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Abstract

Langlands spectral theory describes the residual spectrum of a reductive group in
terms of intertwining operators and analytic properties of automorphic L-functions.
On the other hand, according to Arthur’s endoscopic classification of automor-
phic representations of classical groups (due to Mok for quasi-split unitary groups),
an Arthur parameter is attached to every residual representation. Comparing the
two approaches yields information on the analytic properties of automorphic L-
functions. In this expository paper we explain how we applied this general idea to
prove the holomorphy in the critical strip of the complete symmetric and exterior
square, and Asai L-functions.

Langlandsのスペクトル理論は、簡約群の留数スペクトルを絡作用素と保型Ｌ
関数の解析性質により記述するものである。一方、Arthurによる古典群（およ
びMokによる準分裂ユニタリ群）の保型表現の内視論的分類によれば、全ての留
数的表現に対してArthurパラメータが付随している。この２つのアプローチを比
較することで保型Ｌ関数の解析的性質についての情報が得られる。本解説記事に

おいては、この発想が、完備化された対称積Ｌ関数、２次外積Ｌ関数、浅井Ｌ関

数の臨界帯領域における正則性の証明にどのように適用されるかを説明する。

1 Introduction

Besides the standard L-function, the three important automorphic L-functions at-
tached to cuspidal automorphic representations of the general linear group are the sym-
metric square, exterior square and Asai L-function [24]. These L-functions have been
extensively studied and many properties are known. In the paper [12] and the recent
joint work with Shahidi [13], we proved the holomorphy of these L-functions in the criti-
cal strip, which was previously not known.

The purpose of this expository paper is to point out clearly the underlying general
idea applied in [12, 13]. It does not contain any new results, we avoid many technical

∗This work has been supported in part by Croatian Science Foundation under the project 9364 and
by University of Rijeka research grant 13.14.1.2.02.
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issues and give almost no proofs. We refer the interested reader to the original papers
[12, 13] for more details.

The general idea in [12, 13] was to compare the endoscopic classification of Arthur [3],
which is due to Mok [20] for quasi-split unitary groups, to the spectral theory of Lang-
lands [18] (see also [19]). More precisely, according to endoscopic classification, every
automorphic representation in the discrete spectrum of a classical group over a num-
ber field should have a square-integrable Arthur parameter. On the other hand, we can
construct residual representations of a classical group using Langlands spectral theory,
starting with a cuspidal automorphic representations of Levi factors. Since the construc-
tion in some cases depends on some unknown properties of these cuspidal automorphic
representations, comparison with the possible Arthur parameters may lead to some new
insight.

The paper is organized as follows. After this Introduction, we present in Sect. 2 the
general idea of comparing the endoscopic classification and Langlands spectral decompo-
sition. In Sect. 3 we introduce the automorphic L-functions considered in [12, 13], review
their properties, and mention the main results of [12, 13]. Finally, in Sect. 4, we outline
very roughly the proof for symmetric square L-functions by applying the general idea in
the case of split odd special orthogonal group.

∗ ∗ ∗

This paper is an outgrowth of the talk under the same title given at the workshop
Automorphic Forms and Related Zeta Functions held in January 2014 at the Research
Institute for Mathematical Sciences (RIMS), Kyoto, Japan. We would like to thank the
organizers Taku Ishii and Hiro-aki Narita for the invitation to give the talk. We are very
grateful to Takayuki Oda for his invitation to visit Tokyo University, during which we
also attended the workshop in Kyoto.

2 General idea

As already mentioned in the Introduction, we would like to use the work of Arthur
[3, 2], that is, his endoscopic classification, to extract some extra information about
automorphic representations. In particular, the holomorphy of certain automorphic L-
functions attached to them. In this section we explain the general idea which is not new.
It was already used in [12] and [13] to extract such information.

2.1 Automorphic forms

We begin with some notation. Let k be a number field with the ring of adèles A. Let
G be an algebraic group over k. Although at this point we could work with a reductive
group, we assume for simplicity that G is semi-simple, thus avoiding the discussion of
central characters. Later on there will be some furhter assumptions on G.

We consider the space of L2 automorphic forms on G(A) defined as

L2(G) = L2 (G(k)\G(A)) =





classes of measurable functions f on G(A) such that
f(γg) = f(g) for γ ∈ G(k) and g ∈ G(A), and∫
G(k)\G(A)

|f |2 <∞



 .
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This is a Hilbert space, and the action of the group G(A) on L2(G) by right translation
is a unitary representation. The goal of spectral decomposition for G is to decompose
L2(G) with respect to that action.

As a first step in the G(A)-invariant decomposition, we have

L2(G) = L2
disc(G)

⊕
L2
cont(G),

where L2
disc(G) is the discrete spectrum of G spanned by all closed irreducible G(A)-

invariant subspaces of L2(G), and L2
cont(G) is the continuous spectrum of G obtained as the

orthogonal complement of the discrete spectrum. Classifying automorphic representations
that appear in the discrete spectrum is the goal of Arthur’s endoscopic classification. The
continuous spectrum can be described in terms of direct integrals of Eisenstein series,
which was already established by Langlands [18].

2.2 Arthur’s endoscopic classification

Let now G be a classical group defined over a number field k. The endoscopic classifi-
cation of automorphic representations should provide a parametrization of representations
appearing as summands in G(A)-invariant decomposition of the discrete spectrum of G.

However, at the time of writing this paper, endoscopic classification still depends on
the stabilization of the twisted trace formula for the general linear group. This problem
is considered by Waldspurger [30, 31, 32], but not yet resolved.

We summarize the state-of-the-art of endoscopic classification, up to the stabilization
mentioned above, as follows.

• For G a split symplectic or special orthogonal group, the classification is proved in
Arthur’s book [3].

• For G an inner form of split symplectic or special orthogonal group, the classification
is stated without proof in the last section of Arthur’s book [3].

• For G a quasi-split unitary group (given by a quadratic extension K/k), the classi-
fication is recently proved by Mok [20].

In what follows, we give a very rough description of the classification, sufficient only
to express the general idea of our work. For a classical group G, a set Ψ2(G) of so-called
square-integrable parameters is defined. A parameter ψ ∈ Ψ2(G) may be viewed as an
isobaric sum of automorphic representations in L2

disc(GLm) for some integers m. So in a
sense, the endoscopic classification for a classical group G is given in terms of GLm.

An Arthur packet Πψ is associated to every parameter ψ ∈ Ψ2(G). It is a set of nearly
equivalent representations of G(A) with certain properties. Packets associated to different
parameters are disjoint. The endoscopic classification amounts to the decomposition

L2
disc(G)

∼=
⊕

ψ∈Ψ2(G)

⊕

π∈Πψ

mdisc(π) π,

where mdisc(π) ≥ 0 is the multiplicity of π in L2
disc(G) given in terms of certain objects

attached to ψ.
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Observe that we use here the definition of Πψ without the condition that the mul-
tiplicity mdisc(π) of π ∈ Πψ is non-zero. In other words, our definition allows that Πψ

contains representations π that do not appear in L2
disc(G). However, this is sufficient for

our purposes.

2.3 Langlands spectral decomposition

We assume again that G is semi-simple, although the theory works for a reductive
group as well. The Langlands spectral theory [18] is another way to construct represen-
tations in the non-cuspidal part of the discrete spectrum of G.

More precisely, let

L2
cusp(G) =



f ∈ L2(G) :

∫

N(k)\N(A)

f(ng)dn = 0,
for almost all g ∈ G(A), and
for unipotent radicals N of all
proper parabolic subgroups of G





be the cuspidal spectrum of G. It is a closed G(A)-invariant subspace of L2(G). By a
fundamental result of Gelfand, Graev, Piatetski-Shapiro [10] and Langlands [18] (see also
[11]), it decomposes into a Hilbert space direct sum of irreducible invariant subspaces
with finite multiplicities. In particular, L2

cusp(G) is a subspace of the discrete spectrum.
The residual spectrum L2

res(G) is the orthogonal complement of the cuspidal spectrum
L2
cusp(G) inside the discrete spectrum L2

disc(G). Thus, we have a decomposition

L2
disc(G) = L2

cusp(G)
⊕

L2
res(G).

The Langlands spectral decomposition is a decomposition of the residual spectrum along
the cuspidal support. Besides the original book of Langlands [18], main references are
[19] and [9].

Let P be a standard proper parabolic subgroup of G, and {P} its associate class.1 Let
σ be a cuspidal automorphic representation of the Levi factorMP (A), normalized in such a
way that the poles of Eisenstein series and L-functions attached to σ are real.2 We denote
by {σ} the associate class of σ.3 Given the associate classes {P} and {σ}, let L2

res,{P},{σ}(G)

be the (possibly trivial) space spanned by square-integrable iterated residues of Eisenstein
series on G(A) constructed from σ. The residual spectrum decomposes into

L2
res(G) =

⊕

{P}

⊕

{σ}

L2
res,{P},{σ}(G).

Hence, a way to construct automorphic representations in the residual spectrum, is to
study the poles of Eisenstein series.

1Here we implicitly assume that a minimal parabolic subgroup of G defined over k has been fixed. By
definition, a parabolic subgroup is standard, if it contains a fixed minimal parabolic subgroup. Parabolic
subgroup Q is associate to P if their Levi factors are G(k)-conjugate.

2More precisely, we always assume that σ is trivial on the connected component of the archimedean
part of the maximal split torus in the center of MP . This is not restrictive, because it can be obtained
by twisting σ with a unitary character of MP (A). Hence, it is just a convenient normalization, which
makes the poles of Eisenstein series and L-functions attached to σ real.

3Associate class of σ is a family of (non-empty) finite sets ϕQ, indexed by Q ∈ {P}, consisting of
cuspidal automorphic representations of the Levi factor MQ(A) obtained as conjugates of σ by elements
of G(k).
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For simplicity of exposition, we do not define the Eisenstein series here. We also
assume that P is self-associate.4 We simply let E(s, g) be an Eisenstein series on G(A)
constructed using a section of representations parabolically induced from σ tensored by
a character of MP (A) which depends on the complex parameter s ∈ C

r.5 The general
theory of Eisenstein series implies that the poles of the Eisenstein series E(s, g) coincide
with the poles of its constant term along P , which is defined as

E(s, g)P =

∫

NP (k)\NP (A)

E(s, ng)dn,

where NP is the unipotent radical of P . On the other hand, the constant term can be
written as

E(s, g)P =
∑

finite

standard intertwining operators,

where standard intertwining operators are certain integral operators acting on the section
of induced representations from which E(s, g) is constructed. They are defined as the
analytic continuation from the domain of convergence of certain integrals (see [25, 19] for
more details). The study of poles of the Eisenstein series reduces to that of finite sums
of standard intertwining operators.

At this point we assume that G is quasi-split and σ globally generic (with respect to
some fixed non-trivial additive character of k\A), so that we may apply the Langlands-
Shahidi method [25, 24]. In that case, we still have some serious difficulties to overcome.

1. The poles of standard intertwining operators can be determined, in principle, from
poles (and zeros) of certain automorphic L-functions. But these could be unknown.

2. Even when the poles of individual standard intertwining operators are known, taking
the residue of a finite sum could lead to cancelations. Understanding the cancela-
tions involves demanding combinatorial considerations.

3. Finally, the residues are isomorphic to images of some intertwining operators. In
particular, they are isomorphic to a constituent of some induced representation.

2.4 The strategy

The very rough and incomplete description of the endoscopic classification and the
Langlands spectral theory, given in previous sections, is sufficient to explain our strategy.
Now G is a quasi-split classical group so that we may apply both approaches to the
discrete spectrum.

By the Langlands spectral theory, we can use Eisenstein series to construct an auto-
morphic representation π in the discrete spectrum L2

disc(G). The construction will depend

4A standard parabolic subgroup is self-associate if it is the only standard parabolic in its associate
class.

5Let fs be a “good” section of the induced representation Ind
G(A)
P (A) (σ ⊗ χs), where χs is a character

of MP (A) that depends on the complex parameter s ∈ C
r. The Eisenstein series E(fs, g) is defined as

the analytic continuation from the domain of convergence of the series E(fs, g) =
∑

γ∈P (k)\G(k) fs(γg),

where g ∈ G(A). For simplicity, we write E(s, g) for such Eisenstein series constructed from some section
fs. See [19, 9] for more details.
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on some properties of the cuspidal automorphic representation σ of a Levi factor in G from
which the Eisenstein series is constructed. For example, certain automorphic L-function
attached to σ should have a pole.

Having constructed π in L2
disc(G), the endoscopic classification implies that there

should be a square-integrable parameter ψ ∈ Ψ2(G), such that π belongs to the packet
Πψ. If we can prove that such ψ does not exist, then π does not appear in L2

disc(G).
Hence, the properties of σ on which the construction of π depends are not satisfied. In
the example mentioned above, this means that the L-function in question does not have
a pole.

We applied this simple strategy in [12] and [13] to prove holomorphy of certain auto-
morphic L-functions attached to σ for some values of the complex parameter.

3 Automorphic L-functions

In this section we introduce the automorphic L-function considered in this paper, and
review their analytic properties. We state the main results of [12] and [13]. It is the
holomorphy of these L-functions in the critical strip, which was not known before using
other methods.

3.1 Definition

Let k and A be a number field and its ring of adèles, as before. For a place v of k, we
denote by kv the completion of k at v. Let σ be a cuspidal automorphic representation of
GLn(A). Let v be a non-archimedean place of k such that the local component σv of σ is
an unramified representation of GLn(kv). We denote by c(σv) its Satake parameter [22, 8]
in GLn(C). Let r be a finite-dimensional algebraic representation of GLn(C), which is
the dual group of GLn. To these data, Langlands attached in [17] the local unramified
L-function

Lv(s, σ, r) = L(s, σv, r) = det
(
I − r(c(σv))q

−s
v

)−1
,

where I is the identity matrix of appropriate size, and qv the cardinality of the residue
field of kv.

In this paper we are interested in three automorphic L-functions. Two of them are the
symmetric and exterior square L-functions of σ, attached to the symmetric square r =
Sym2 and exterior square r = ∧2 of the standard representation of GLn(C), respectively.

The third L-function that we consider in this paper is the so-called Asai L-function, as
it generalizes the case considered by Asai in [4]. It is attached to a cuspidal automorphic
representation σ of GLn(AK), where K/k is a quadratic extension of number fields, and
AK is the ring of adèles of K. We are skipping the details here,6 but for a place v of k

6To precisely define the Asai L-function in the setting of Langlands [17], one should view σ as a
representation of the group H(Ak), where H = ResK/kGLn is the algebraic group over k obtained from
GLn/K by restriction of scalars. For an unramified place v of k, the local L-function is attached to a
finite-dimensional representation rv of the L-group of H viewed as a kv-group. This is the reason for
a distinction between split and inert places in the definition. If v splits in K, and w1 and w2 are the
two places of K lying over v, the local L-function at v is in fact the local unramified Rankin-Selberg
L-function attached to the pair σw1

and σw2
. If v is inert in K, and w is the unique place of K lying

over v, then the local unramified L-function at v is the Asai L-function.
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Table 1: Automorphic L-functions in constant terms of Eisenstein series

r G

Sym2 split odd special orthogonal group SO2n+1

∧2 split even special orthogonal group SO2n

split symplectic group Sp2n

Asai quasi-split unitary group Un

which is unramified inK and such that the local components of σ at places ofK lying over
v are unramified, one can define the local Asai L-function at v. The local Asai L-function
at v attached to σ is denoted by

Lv(s, σ, Asai)

in this paper.
Let r = Sym2,∧2 or Asai. Let S be a finite set of places of k, containing all

archimedean places, and such that the local L-function Lv(s, σ, r) attached to σ is de-
fined for all v 6∈ S. The partial L-function attached to σ and r is defined as

LS(s, σ, r) =
∏

v 6∈S

Lv(s, σ, r).

The product on the right-hand side converges absolutely in some right half-plane.
These partial L-functions appear in the constant term of the Eisenstein series on

the appropriate (quasi-)split classical group G. The groups G in question for r =
Sym2,∧2, Asai are listed in Table 1. As G is (quasi-)split and σ is globally generic,7

Shahidi defined in [24] the local L-functions Lv(s, σ, r) at ramified non-archimedean places.
At archimedean places Lv(s, σ, r) is just the Artin L-function attached to the Langlands
parameter of σv as in [23]. Hence, we can define the complete automorphic L-functions
attached to σ and r as

L(s, σ, r) =
∏

v

Lv(s, σ, v),

where the product over all places on the right-hand side converges in some right half-plane.

3.2 Review of analytic properties

The three automorphic L-functions L(s, σ, r), defined above, have been extensively
studied and many analytic properties are known. We summarize these properties below.
In what follows it is convenient to use the notation

σ∗ =

{
σ̃, if r = Sym2,∧2,
σ̃θ, if r = Asai,

where σ̃ is the representation contragredient to σ, and θ is the unique non-trivial element
in the Galois group of the quadratic extension K/k. We denote by σθ the representation
conjugate to σ by the Galois automorphism θ.

7Every cuspidal automorphic representation of GLn(A) is globally generic. This follows from the
Fourier expansion of cuspidal automorphic forms on GLn(A), see [21, 26].
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1. The defining product of LS(s, σ, r), and thus also L(s, σ, r), has the analytic contin-
uation to a meromorphic function in the whole complex plane8 (cf. [17, 25]).

2. The complete L-functions L(s, σ, r) satisfy a functional equation9 relating the values
at s and 1− s (cf. [24, 25]).

3. Holomorphy of the complete L-function L(s, σ, r) always implies holomorphy for
the partial L-function LS(s, σ, r), since local L-functions have no zeros. But the
converse is not true, due to ramification and problems at archimedean places.

4. If σ is not isomorphic to its (Galois conjugate) contragredient σ∗, then the L-
function L(s, σ, r), and thus also the partial L-function LS(s, σ, r), is entire.10

5. For σ isomorphic to σ∗, i.e., σ (Galois conjugate) self-dual, the situation for complete
L-functions is presented in Fig. 1.

(a) For Re(s) ≥ 1 and Re(s) ≤ 0 the complete L-function L(s, σ, r) is holomorphic
and non-zero, except for possible poles at s = 0 and s = 1 of order at most
one.

(b) In the critical strip, i.e., for 0 < Re(s) < 1, the holomorphy of the partial

L-function LS(s, σ, r) is established using the integral representation approach
in [27, 28, 29, 7] for r = Sym2, in [6, 16, 5] for r = ∧2, and in [1] for r = Asai.

(c) In the critical strip, i.e., for 0 < Re(s) < 1, the holomorphy of the complete

L-function L(s, σ, r) was not known, and the goal of this paper is to explain
how the general idea of Sect. 2 is used in [12] and [13] to prove this fact.

3.3 Holomorphy in the critical strip

The holomorphy of the complete L-functions L(s, σ, r) in the critical strip was the main
new result, for which a crucial insight from the endoscopic classification was required, in
[12] for r = Sym2,∧2, and in [13] for r = Asai. For convenience, we state these results in
separate theorems below.

Theorem A (G. (2011), [12]). Let σ be a cuspidal automorphic representation of GLn(A).
Then the complete symmetric square L-function L(s, σ, Sym2) and the complete exterior

square L-function L(s, σ,∧2) are holomorphic in the critical strip, i.e., for 0 < Re(s) < 1.

Theorem B (G. and Shahidi (preprint, 2014), [13]). Let σ be a cuspidal automorphic

representation of GLn(AK), where K/k is a quadratic extension of number fields. Then

the complete Asai L-function L(s, σ, Asai) is holomorphic in the critical strip, i.e., for

0 < Re(s) < 1.

8The proof is essentially the same as for the Riemann ζ-function, once a uniform bound for Satake
parameters over unramified places is known. See [25, Appendix 2.5] for details.

9The functional equation is L(s, σ, r) = ε(s, σ, r)L(1− s, σ∗, r), where ε(s, σ, r) is the ε-factor.
10This is a consequence of the theory of Eisenstein series. See Remark at the end of [19, Section

IV.3.12].
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Figure 1: Analytic properties of symmetric square, exterior square and Asai complete
automorphic L-functions

4 About the proof

We finish this paper with a few words about the proof of Theorem A and B. The
idea is to apply the strategy outlined in Sect. 2.4, that is, compare the Langlands spectral
decomposition and Arthur classification for an appropriate quasi-split classical group. For
the complete proof, we refer the interested reader to the original papers [12] for Theorem
A and [13] for Theorem B, in which these two theorems are proved.

The simplest case for the presentation is the case of symmetric square L-function
L(s, σ, Sym2), where σ is a cuspidal automorphic representation of GLn(A). Other cases
are proved in a similar way.

4.1 Step 1

From Table 1, we know that the symmetric square L-function L(s, σ, Sym2) appears
in the constant term of the Eisenstein series for G = SO2n+1. Hence, let SO2n+1 be
the split odd special orthogonal group defined over a number field k. Let P be the
Siegel maximal proper standard parabolic subgroup11 of SO2n+1. This is the standard
parabolic subgroup with the Levi factorMP isomorphic to GLn. Consider σ as a cuspidal
automorphic representation of MP (A) ∼= GLn(A).

For s ∈ C, let
I(s, σ) = Ind

SO2n+1(A)
P (A) (σ| det |s)

be the parabolically induced representation, where the induction is normalized, det is the

11Here we implicitly assume that a Borel subgroup B of SO2n+1 has been fixed, and by definition, P
is standard, if it contains B.
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determinant on MP (A) and | · | is the adèlic absolute value. Taking a good12 section fs of
I(s, σ), the Eisenstein series constructed from fs is defined as the analytic continuation
from the domain of convergence of the series

E(fs, g) =
∑

γ∈P (k)\SO2n+1(k)

fs(γg)

for g ∈ SO2n+1(A).
As explained in Sect. 2.3, the poles of E(fs, g) are determined by those of the constant

term E(fs, g)P along P . Note that P is self-associate. The constant term in this case is
the sum of two terms

E(fs, g)P = fs(g) +
(
std intertw op

)
fs(g).

But the first term is just the identity operator. Hence, the poles are the same as the
poles of a single standard intertwining operator. In particular, there is no problem with
cancelations in the sum mentioned in Sect. 2.3.

It turns out that the standard intertwining operator, appearing in the constant term,
has the same poles for Re(s) > 0 as the L-function L(2s, σ, Sym2). Observe the factor
two appearing in the argument. Hence, for Re(s) > 0 and the appropriate choice of fs,
the poles of the Eisenstein series E(fs, g) are the same as the poles of the L-function
L(2s, σ, Sym2).

Conclusion. Assume that the L-function L(z, σ, Sym2) has a pole at z = 2s0 such that
0 < 2s0 < 1. Then E(fs, g) would have a pole at s = s0 for appropriate choices of fs. By
the square-integrability criterion of Langlands (see [18, p. 104] or [14, p. 187]), the residues
of E(fs, g) at the pole s = s0 would span an automorphic representation π in the residual
spectrum L2

res(SO2n+1). This representation π would be isomorphic to a constituent of
the induced representation

Ind
SO2n+1(A)
P (A) (σ| det |s0) ,

since it is isomorphic to the image of certain normalized intertwining operator, as men-
tioned in Sect. 2.3.

4.2 Step 2

In the previous step we constructed the representation π in L2
res(SO2n+1), under the

assumption that L(s, σ, Sym2) has a pole in the critical strip. Hence, according to
Sect. 2.2, it should belong to the Arthur packet Πψ for some square-integrable parameter
ψ ∈ Ψ2(SO2n+1). To see what are the possibilities, we now give an incomplete definition
of square-integrable parameters for SO2n+1, which will be sufficient for our purposes.

A square-integrable Arthur parameter ψ ∈ Ψ2(SO2n+1) is an unordered formal sum of
formal tensor products

ψ =
(
µ1 ⊠ ν(n1)

)
⊞ · · ·⊞

(
µℓ ⊠ ν(nℓ)

)
,

where

12This has a precise meaning, which we do not recall here. See, for example, [19] or [9].
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(i) µi ∼= µ̃i is a self-dual cuspidal automorphic representation of GLmi(A) for some
positive integer mi,

(ii) ni are positive integers such that
∑ℓ

i=1mini = 2n,

(iii) ν(ni) is the unique irreducible ni-dimensional algebraic representation of SL2(C),

(iv) the formal sum is multiplicity free,

(v) certain condition on central characters of µi,

(vi) a technical condition given in terms of the twisted endoscopic datum associated to
µi.

The conditions (iv)-(vi) in this definition are not given precisely, as we will not need them
in this paper.

As explained in Sect. 2.2, Arthur packet Πψ, associated with ψ ∈ Ψ2(SO2n+1), is a
set of nearly equivalent representations of SO2n+1(A). If π ∼= ⊗′

vπv ∈ Πψ, then πv is
unramified at almost all places, and its Satake parameter c(πv) ∈ Sp2n(C), viewed via
inclusion as an element in GL2n(C), is at almost all places determined by the Satake
parameter of ψ, which is given as

cv(ψ) =
ℓ⊕

i=1

[
c(µi,v)⊗ diag

(
q
ni−1

2
v , q

ni−3

2
v , . . . , q

−
ni−1

2
v

)]
∈ GL2n(C),

where c(µi,v) is the Satake parameter of µi,v, and qv the cardinality of the residue field of
kv.

Conclusion. Given an automorphic representation π ∼= ⊗′
vπv of SO2n+1(A) appearing

in L2
disc(SO2n+1), the Satake parameters cv(ψ) of some square-integrable parameter ψ ∈

Ψ2(SO2n+1) should determine the Satake parameters c(πv) of πv at almost all places.

4.3 End of proof

Finally, we apply the strategy proposed in Sect. 2.4. In step 1, we constructed an au-
tomorphic representation π in the residual spectrum L2

res(SO2n+1), which is a constituent
of the induced representation

Ind
SO2n+1(A)
P (A) (σ| det |s0) ,

with 0 < 2s0 < 1, under the assumption that L(z, σ, Sym2) has a pole in the critical strip
at z = 2s0. Hence, we can determine the Satake parameters c(πv) at almost all places.

Since π is in the discrete spectrum, it should have a square-integrable parameter
ψ ∈ Ψ2(SO2n+1), such that the Satake parameters of πv and ψ match at almost all places.
Looking at the possible Satake parameters cv(ψ) of a square-integrable parameter ψ, and
viewing parameters as induced representations of GL2n(A), the strong multiplicity one
for general linear groups [15] implies that necessarily ℓ = 1, µ1 = σ with m1 = n, and
n1 = 2, that is,

ψ = σ ⊠ ν(2),

11



and thus s0 = 1/2. In other words, there is no Arthur parameter for π, because the only
possible candidate is such that 2s0 = 1, and we assumed 0 < 2s0 < 1. Therefore, π
can not exist, and our assumption that L(z, σ, Sym2) has a pole in the critical strip was
wrong. This proves the holomorphy of L(s, σ, Sym2) in the critical strip.
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