the p-rank of designs with geometric parameters.

A weaker conjecture

Hamada's conjecture (weaker form)

The p-rank of $P G_{d}\left(n, p^{s}\right)$ or $A G_{d}\left(n, p^{s}\right)$ is an exact lower bound on the p-rank of all designs having the same parameters as $P G_{d}\left(n, p^{s}\right)$ or $A G_{d}\left(n, p^{s}\right)$.

Open Problems

- Prove the weaker form of Hamada's conjecture.
- Prove lower bounds on the p-rank of designs with geometric parameters.

A weaker conjecture

Hamada's conjecture (weaker form)

The p-rank of $P G_{d}\left(n, p^{s}\right)$ or $A G_{d}\left(n, p^{s}\right)$ is an exact lower bound on the p-rank of all designs having the same parameters as $P G_{d}\left(n, p^{s}\right)$ or $A G_{d}\left(n, p^{s}\right)$.

Open Problems

- Prove the weaker form of Hamada's conjecture.
- Prove lower bounds on the p-rank of designs with geometric parameters.

A weaker conjecture

Hamada's conjecture (weaker form)

The p-rank of $P G_{d}\left(n, p^{s}\right)$ or $A G_{d}\left(n, p^{s}\right)$ is an exact lower bound on the p-rank of all designs having the same parameters as $P G_{d}\left(n, p^{s}\right)$ or $A G_{d}\left(n, p^{s}\right)$.

Open Problems

- Prove the weaker form of Hamada's conjecture.
- Prove lower bounds on the p-rank of designs with geometric parameters.

A weaker conjecture

Hamada's conjecture (weaker form)

The p-rank of $P G_{d}\left(n, p^{s}\right)$ or $A G_{d}\left(n, p^{s}\right)$ is an exact lower bound on the p-rank of all designs having the same parameters as $P G_{d}\left(n, p^{s}\right)$ or $A G_{d}\left(n, p^{s}\right)$.

Open Problems

- Prove the weaker form of Hamada's conjecture.
- Prove lower bounds on the p-rank of designs with geometric parameters.

A weaker conjecture

Hamada's conjecture (weaker form)

The p-rank of $P G_{d}\left(n, p^{s}\right)$ or $A G_{d}\left(n, p^{s}\right)$ is an exact lower bound on the p-rank of all designs having the same parameters as $P G_{d}\left(n, p^{s}\right)$ or $A G_{d}\left(n, p^{s}\right)$.

Open Problems

- Prove the weaker form of Hamada's conjecture.
- Prove lower bounds on the p-rank of designs with geometric parameters.

More open problems

- Afrine case, $q>$. Extend the afine constryction to field of
- Sindy the resu ting new codes: c geometric and peed-Muller code
- Develope decuding algoryms for the now codes.
- Generalize the remainikg sporadic count rexampes aving the parameters of $A G_{2}(3,4)$.

More open problems

- Affine case, $q>2$: Extend the affine construction to fields of order $q>2$.
- Sindy the resuling new codes: geomstric and Peed-Muller code
- Develope decodig algorthms for the new codes.
- Generalize the remang sporadic count rexamples aving the parameters of $A G_{2}(3,4)$.

More open problems

- Affine case, $q>2$: Extend the affine construction to fields of order $q>2$.
- Study the resulting new codes: compare with the classical geometric and Reed-Muller codes.
- Develope decoding algorinms for the new codes.
- Generalize the rema
sporadic count rexamples the parameters of $A G_{2}(3,4)$.

More open problems

- Affine case, $q>2$: Extend the affine construction to fields of order $q>2$.
- Study the resulting new codes: compare with the classical geometric and Reed-Muller codes.
- Develope decoding algorithms for the new codes.
- Generalize the rema
sporadic count rexamies
eving the parameters of $A G_{2}(3,4)$

More open problems

- Affine case, $q>2$: Extend the affine construction to fields of order $q>2$.
- Study the resulting new codes: compare with the classical geometric and Reed-Muller codes.
- Develope decoding algorithms for the new codes.
- Generalize the remaining sporadic counterexamples having the parameters of $A G_{2}(3,4)$.

References

目 N. Hamada,

On the p-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error-correcting codes, Hiroshima Math J. 3 (1973), pp. 153-226.
D. Jungnickel and V.D. Tonchev,

Polarities, Quasi-symmetric Designs, and Hamada's Conjecture, Designs, Codes and Cryptography 51 (2009), 131-140.
D. Jungnickel and V.D. Tonchev,

The number of designs with geometric parameters grows exponentially, Designs, Codes and Cryptography, 55 (2010), 131-140.
國 D. Clark, D. Jungnickel, V. D. Tonchev,
An Infinite Family of Counterexamples to the Affine Case of Hamada's Conjecture. submitted.
D. Clark, D. Jungnickel, V.D. Tonchev,

Exponential bounds on the number of designs with affine

Thank You!

Tisnk Ydu!

Thank You!

Thank You!

Thank You!

Thank You!

Any Questions?

[^0]: Note
 Two 2-($31,7,7$) designs supported by the projective geometry code and the QR code were mentioned by Goethals and Delsarte in 1968 39/67

[^1]: Note
 Two 2-(31, 7, 7) designs supported by the projective geometry code and the QR code were mentioned by Goethals and Delsarte in $1963_{39 / 67}$

[^2]: The binary case
 In the binary case, we must do the same thing for all other blocks B^{\prime} such that $B_{\text {in }}^{\prime}=B_{i n}$, to avoid transforming different blocks into identical ones.

