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1. Smith and diagonal form

Given an r by m integer matrix A, there exist unimodular matrices

E and F , of orders r and m, so that EAF = D where D is an r by

m diagonal matrix. Here ‘diagonal’ means that the (i, j)-entry

of D is 0 unless i = j; but D is not necessarily square. We call

any matrix D that arises in this way a diagonal form for A.

As a simple example,

(
1 0
2 1

)(
3 1 4
4 −2 7

)⎛⎜⎝0 −1 3
1 −1 −1
0 1 −2

⎞
⎟⎠ =

(
1 0 0
0 5 0

)
.

The matrix on the right is a diagonal form for the middle matrix

on the left.



Let the diagonal entries of D be d1, d2, d3, . . . .

⎛
⎜⎜⎜⎝
2 0 0 · · ·
0 24 0 · · ·
0 0 120 · · ·
... ... ... . . .

⎞
⎟⎟⎟⎠

If all diagonal entries di are nonnegative and di divides di+1 for

i = 1,2, . . . , then D is called the integer Smith normal form of

A, or simply the Smith form of A, and the integers di are called

the invariant factors, or the elementary divisors of A. The Smith

form is unique; the unimodular matrices E and F are not.



As we have defined them, the number of invariant factors of a

matrix (or the number of diagonal entries of a diagonal form) is

equal to the minimum of the number of rows and the number of

columns. But here and in the sequel, di may be interpreted as 0

if the index i exceeds the number of rows or columns. It is clear

that the invariant factors (or diagonal entries) of A and A� are

the same apart from trailing zeros 0.

Some examples follow.



(
3 1 4
4 −2 7

)
→
(
3 1 4
1 −3 3

)
→
(
3 1 1
1 −3 2

)

→
(
3 0 1
1 −5 2

)
→
(

0 0 1
−5 5 2

)
→
(
0 0 1
0 5 2

)

→
(
0 0 1
0 5 0

)
→
(
1 0 0
0 5 0

)



⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 85 36 24 96 60 54 70 95 80
50 46 82 88 94 25 2 1 21 40
85 86 52 4 24 45 57 94 38 58
95 89 31 49 23 1 74 21 69 81
18 57 28 27 39 21 70 45 38 89
22 97 86 90 78 97 42 74 69 30
53 63 63 31 23 88 38 56 61 28
98 61 95 16 23 68 32 6 78 17
47 81 42 41 59 68 18 16 37 73
65 87 1 3 85 35 55 52 76 94

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The invariant factors of this 10 by 10 matrix are

1, 1, 1, 1, 1, 1, 1, 1, 1, 1282266779938614837.



⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

52 7 85 52 79 20 69 34 55 1 19
57 40 62 92 41 45 64 6 5 9 33
15 90 81 96 77 97 64 30 42 8 92
81 95 88 21 6 91 29 8 24 93 35
36 32 52 64 74 97 49 41 44 28 0
29 75 42 76 98 90 37 1 88 8 63
88 44 88 92 44 74 12 26 2 67 78
74 30 26 53 15 37 62 7 56 31 88
52 61 21 48 90 94 60 78 72 56 81
90 55 90 4 67 41 63 33 46 20 87

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The invariant factors of this 10 by 11 matrix are

1, 1, 1, 1, 1, 1, 1, 1, 1, 2.



The phenomena observed above are explained by the fact that

if s1, s2, . . . , sn are the invariant factors of a matrix A, then the

product σk = s1s2 . . . sk is the gcd of the determinants of all

k by k submatrices of A. (These numbers σk are called the

determinantal divisors of A.) E.g. for a 10 by 10 “random”

matrix, s1s2 · · · s9 is the gcd of the 100 determinants of the 9 by

9 submatrices, and this is “probably” 1. The product s1s2 · · · s10

is, up to sign, the determinant of A, which is more-or-less large

on the average.



Invariant factors of the incidence matrices of some finite projec-

tive planes:

PG2(8) 128, 29, 49, 826, 721

PG2(9) 137, 318, 935, 901

Hall(9) 141, 310, 939, 901

dual Hall(9) 141, 310, 939, 901

Hughes(9) 141, 310, 939, 901

order 10∗ 156, 1054, 1101

bordered PG2(8) 128, 29, 49, 828

bordered PG2(9) 137, 318, 937

bordered Hall(9)/dual 141, 310, 941

bordered Hughes(9) 141, 310, 941

bordered order 10∗ 156, 1056



Here is the
(
6
2

)
by

(
6
3

)
inclusion matrix of the 2-subsets versus

the 3-subsets of a 6-set. The diagonal entries of one diagonal

form are

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



The invariant factors of the traingular graph T(n) (the line graph

L(Kn) of the complete graph) are [see Brouwer and Van Eijl]:

(1)n−2, 2(n−2)(n−3)/2, (2n − 8)n−2, (n − 2)(n − 4) if n ≥ 4 is even,

(1)n−1, 2(n−1)(n−4)/2, (2n − 8)n−2, 2(n − 2)(n − 4) if n ≥ 5 is odd.

(1)

T(n) is strongly regular and determined up to isomorphism by

its parameters except when t = 8, in which case there are three

other SRGs (called the Chang graphs) with the same parameters.

The invariant factors of the Chang graphs are 18, 212, 87, 241.



In these notes, module will always mean Z-module, i.e. a module

over the ring Z of integers. These may also be called lattices.

Let A be an r by m integer matrix. We use rowZ(A) to denote the

module generated by the rows of A, a submodule of Zm; similarly,

colZ(A) will denote the module generated by the columns of A,

a submodule of Zr.



Suppose D = EAF is a diagonal form for A, where E and F are

unimodular. Then A has the same row-module as DF−1; that

is, a Z-spanning set for rowZ(A) consists of the vectors

d1f1, d2f2, . . . , dmfm (2)

where fi is the i-th row of F−1. The vectors f1, . . . , fm form a

Z-basis for Zm; the fi’s for which di �= 0 form a Z-basis for the

integer vectors in the row space of A. A Z-basis for rowZ(A)

consists of those vectors difi where di �= 0.

Proposition 1 If v is an integer vector and g is the lcm of the

nonzero di’s, then gv ∈ rowZ(A). If v is an integer vector in

the row space of A, and g′ is the lcm of the nonzero di’s, then

gv ∈ rowZ(A).



Example:

(
1 0
2 1

)(
3 1 4
4 −2 7

)⎛⎜⎝0 −1 3
1 −1 −1
0 1 −2

⎞
⎟⎠ =

(
1 0 0
0 5 0

)
.

A Z-basis for rowZ(A) consists of the first two rows of DF−1,

and these are (3,1,4) and 5(2,0,3).

The p-rank of A (the rank of A over the field Fp) is 2 except

that the 5-rank is only 1.



The map

a1f1 + · · · + amfm 	→ (a1(mod d1), . . . , am(mod dm))

is a homomorphism with kernel rowZ(A), so

Z
m/rowZ(A) ∼= Zd1

⊕ Zd2
⊕ · · · ⊕ Zdr. (3)

Here Z0 = Z.



Let s1, s2, . . . , sn be the invariant factors of a square integer ma-

trix A. Note that if A is nonsingular, then sn is the least value

of t so that tA−1 is integral. One way to see this is to use the

formula

A−1 =
1

det(A)
Aadj

where Aadj is the classical adjoint of A, with (i, j)-entry

(−1)i+j det(Aji), and where Aji is the result of deleting row j

and column i from A. The determinant det(Aji) is an integer

divisible by s1s2 · · · sn−1 and det(A) = s1 · · · sn.

Another way to understand is to use the fact that that sn is

the lcm of the invariant factors and Proposition 1. The relation

AB = I means that each column of I is a rational linear com-



bination of the columns of A, so that the columns of snI are

integer linear combinations of the columns of A.



2. Solutions of linear equations in integers

Diagonal forms are related to solutions of systems of linear equa-

tions or congruences in integers. This, in fact, was the topic of

H. J. S. Smith’s original paper on the subject.

Let A be an r by m integer matrix. Suppose EAF = D where

E and F are unimodular and D is diagonal with diagonal entries

d1, d2, . . . . The system Ax = b is equivalent to (AF )(F−1x) = b,

and this has integer solutions x if and only if (AF )z = b has an

integer solution z. This in turn will have integer solution if and

only if EAFz = Eb, or Dz = Eb, has integer solutions.



In other words, if we let ei denote the i-th row of E, the system

Ax = b has integer solutions if and only if

eib ≡ 0 (mod di) for i = 1,2, . . . , r. (4)

As a simple example,

(
1 0
2 1

)(
3 1 4
4 −2 7

)⎛⎜⎝0 −1 3
1 −1 −1
0 1 −2

⎞
⎟⎠ =

(
1 0 0
0 5 0

)

and so the system of equations

3x + y + 4z = a
4x − 2y + 7z = b

has an integer solution if and only if a ≡ 0 (mod 1) (that is, a is

an integer) and 2a + b ≡ 0 (mod 5).



We will have use for the following lemma.

Lemma 2 Given a rational matrix A and a column vector b, the

system Ax = b has an integer solution x if and only if for any

rational row vector y,

yA integral implies yb is an integer. (5)

Proof. The ‘if’ direction is easy: If Ax = b with x integral and

yA is integral, then

yb = y(Ax) = (yA)x is an integer.

If Ax = b has no solutions, then there is a row vector ei and

integer di, as in (4) above, so that eib �≡ 0 (mod di). For sim-



plicity, assume all di are nonzero, and let y = 1
di
ei; then yb is not

an integer. We have

yA = (0 . . . ,0,
1

di
,0, . . . ,0)EA = (0 . . . ,0,

1

di
,0, . . . ,0)DF−1,

which is the i-th row of F−1 and so is an integer vector. �



Suppose EA = DU for any E with rows ei, square or not, and

where D is diagonal with diagonal entries di, and U is integral.

Then the conditions eib ≡ 0 (mod di) are clearly necessary for

the existence of an integer solution x of Ax = b.

Theorem 3 Let A be an r by m matrix. Suppose EA = DU

where E, D, and U are integer matrices with E unimodular and

D diagonal. If the conditions eib ≡ 0 (mod di) are sufficient for

the existence of an integer solution x of Ax = b, then D, with

extra columns of 0’s if necessary to make it r by m, is a diagonal

form for A.



3. Square incidence matrices

The following two theorems are from Newman.

Theorem 4 Suppose A is an n by n integer matrix such that

AA� = mI for some integer m. Let s1, s2, . . . , sn be the invariant

factors of A. Then sisn+1−i = m for i = 1,2, . . . , n.

Proof. If cA−1 is an integer matrix for some integer c, then the

invariant factors of cA−1 are c/sn, c/sn−1, . . . , c/s2, c/s1. To see

this, suppose EAF = D for some unimodular matrices E and

F , where D = diag(s1, s2, . . . , sn) is the Smith form, of A, with

diagonal entries

s1 | s2 | · · · | sn. (6)



Then F−1(cA−1)E−1 = cD−1. That is, cD−1 is a diagonal form

for cA−1. It is not necessarily the Smith form, since the diagonal

element c/si+1 divides c/si and not the other way around. But

the invariant factors of cA−1 in the correct order will be

c

sn
| c

sn−1
| · · · | c

s2
| c

s1
. (7)

If AA� = mI, then A� = mA−1 is integral and the invariant

factors of A� are those in (7) with c replaced by m. But the

invariant factors of the transpose of a matrix are the same as

those of the orignal matrix, and so the factors in (6) are, by

the uniquess of the Smith form, identical to those in (7), with c

replaced by m, and the result follows. �



A Hadamard matrix of order n is an n by n matrix H, with entries

+1 and −1 only, so that HH� = nI. It is known that the exis-

tence of a Hadamard matrix of order n implies n = 1,2, or 4m

for some integer m.

Theorem 5 If H is a Hadamard matrix of order n = 4t with t

squarefree, then the invariant factors of H are

(1)1, (2)2t−1, (2t)2t−1, (4t)1.

Proof. By Theorem 4, the invariant factors si of H satisfy

sisn+1−i = n = 4t. Since the entries of H are ±1, it is clear

that s1 = 1, and since the 2-rank of H is 1, all invariant factors



of H are even except for the smallest, s1. For i ≤ n/2, si di-

vides sn+1−i, so s2i divides 4t. Since t is squarefree, we conclude

that si divides 2, and so is equal to 2 for i = 2,3, . . . , n/2. The

theorem follows. �

A conference matrix of order n is an n by n matrix C, with 0’s

on the diagonal and non-diagonal entries +1 and −1 only, so

that CC� = (n − 1)I. It is clear that the order of a conference

matrix, if greater than 1, is even.

Theorem 6 If C is a conference matrix of order n = 2t with

n − 1 squarefree, then the invariant factors of C are

(1)t, (n − 1)t.



An extension of Theorem 4 is given below. We will give the

proof at the end of the next section.

Theorem 7 Suppose A is an n by n integer matrix such that

AUA� = mV for some integer m, where U and V are square ma-

trices of order n with determinants det(U) = ±det(V ) relatively

prime to m. Let s1, s2, . . . , sn be the invariant factors of A. Then

sisn+1−i = m for i = 1,2, . . . , n.

A 2-(v, k, λ)-design consists of a v-set X (of points) and a family

B of k-subsets (called blocks) of X so that any two distinct points

are contained in exactly λ of the blocks. We usualy assume

2 ≤ k ≤ v − 2. For background on designs, and proofs of the

observations of the next two paragraphs, see Chapter 19.



The incidence matrix N of such a design is the v by b matrix

(here b = |B| = λv(v − 1)/(k(k − 1)) is the number of blocks)

with rows indexed by the elements of X, columns indexed by the

elements of B, and where

N(x, B) =

⎧⎨
⎩1 if x ∈ B,

0 otherwise.

It is well known that

NN� = (r − λ)I + λJ (8)

where r = λ(v − 1)/(k − 1) is the number of blocks that contain

any given point. Here I and J are v by v matrices; J the matrix

of all 1’s.



For later reference, we note that

((r − λ)I + λJ)−1 =
1

r − λ
(I − λ

rk
J). (9)

Also JN = kJ.



When |X| = |B|, i.e. v = b, the design is said to be a (v, k, λ)-

symmetric design. Here the incidence matrix N is square of order

v. We have r = k and the relation λ(v − 1) = k(k − 1). Then

NN� = nI + λJ where n = k − λ. A projective plane of order n

is a (n2 + n + 1, n + 1,1)-symmetric design.

Two square symmetric matrices B and C are said to be ratio-

nally congruent when there exists a nonsingular matrix A so that

ABA� = C. The Hasse-Minkowski Theorem gives necessary and

sufficient conditions for two rational B and C to be rationally

congruent. If there exists a (v, k, λ)-symmetric design, then the

equation NN� = nI + λJ means that the v by v matrices I

and nI +λJ are rationally congruent. The following classic theo-

rem may be derived from the Hasse-Minkowski Theorem, though



more elementary proofs are known.

Theorem 8 (Bruck-Ryser-Chowla) If there exists a (v, k, λ)-symmetric

design with v odd, then the equation

x2 = ny2 + (−1)(v−1)/2λz2

has a solution in integers x, y, z, not all zero.



We can say a few simple things about the invariant factors

s1, s2, . . . , sv of the incidence matrix N of a symmetric design

in general. The equation (8) implies det(N) = ±n(v−1)/2k, so

s1s2 · · · sv = n(v−1)/2k. We have

N−1 = N�((nI + λJ)−1 =
1

n
N� − λ

nk
J.

The smallest integer t such that tN−1 is integral is sv = nk/(k, λ).

It is easy to see that there are 2 by 2 submatrices of N equivalent

to
(

1 0
1 1

)
, and this implies s1 = s2 = 1.



Theorem 9 (Deretzky) Let N be the incidence matrix of a

(v, k, λ)-symmetric design where k and λ are relatively prime,

and write n = k − λ. The invariant factors of N satisfy

s1 = s2 = 1, sisv+2−i = n for i = 3,4, . . . , v−1, and sv = nk.

Proof. Let N be the incidence matrix of a (v, k, λ)-symmetric

design. We have already seen that sv = nk and s1s2 · · · sv =

det(N) = ±kn(v−1)/2. The product of the other invariant factors

is a power of n and all divide nk; thus when (n, k) = 1, every

other invariant factor divides n.



Now consider the matrix

A =
N

λ · · · λ

1
...
1

k

(10)

of order v + 1. Let D = diag(1,1, . . . ,1,−λ), of order v + 1. It

may be checked that ADA� = nD. If (k, λ) = 1, then (n, λ) = 1,

and by Theorem 7, titv+2−i = n.

We now relate the invariant factors s1, s2, . . . , sv of N to those

of A. The column module of N contains a constant column, say

c11, if any only if c is a multiple of k. This is because the columns

of N are linearly independent and sum to the vector of all k’s.



So the column module of

[N, 11] = N

1
...
1

contains the column module of N as an index k submodule. This

means the invariant factors of [N, 11] are s1, s2, . . . , sv−1, n (easy

details omitted).

If the sum of all rows of [N, 11] is subtracted from the bottom

row of A, we obtain a matrix A′, with the same invariant factors

t1, . . . , tv+1 as A, and whose last row is −(n, n, . . . , n, v − k). In

general we have λ(v − k) = n(k − 1), so the assumption that

(k, λ) = 1 implies v − k ≡ 0 (mod n) and thus the entire last row



of A′ is divisible by n.

Using integer row operations in the first v rows of A′ and columns

operations, we may reduce A′ to

A′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 0 0 · · · 0 0 0
0 s2 0 · · · 0 0 0
... . . . · · · ... ...
0 0 0 · · · sv−1 0 0
0 0 0 · · · 0 n 0
• • • · · · • • •

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since s1, . . . , sn−1, n divide n and the last row of A′′ is divisible by

n, subtracting intgeral multiple of the first v rows from the last



gives

A′′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 0 0 · · · 0 0 0
0 s2 0 · · · 0 0 0
... . . . · · · ... ...
0 0 0 · · · sv−1 0 0
0 0 0 · · · 0 n 0
0 0 0 · · · 0 0 •

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the product t1t2 · · · tv+1 is n(v+1)/2 and the product s1 · · · sv−1n

is n(v−1)/2, the lower left entry must be ±n. �



4. A chain of codes

A p-ary linear code of length n is a subspace C of the vector

space Fn
p of ordered n-tuples of elements of the field Fp of p

elements. Here p is a prime, and we normally think of members

of C and F
n
p as row vectors. All codes in these notes will be

linear codes over a prime field.

Given an r by m integer matrix A, we may consider the rows as

vectors in Fm
p . The row space rowp(A) of A over Fp is, of course,

a p-ary linear code; C⊥ is the null space of A over Fp. Multiplying

a matrix on the right or left by a unimodular matrix does not

change its rank modulo p, so the dimension of C = rowp(A) is



the rank modulo p of a diagonal form D of A, and this is the

number of diagonal entries of D that are not divisible by p.



Given an r by m integer matrix A, we define, for any prime p and

nonnegative integer i,

Mi(A) = {x ∈ Z
m : pix ∈ rowZ(A)}.

We have M0(A) = rowZ(A) and

M0(A) ⊆ M1(A) ⊆ M2(A) ⊆ . . . .

Let

Ci(A) = Mi (mod p).

That is, read all the integer vectors in Mi(A) to obtain Ci(A).

Then each Ci(A) is a p-ary linear code. Clearly,

C0(A) ⊆ C1(A) ⊆ C2(A) ⊆ . . . .



Theorem 10 Let D be a diagonal form for A, with diagonal

entries d1, d2, . . . . Then the dimensions of the p-ary code Cj(A)

is the number of diagonal entries di that are not divisible by pj+1.

Proof. With the notation of (2), a Z-basis for rowZ(A) is pro-

vided by the nonzero members of

d1f1, d2f2, . . . , dmfm

where f1, f2, . . . , fm are the rows of a unimodular matrix—and so

are linearly independent modulo p. An integer vector a1f1+ · · ·+
amfm is in M(A) if and only if ai ≡ 0 (mod di) for every i, so

pj(c1f1 + · · · + cmfm) ∈ M(A) if and only if pjci ≡ 0 (mod di).

If pj+1 divides di, then this congruence implies ci ≡ 0 (mod p);

but if the p-contribution to di is at most pj, then there values



of ci �≡ 0 (mod p) for which pjci ≡ 0 (mod di), so fi, when read

modulo p is in Cj(A). It is now clear that the set of fi so that

pj+1 does not divide di is a basis for Cj(A). �

Lemma 11 Let L and M be integer matrices with L square so

that LM is defined. Suppose det(L) is relatively prime to p.

Then the invariant p-factors of LM are the same as those of M .

Proof. We will show Ci(LM) = Ci(M) for all i.

Let d = det(L) and let d′ be a multiple of d so that d′ ≡
1 (mod p). First, since the rows of LM are integer linear com-

binations of the rows of M , it is clear that a ∈ Mi(LM) implies



a ∈ Mi(M) and so Ci(LM) ⊆ Ci(M). Suppose a ∈ Mi(M);

say pi(a) = cM where c is an integer vector. Then pi(d′a) =

c(d′L−1))(LM), and c(d′L−1) is an integer vector, so pid′a ∈
Mi(LM). But d′a ≡ a (mod p). �

Theorem 12 Let p be a prime and A an n by n integer matrix. If

U and V are square integer matrices with determinants not divis-

ible p, and AUA� = peV , then the invariant factors s1, s2, . . . , sn

of A are such that the p-contribution to sisn+1−i is pe, for all

i = 1,2, . . . , n.

Proof. As in the proof of Theorem 4, the invariant factors of



pe det(V )A−1 = UA�(det(V )V −1) are

pe det(V )/sn, pe det(V )/sn−1, . . . , pe det(V )/s1

in that order. By Lemma 11, the invariant p-factors of

UA�(det(V )V −1) are the same as those of A�, which are the

p-contributions to s1, s2, . . . , sn in that order. The result follows.

�

Theorem 7 is a corollary. If AUA� = mV and the determinants

of U and V are equal apart for sign, and relatively prime to m,

the p-contribution to sisn+1−i is pe whenever pe||m, and it follows

that m divides sisn+1−i. But the product s1 · · · sn is equal to the

determinant of A, which is mn/2.



5. Self-dual codes; Witt’s theorem

A p-ary linear code C is self-orthogonal when C ⊆ C⊥, and self-

dual when C = C⊥. A self-dual code of lenth n has dimension

n/2.



Theorem 13 If there exists a self-dual p-ary code of length n,

where p is an odd prime, then (−1)n/2 is a square in Fp.

Proof. Let C be a self-dual p-ary code of length n (and dimension

n/2). Then C = rowp(G) for some n/2 by n matrix G over Fp

that satisfies GG� = O. By row operations and permutation of

columns if necessary, we may assume

G = I A

where both I and A are square. The equation GG� = O means

that AA� = −I; hence det(A)2 = (−1)n/2. �



This says nothing if n ≡ 0 (mod 4) or if p ≡ 1 (mod 4), because

this condition is always true. But when n ≡ 2 (mod 4) and

p ≡ 3 (mod 4), there is no self-dual p-ary code of length n.

Corollary 14 If there exists a conference matrix of order n ≡
2 (mod 4), then n−1 is the sum of two squares. More generally,

if there is a square integer matrix A of order n ≡ 2 (mod 4) so

that AA� = mI, then m is the sum of two squares.

Proof. An integer m is the sum of two squares if and only if

no prime p ≡ 3 (mod 4) divides the square-free part of m. If p

divides the squarefree part of m, Theorem 4 gives us a self-dual

code of length n ≡ 2 (mod 4) and Theorem 13 implies that −1

is a square in Fp, which implies p ≡ 1 (mod 4). �



We may use a symmetric nonsingular matrix U over a field Fp

with p odd to introduce a new inner product 〈·, ·〉U for row vectors

in Fp
n, namely

〈a,c〉U = aUc�.

For a linear p-ary code C ⊂ Fn
p , the U-dual code of C is

CU = {a : 〈a,c〉U = 0 for all c ∈ C}.
In the theory of vector spaces equipped with quadratic forms,

a p-ary code is said to be totally isotropic with respect to U

when C ⊆ CU. When U = I, totally isotropic is the same as

self-orthogonal. We may call C self-U-dual when C = CU .



Theorem 15 (Witt) Given a symmetric nonsingular matrix U

over a field F of odd characteristic, there exists a totally isotropic

subspace of dimension m/2 in Fm if and only if (−1)m/2 det(B)

is a square in F.

A proof for a diagonal matrix U may be obtained by a minor

modification of that of Theorem 13, and the general case is

only a little more work using the fact that U is congruent to a

diagonal matrix over F.



Theorem 16 Suppose A is an n by n integer matrix such that

AUA� = peV for some integer m, where U and V are square

matrices with determinants relatively prime to p. Then Ce(A) =

Fn
p and

CU
i = Ce−i−1 for i = 0,1, . . . , e − 1.

In particular, if e = 2f + 1, then Cf is a self-U-dual p-ary code

of length n.

Proof. Let x and y be integer vectors such that x (mod p) ∈ Ci

and y (mod p) ∈ Ce−i−1. This means

pi(x + pa1) = z1A and pe−i−1(y + pa2) = z2A



for some integer vectors z1, z2, a1, and a2. Then

pe−1〈x,y〉 = pe−1xBy� ≡ z1AUA�z�2 ≡ 0 (mod pe).

Thus 〈x,y〉 = 0 in Fp and we see Ce−i−1 ⊆ CU
i .

Let s1, s2, . . . , sn be the invariant factors of A. By Theorem 12,

the p-contribution to sisn+1−i is pe. If pj+1 divides si, then pe−j

cannot divide sn+1−i; that is, we have a one-to-one correspon-

dence between indices i so that pj+1 does not divide si and those

indices i′ = n+1−i so that pe−j does not divide si′. By Theorem

10, the dimensions of Ci(A) and Ce+1−i(A) sum to n, and this

completes the proof. �



Corollary 17 If there exists a (v, k, λ)-symmetric design with

(k, λ) = 1, then for every prime divisor p of the squarefree part

of n, (−1)(v−1)/2λ is a square modulo p.

Proof. Let A be the v +1 by v +1 matrix in (). If p2f+1 exactly

divides n, then Ce(A) is a self-D-dual code of length v+1, where

D = diag(1,1, . . . ,1,−λ). �

The proof of the nonexistence of a projective plane of order 10,

a (111,11,1)-symmetric design, was completed in 1989. Exten-

sive computer calculations were required, but computers could

not have handled the problem were it not for coding theory.

Analysis of and computations concerning the self-dual code of



length 112 that would arise from the Theorem eventually led to

a contradiction. Clement Lam played a pivotal part in this work.



6. Symmetric and quasi-symmetric designs

Theorem 18 (Lander) Suppose there exists a symmetric (v, k, λ)-

design where n is exactly divisible by an odd power of a prime p.

Write n = pfn0 (f odd) and λ = pbλ0 with (n0, p) = (λ0, p) = 1.

Then there exists a self-dual p-ary code of length v + 1 with

respect to the scalar product corresponding to

U =

⎧⎨
⎩diag(1,1, . . . ,1,−λ0) if b is even,

diag(1,1, . . . ,1, n0λ0) if b is odd.

Hence from Witt’s Theorem,⎧⎨
⎩−(−1)(v+1)/2λ0 is a square (mod p) if b is even,

(−1)(v+1)/2n0λ0 is a square (mod p) if b is odd.



Proof. Let N be the incidence matrix of a symmetric (v, k, λ)-

design and let p be a prime. Assume λ = p2aλ0 where (λ0, p) = 1

and a ≥ 0; we will explain later what to do when λ is exactly

divisible by an odd power of p. Let

A :=

⎛
⎜⎜⎜⎝

pa

N ...
pa

paλ0 · · · paλ0 k

⎞
⎟⎟⎟⎠ , U :=

⎛
⎜⎜⎜⎝
1 0

...
1

0 −λ0

⎞
⎟⎟⎟⎠ .

The reader should verify, using the properties of N and the re-

lation λ(v − 1) = k(k − 1), that AUA� = nU.

In the case λ is exactly divisible by an even power of p, we apply

Theorem 16 with the matrices A and U as above.



If λ is exactly divisible by an odd power of p, we apply the above

case to the complement of the given symmetric design, which

is a symmetric (v, v − k, λ′)-design where λ′ = v − 2k + λ. Say

λ′ = pcλ′
0 where (λ′

0, p) = 1. From λλ′ = n(n− 1), it follows that

c is odd and that

λ0λ′
0 = n0(n − 1) ≡ −n0 (mod p).

We have replaced what would be −λ′
0 in the conclusion by λ0n0,

which is allowed since they differ by a square factor modulo p, in

order to express the result in terms of the original parameters.

�



Theorem 19 (Calderbank) Let B be a 2-(v, k, λ), and p be an

odd prime that exactly divides r−λ; further suppose that |A∩B| ≡
s (mod p) for any two blocks A and B of the design. If v is odd,

then −v(−1)(v+1)/2 is a square modulo p.

The proof constructs a self-U-dual code of lenth (v+1)/2 where

U = diag(1,1, . . . ,1,−v).

Theorem 20 (Blokhuis, Calderbank) Let B be a 2-(v, k, λ), and

p be an odd prime so that pe exactly divides r−λ; further suppose

that |A ∩ B| ≡ s (mod pe) for any two blocks A and B of the

design. ...

The two theorems above produce self-U-dual codes from non-



square matrices. There would appear to be no way to derive

them from the Hasse-Minkowski theory.



7. The matrices of t-subsets versus k-subsets, or
t-uniform hypergaphs

Incidence or inclusion matrices of s-subsets versus blocks arise in

the theory of t-designs and in extremal set theory.

Given any family F of subsets of a set X, define a matrix Ms

with rows indexed by the s-subsets of X and columns by F by

Ms(S, A) =

⎧⎨
⎩1 if S ⊆ A,

0 otherwise.

If (X,F) is a t-(v, k, λ) design with t ≥ 2s, then an equation of

the form

MsM
�
s =

s∑
i=0

bi
2s−iW

�
isWis



holds. I know of no use of self-dual codes to prove non-existence

results for t-designs with t > 2.

By a (t, v)-vector based on X, or just a t-vector if the set X is

understood, we mean a (row or column) vector whose coordi-

nates are indexed by the t-subsets of an v-set X. We often use

functional notation: if f is a t-vector and T a t-subset of X, then

f(T) will denote the entry of f in coordinate position T .

For integers t, k, v with 0 ≤ t ≤ k ≤ v, let Wtk or Wv
tk denote the(

v
t

)
by

(
v
k

)
matrix whose rows are indexed by the t-subsets of an

v-set X, whose columns are indexed by the k-subsets of X, and



where the entry in row T and column K is

Wtk(T, K) :=

⎧⎨
⎩1 if T ⊆ K,

0 otherwise.

The question of whether there exist integer solutions x of Wtkx =

11 is related to the existence problem for t-designs. A simple t-

(v, k, λ) design consists of a set X and a set A of k-subsets if X

so that every t-subset of X is contained in exactly λ members of

A.

Let u be the characteristic k-vector of a set A of k-subsets of

X. This means that u(A) = 1 if A ∈ A and otherwise u(A) = 0.



Then for a t-subset T of X,

(Wtku)(T) =
∑
A

u(A)Wtk(A) =
∑

A∈A,T⊆A

1 = λ.

That is, (X,A) is a t-design if any only if Wtku = λ11 where

here 11 is the t-vector of all 1’s. We allow not-necessarily-simple

t-(v, k, λ) designs where the members of A may have multiplic-

ities (or, A may be thought of as a multiset of k-subsets).

These correspond to k-vectors u of nonnegative integers satisfy-

ing Wtku = λ11. Finally, we may consider signed t-designs, where

k-subsets are counted with positive or negative multiplicities, and

these correspond to integer k-vectors u satisfying Wtk = 11.



We have WitWtk ≡ O (mod
(
k−i
t−i

)
) since, in fact,

WitWtk =
(k − i

t − i

)
Wik

(this is easy) and thus the congruences (11) are necessary con-

ditions for the existence of integer solutions to Wtku = 11. The

case i = t, where Wtt = I, simply requires that each entry of b

is an integer.

The following theorem is due to Graver and Jurkat, and rmw. It

is also a consequence of Theorem 23.



Theorem 21 Let t + k ≤ v. Necessary and sufficient conditions

for the existence of an integer k-vector u of height
(
v
t

)
based on

X so that Wtkx = λ11 are

λ
(v − i

t − i

)
≡ 0 (mod

(k − i

t − i

)
) for i = 0,1, . . . , t. (11)



Systems of diophantine linear equations have come up repeatedly

in work on the asymptotic existence of design-like structures.

Theorem 22 is from 1975.

Theorem 22 Let G be a simple graph on k vertices and assume

n ≥ k+2. Let G be the set of all subgraphs of the complete graph

Kn that are isomorphic to G. There exists a family {xH : H ∈ G}
of integers xG so that for every edge e of Kn,

∑
H:e∈E(H)

xH = 1,

where the sum is extended is over those subgraphs G ∈ G which

contain the edge e, if and only if
(
n
2

)
is divisible by the number of

edges of G, and n−1 is divisible by the greatest common divisor



of the degrees of the vertices of G.

The conditions that
(
n
2

)
is divisible by the number of edges of

G, and n − 1 is divisible by the greatest common divisor of the

degrees of the vertices of G are necessary for the existence of a

decomposition (a partition of the edges) of Kn into subgraphs

isomorphic to G. Theorem 22 played an essential role in the

proof given in 1975 that, given G, such decompositions exist for

all sufficiently large integers n satisfying these conditions. (Such

decompositions may also be called G-designs.) Similar theorems,

but about more complicated systems of equations were need for

work on decompositions of ‘edge-colored complete graphs’ (with

Lamken, Draganova, Mutoh).



Though it is immaterial for the intended application, I have been

curious about the hypothesis n ≥ k + 2. It turns out that it

may be dropped as long as G is not edgeless, complete, com-

plete bipartite, or the union of two disjoint complete graphs.

For example, it is possible to assign signed integer multiplicities

xG to all Petersen-subgraphs of K10 so that the sum of these

multiplicities over those subgraphs on an edge is always 1.

A common generalization and extension of Theorems 21 and 22

is Theorem 23 below.

Given a t-vector h based on a v-set X, we consider the matrix

Nt(h) or Nt whose columns are all distinct images of h under

the symmetric group Sn acting on the t-subsets of X. So Nt



has
(
v
t

)
rows and at most n! columns. (For most purposes, it

does not matter if Nt has repeated columns.) When h is the

characteristic vector of the complete t-uniform hypergraph Kt
v,

whose hyperedges are all t-subsets of X, we have Nt = Wtk. If

t = 2 and h is he characteristic 2-vector of a simple graph G,

then N2 is the matrix of the system of equations in Theorem ??.

Theorem 23 Let h be a t-vector based on a v-set X and assume

that there are at least t isolated vertices. Let gi denote the gcd

of all entries of WitNt. Necessary and sufficient conditions for

the existence of an integer solution x to Ntx = b for a t-vector

b of height
(
v
t

)
are

Witb ≡ 0 (mod gi) for i = 0,1, . . . , t.



If h is the characteristic 2-vector of the edge set of a graph G,

then g0 is the number of edges of G and g1 is the gcd of the

degrees of G. It b is the vector of all 1’s, then W02b =
(
n
2

)
and

W12b is a vector of n − 1’s.



8. Null designs (trades)

Integer k-vectors in the null space of Wtk are called null designs

or trades. Integer bases for the modules of null designs have

been described by Graver and Jurkat Graham, Li, and Li, Frankl,

Khosrovshahi and Adjoodani, and others.

Let Nt be the module of integer row vectors that are orthogonal

to the rows of Wt−1,t. (These are null (t− 1)-designs with block

size t.) Let Mt be a matrix whose rows are a Z-basis for Nt.

An integer t-vector h based on a v-set X with v ≥ 2t is primitive

when the GCD of the entries of Mth is 1. Here h is being thought

of as a column vector.



Don’t quote me on this, but probably most t-vectors h are prim-

itive.

The elements of all bases are of a certain type that were called

(t, k)-pods by Graver and Jurkat and cross-polytopes by GLL.

For our purposes, we need only to know a generating set for

the integer null space of Wt−1,t, and we restrict our attention

to this case. We use the term t-pod for what G and J called a

(t − 1, t)-pod.

Let P denote the choice of t disjoint pairs

{a1, b1}, {a2, b2}, . . . , {at, bt}, (12)



of points. Here the order of the t pairs is not important, but the

order of the two points in each pair affects the sign in (13) below.

Let fP denote the t-vector where fP(T) = 0 unless T contains

exactly one point of each pair {ai, bi}, i.e. T is a “transversal”

for the pairs, and otherwise

fP (T) = (−1)|T∩{b1,b2,...,bn}|. (13)

It is easy to see that fP is orthogonal (with repect to the standard

inner product) to all rows of Wt−1,t. If v is the (t − 1)-vector

cooresponding to row of Wt−1,t indexed by a (t − 1)-subset S,

then

〈v, fP 〉 =
∑
T

v(T)fP (T) =
∑

T :S⊆T

fP (T).



If S is not transverse to P , then no t-subsets T that contain it are

transverse to P and the sum in () is 0. If S is transverse to P , it

meets t − 1 of the pairs, say all but {ai0, bi0}, and then there are

two transverse t-subsets that contain S, namely T1 = S ∪ {ai0}
and T2 = S ∪ {bi0}. One of fP (T1) and fP (T2) is +1 and the

other is −1, so the sum in () is again 0.

(Note to self: explain what all this means for graphs. Remark

that “most” hypergraphs are primitive.))

Theorem 24 Every integer t-vector in the null space of Wt−1,t

based on a v-set, v ≥ t, is an integer linear combination of t-pods.

Proof. We proceed by induction on v+ t. First we note that the



case t = 1 is easy since W01 is a row vector of length
(
v
t

)
and

the 1-pods are the vectors with one entry +1, a second entry

−1, and all other entries 0.

When v < 2t, there are no null designs other than the 0-vector,

and there are no nonzero t-pods. (Details omitted.)

Now fix t ≥ 2 and v ≥ 2t and assume the statement holds when

v is replaced by v′ and t by t′ where v′ + t′ < v + t. (Induction

step omitted.)

The following Lemma is essential to our proof of Theorem 23.



Theorem 25 Let h be a primitive t-vector. Then Ntx = b has

an integral solution x if and only if N ′x′ = b′ has an integral

solution x′, where N ′ = Wt−1,tNt and b′ = Wt−1,tb.



9. A diagonal form for Nt

The necessary and sufficient conditions for the existence of an

integer solution of Ntx = b (when h has at least t isolated ver-

tices) are

Witb ≡ 0 (mod gi) for i = 0,1, . . . , t,

where gi is the gcd of all entries of WitNt. These conditions are

redundant.



Theorem 26 (W., 1999, 2008) (i) Given t, k, v, t ≤ k ≤ v − t,

the matrix

t⊔
j=0

Ejk =

E0k 1 row

E1k v − 1 rows

E2k

(
v
2

)
− v rows

...

Etk

(
v
t

)
−
(

v
t−1

)
rows

with
(
v
t

)
rows has p-rank

(
v
t

)
for every prime p. (ii) The module



generated by the rows of Wtk is equal to that generated by the

rows of the following matrix

t⊔
j=0

(k − j

t − j

)
Ejk =

(
k
t

)
E0k 1 row(

k−1
t−1

)
E1k v − 1 rows

(
k−2
t−2

)
E2k

(
v
2

)
− v rows

...

(
k−t
0

)
Etk

(
v
t

)
−
(

v
t−1

)
rows

.



The rows of E below are independent over Fp for all p.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 1 0
0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1



The rows of DE generate the same module as those of W6
23.

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 2 0 2 2 0 2 0 2 0 2 0 2 0 2 0 0 2 0 0
2 0 2 2 0 2 2 0 0 2 0 2 2 0 0 2 0 0 2 0
0 2 2 2 0 0 0 2 2 2 0 0 0 2 2 2 0 0 0 2
0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2
0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2
0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1



Theorem 27 Let ht be a t-vector with at least t isolated vertices.

Let D be the diagonal matrix whose diagonal entries are

(g0)
1, (g1)

v−1, (g2)
(v
2)−v . . . , (gt)

(v
t)−( v

t−1).

Then Etb ≡ 0 (mod D) are necessary and sufficient conditions

for the existence of an integer solution of Ntx = b. Hence D is

a diagonal form for Nt.



10. A zero-sum Ramsey-type problem

Given t and k with 0 ≤ t ≤ k and a prime p so that
(
k
t

)
≡

0 (mod p), let R(t, k; p) denote the least integer n ≥ k so that

if the t-subsets of any n-set X are colored with the elements of

Fp, there is always some k-subset A of X such that the sum of

the colors of all
(
k
t

)
of the t-subsets of A is 0 in Fp.

Equivalently, R(t, k; p) is the least integer v ≥ k so that no vector

in the p-ary code generated by the rows of Wtk is all-nonzero, i.e.

there are no codewords of weight
(
v
k

)
. In particular, R(t, k; 2) is

the least integer v ≥ k so that (1,1, . . . ,1) is not in the binary

code generated by the rows of Wv
tk. Example. R(2,5; 2) = 7.



Theorem 28 (Caro, 1996) When
(
k
t

)
is even, R(t, k,2) ≤ k + t.

Theorem 29 (W, 2002) When
(
k
t

)
is even, R(t, k; 2) is equal to

k + 2e where 2e is the least power of 2 that appears in the base

2 representation of t but not in the base 2 representation of k.

(That
(
k
t

)
is even implies that there are such powers of 2.) In

particular, we have R(t, k; 2) = k + t when t is a power of 2, and

R(t, k; 2) < k + t otherwise.



From Theorem 23, for v ≥ k + t, 11 ∈ colZ(Wtk) if and only if

(v − i

t − i

)
≡ 0 (mod

(k − i

t − i

)
),

for i = 0,1, . . . , t. It follows that 11 ∈ colp(Wtk) if and only if

(k − i

t − i

)
≡ 0 (mod p) implies

(v − i

t − i

)
≡ 0 (mod p),

for i = 0,1, . . . , t.

Note that Wv
tk can be identified with the transpose of Wv

v−k,v−t.

Lemma 30 Let p be a prime, and t ≤ k ≤ v. If v ≤ k + t, then

11 ∈ rowp(Wv
tk) if and only if

(v − t − i

v − k − i

)
≡ 0 (mod p) implies

( v − i

v − k − i

)
≡ 0 (mod p),



for i = 0,1, . . . , t.

Lemma 31 Given integers k and t and a prime p, write

k = a0 + a1p + a2p2 + · · · + a�p
� and

t = b0 + b1p + b2p2 + · · · + b�p
� (14)

in their base p representations, where 0 ≤ ai, bi < p for i =

0,1, . . . , �. Then

(k
t

)
�≡ 0 (mod p) if and only if bi ≤ ai for i = 0,1, . . . , �.



Theorem 32 (Alon, Caro) For any graph G with k vertices and

an even number of edges,

R(G; 2) ≤ k + 2.

Theorem 33 (W) For any t-uniform hypergraph H on k vertices

with an even number of edges,

R(H; 2) ≤ k + t.

Proof. We know that

EtNt = DU

where Et and D are the matrices described in Theorem 27 and

the rows of U are linearly independent over all fields. The first



entry of D is g0, the number of edges of H, and the top row of

U is the vector of all ones.

A basis for rowp(Nt) consists of the rows of U that correspond

to diagonal enties of D that are not divisible by p. If p divides

g0, the vector of all ones is not included, and it, of course,

is not a linear combination of the other rows of U. That is,

(1,1, . . . ,1) �∈ rowp(Nt). �

This can be improved to R(H; 2) ≤ k+t−1 unless H is a complete

t-uniform hypergraph. Don’t quote me on this, but probably

R(H : 2) = k for most t-uniform hypergraphs.

Y. Caro has determined R(G; 2) for all simple graphs G.



Theorem 34 Let G be a simple graph with k vertices and an

even number of edges. Then

R(G; 2) =

⎧⎪⎪⎨
⎪⎪⎩

k if G is complete,

k + 1 if G is the union of two complete graphs or a nonco

k + 2 otherwise.

This will be generalized in the next setion.



11. Diagonal forms for N2 when G is a simple
graphs

In this section, we briefly state some recent joint results with

Tony W. H. Wong.

Theorem 35 A simple graph G is primitive unless G is isomor-

phic to a complete graph, an edgeless graph, a complete bipartite

graph, or the disjoint union of two complete graphs.

Theorem 36 Let G be a primitive simple graph with m edges

and degrees δ1, δ2, . . . , δn. Let h denote the gcd of the degrees

δi and m; let g denote the gcd of all differences δi − δj, i, j =



1,2, . . . , n. Then the invariant factors of N2(G, n) are

(1)(
n
2)−n, (h)1, (g)n−2, (mg/h)1.

• N2 for the Petersen graph (n=10) has diagonal form 135, 31, 08, 151.

• N2 for the Petersen graph plus an isolated vertex (n=11) has

invariant factors 144, 310, 151.

The nonprimitive graphs may be considered separately. Here is

one case.

Theorem 37 Let G be the complete bipartite graph Kr,n−r,

where 2 ≤ r ≤ n − 2. Define m, g, and h as in the statement of



Theorem 36, so in this case

m = r(n − r), g = n − 2r, h = gcd{r, n − r}.
Then the diagonal entries of one diagonal form for N2(G, n) are

(1)n−2, (2)(
n
2)−2n+2, (h)1, (2g)n−2, (mg/h)1.

In the case r = 2, the matrix N2 is square; it is the adjacency

matrix of the line graph of the complete graph Kn as mentioned

earlier, and we have reproved the result of Brouwer and Van Eijl.

Theorem 38 Let G be a simple graph with k vertices and an



even number of edges. Then

R∗(G; p) =

⎧⎪⎪⎨
⎪⎪⎩

k if G is complete,

k + 1 if G is the union of two complete graphs, or is a no

k + 2 otherwise.


